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Abstract A cluster-based intersection fingerprinting technique for outdoor location

estimation using received signal strength (RSS) is proposed. The performance of the

proposed scheme is demonstrated by making comparisons using RSS data from a simulated

grid-based urban propagation model, RSS data generated by a network planning tool

applied to a rural environment, and RSS data from real city environment. The proposed

scheme first uses an optimal clustering scheme to portion the large outside area into

different small regions based on the use of RSS deviations from the path loss model. For

each region, a fine RSS distribution model is built to provide a good support for further

positioning. An improved intersection method is then presented to find the most likely

geographical area to further estimate a mobile user’s location. A comparison between

cluster-based and grid-based environment partitioning is made. The experimental results

show that the proposed clustering scheme gives good support for location estimation and

the positioning accuracy is significantly improved.

Keywords Clustering � Fingerprinting � Intersection � Received signal strength

1 Introduction

Localisation has become more and more popular in pervasive computing environments, for

example, positioning a mobile user in an emergency environment. Although the global

positioning system (GPS) is overwhelmingly popular for mobile devices, it is not always
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the best option as: (a) GPS relies on special hardware support and has high complexity,

high battery consumption and latency, which impacts on its widespread commercial use;

(b) the access to GPS signals is often limited in some environments such as urban areas

with many high buildings, mountainous terrain and indoor areas.

Consequently, a variety of wireless localisation techniques have been proposed in the

literature, including Time of Arrival (ToA), Time Difference of Arrival (TDoA), Angle of

Arrival (AoA) and Received Signal Strength (RSS)-based methods. Among these tech-

niques, RSS-based method is seen as economic for wireless networks because it does not

require additional hardware such as high precision clocks (ToA and TDoA) and antenna

arrays in transmitter or receiver (AoA). Moreover, RSS data can be readily collected

indoors or outdoors for most wireless systems and the data can be used to obtain either

range estimates or connectivity information [1].

Many RSS-based localisation approach make use of fingerprinting [2] to overcome the

limitations of traditional triangulation approaches and performs well for non-line-of-sight

circumstances especially in a complex environment. However, previous fingerprint studies

[3–19] mainly focus on indoor localisation due to the difficulty in acquiring the large

amount of data that need to be processed for larger outdoor areas.

In this paper, we propose a outdoor location estimation scheme exhibiting a high

accuracy in localising mobile stations (MSs) even with a relatively low density of reference

RSS data. The proposed scheme consists of two phases: the offline training phase and the

online localisation phase. In the first phase the outdoor area is partitioned into small

clusters by analysing the RSS collected from historical data using an improved clustering

scheme. Then in the online localisation phase the mobile location can be estimated by

further analysing these clusters with the help of a refined intersection approach. The novel

features that contribute to the greater accuracy include: (a) clusters are created using RSS

deviations resulting from the observed path loss model which capture better the wireless

topography in a complex environment, rather than the raw RSS, in each RSS component

analysis. As a result, the clusters remain invariant to the variation in base station (BS)

transmitter power; (b) the relationship between the accurate estimation of the cluster

membership probability and the optimal number of clusters is applied to manage the trade-

off between number of cluster and accuracy of clustering; (c) the application of an

intersection approach in the online phase improves the accuracy of location estimation.

The rest of this paper is organised as follows. Section 2 reviews related work on

location fingerprinting using RSS and analyses its two main characteristics, followed by

the detailed description of the proposed location estimation scheme in Sect. 3. Perfor-

mance evaluations of the proposed method and the existing localisation methods are

presented and compared in Sect. 4 using both numerically simulated and real measured

data. Finally, Sect. 5 discusses the results and outlines open issues for future research.

2 Location Fingerprinting Based on Received Signal Strength

The idea of RSS-based fingerprinting is simple and effective: the measurements of RSS

are collected from a number of known locations to generate a database of location

fingerprints (a.k.a. radio map) based on a variety of partitioning models in the training

phase. Then in the online phase new RSS observations measured at unknown locations

are compared with all the fingerprints in the radio map to estimate the locations based on

preferred algorithms. Two popular partitioning models and typical location fingerprinting

techniques are outlined in the following parts.
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2.1 Partitioning Models

Grid-based partitioning and cluster-based partitioning are the two most popular parti-

tioning models. The grid-based methods [8, 10] generally divide the simulation environ-

ment into uniform regular grids and then attempt to map a MS location to a point on a grid

element. The spacing of the grid influences the accuracy of the position estimation [4].

Coarse grids result in loss of the accuracy dramatically. On the other hand, using fine grids

can increase the accuracy but also requires a more laborious site-survey. Moreover, another

key issue is that uniform grids can not reflect the topography. Some location-aware

applications [8] (mainly indoor ones), do not use uniform grids but use a topographical

model. In this case the environment, e.g. a office building, is divided into cells where a cell

corresponds to a specific office room or hallway segment.

Recently, many cluster-based location estimation methods have been proposed with

positive results. Most of these method focused on indoor environments and the IEEE

802.11b wireless LAN networks (WLAN) [9, 11, 12]. The clustering algorithms partition

the environment into regions that are more homogeneously covered by the radio signal. In

[9, 11], the Joint Clustering approach covers access points (APs) during the offline phase,

and then applies a Maximum Likelihood estimator to determine the most probable location

within the cluster in the online phase. Yiqiang et al. [12] proposed an algorithm known as

CaDet for power-efficient location estimation by selecting the APs in an indoor wireless

environment. The environment is modelled as a space of 99 locations, each representing a

1.5-m grid cell. In the offline phase, it uses K-means clustering method based on the

similarity of RSS from APs. A decision tree over the grids in each cluster is built in the

online phase for location estimation with high accuracy.

However, there are two points worth noting: firstly, previous cluster-based partitioning

research [9, 11, 12] did not pay attention to the cluster stability and scalability issues of

handling a large amount of data without loss of important correlation information. Sec-

ondly, the clustering results are dominantly affected by the path loss effect rather than by

the correlations between RSS values associated with the topographical effects. To cope

with these issues, the proposed clustering scheme makes an approximate adjustment for the

distance effect and then works with the residual. The approach also has the benefit that the

clusters are still invariant to the power of the BSs. The improved accuracy of our clustering

approach has been demonstrated by the experimental results.

2.2 Fingerprinting-Based Techniques

Fingerprinting-based approaches can generally be categorized into two categories: deter-

ministic approaches and probabilistic approaches. The former use deterministic inference

algorithms to estimate a MS location. This essentially involves calculations of the similarity

between new RSS observations at unknown locations and the trained RSS data with known

location information. For example, the RADAR system [3, 13], a RF based system for

locating and tracking users inside buildings, represents the first 802.11 fingerprinting struc-

ture for localisation developed by Microsoft Research. The system carries out K-Nearest-

Neighbour algorithm (KNN) based on Euclidean distance function to find the K nearest

neighbours of a user. Then the average of the coordinates of these K locations is used as the

estimate of the user’s location. Ni et al. [14] and Li and Salter [15] improved the accuracy by

using a weighted average of the coordinates of the K nearest neighbours. The weight values

are taken as the inverse of the Euclidean distances. This method is referred to as Weighted

K-Nearest Neighbours (WKNN). The experimental results in [15] indicate that the KNN and
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theWKNN can provide a relatively higher accuracy than the simple Nearest Neighbour (NN)

method, particularly when K = 3 and K = 4. However, when a high density radio map is

available, the NN method can perform as well as other complicated methods [16]. There are

several variants of the KNN method, e.g. the Database Correlation Method (DCM) [17, 18].

Our proposed approach also belongs to deterministic category.

Probabilistic approaches are often used as a tool for cope with the incompleteness in

RSS models, e.g. [19]. These methods use the training RSS samples to construct a prob-

ability distribution of RSS at desired locations as the content of a radio map, and then

calculate the likelihood or posterior probabilities. Although probabilistic methods are

reported to provide higher positioning accuracy than deterministic approaches [19], they

are quite computationally complex when the observed data is high-dimensional.

3 Outdoor Location Estimation with Clustering

The proposed location estimation scheme consists of two phases: a offline training phase

and an online localisation phase, as illustrated in Fig. 1.

In the training phase, the real time RSS samples collected during the network planning

stage are analysed. Based on this analysis, the large target area can be partitioned into

small ones using a clustering method. The relatively homogeneous RSS distribution within

each small region is then accurately modelled. When a new MS is collected, these models

are involved in the K-Nearest Neighbour Venn Probability Machine (KNN-VPM) algo-

rithm in order to estimate which small region the new MS is most probably located in.

Within this region, further location estimation can be made with acceptable precision. As

such, our proposed location estimation scheme is tolerant to the measurement errors.

3.1 Training Phase

The two main objectives in the training phase of the proposed scheme are to find the

optimal clustering result and to create the RSS distribution model. Previous clustering

studies [9, 11, 12] did not pay attention to the cluster stability and scalability issues of

handling a large amount of data without loss of important correlation information. In the

proposed clustering scheme, the Affinity Propagation [20] method is applied to produce

clusters, while the Venn Probability Machine (VPM) [21] is utilized to determine the

probability of cluster membership.

Fig. 1 The overview of the proposed location estimation scheme
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3.1.1 Clustering Mobile Stations’ RSS Data

In the context of wireless networks, there are two benefits of Affinity Propagation (AP)

clustering technique for this research work: (a) the clusters emerge naturally and the

number of clusters is related to a pre-set ‘‘preference’’ value, rather than by setting the

number of clusters in advance; (b) it allows great flexibility in the face of dynamic

environments, since all clustering parameters can be changed across iterations.

In this work, the similarity calculation in the AP clustering process is based on the

Mahalanobis distance rather than the Euclidean distance in the signal space to create

distinct and stable clusters. This is because Mahalanobis distance function can avoid giving

too much weight to correlated RSS values in the distance function and enables both non-

linear and linear decision boundaries. Comparisons between the Euclidean distance and

Mahalanobis distance on real data set are presented in Sect. 4.

Let ri ¼ ðri;1; ri;2; . . .; ri;qÞ represent the RSS tuple of MS i received from q neigh-

bouring antennas in the area of interest. The RSS deviations that can be obtained based on

the log-distance path loss models can be given as qi ¼ ðqi;1; qi;2; . . .; qi;qÞ. For any two

MSs, such as MS i and MS k, the similarity between them can be expressed as

sði; kÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqi � qkÞR�1ðqi � qkÞT
q

: ð1Þ

Because the signal strength received by MSs from different BSs can be correlated, the

covariance matrix R in the signal space is used in (1) to describe the mutual dependence of

the signal strength received by the two MSs from different BSs. If there are q adjacent BSs,

R can be estimated as

Rq�q ¼

R1;1 � � � R1;q

..

. . .
. ..

.

Rq;1 � � � Rq;q

2

6

6

4

3

7

7

5

; ð2Þ

where Rj;p ¼ 1
ðn�1Þ

Pn
i¼1ðqi;j � �qjÞðqi;p � �qjÞT

, 1� j; p� q, n is the number of MSs, the

superscript T represents transpose and �qj is the average RSS deviation of all MSs from BS

j, �qj ¼ 1
n

Pn
i¼1 qi;j. If R is replaced by a identity matrix, Eq. (1) will become the Euclidean

distance function.

Moreover, the use of RSS deviation data for calculating the similarity can eliminate the

effects of distance dependent path loss attenuation to some extent. Therefore, the effects of

multipath and shadowing associated mainly with the topography can be better captured. On

the contrary, similarity calculation using raw RSS will be dominated by the path loss.

Comparisons between using RSS deviation and raw RSS are made in Sect. 4.

According to the log-distance path model [22], the RSS measurement Prss (in dBm) at

the distance d from a transmitter can be calculated as

Prss ¼ PTR þ jþ c logðd=d0Þ; ð3Þ

where PTR represents the transmit power (in dBm) of the transmitter, d0 is reference

distance for the antenna area and its value is set to 100 m in this research. The values of

parameter c and j are heavily dependent on the environment and can be estimated by a

least squares linear regression based on all MSs’ RSS from the transmitter in the training

phase.

Outdoor Location Estimation Using Received Signal Strength... 369

123



3.1.2 Estimation of the Accuracy of Cluster Identification

The Venn Probability Machine (VPM) [21] is a classification system usually applied on top

of an existing learning algorithm, e.g. KNN, to augment predictions with probability

estimates. In this research, the VPM is used for determining the probability of cluster

membership. Based on this, we can manage the trade-off between the accuracy of cluster

identification and the number of clusters.

Specifically, the RSS training data set are randomly split into two portions as the cluster

training and cluster testing sets, respectively. The cluster training set is used as the rep-

resentatives of the clusters that have been produced, while the cluster testing set is allo-

cated to these clusters based on KNN. As such, we can calculate the probability of one MS

in the cluster testing set belonging to one cluster, which means the most probable cluster

ID for each testing MS can be estimated and verified. According to this resultant accuracy

of cluster identification and the number of clusters produced, the preference value of the

Affinity Propagation method can be optimised iteratively.

The process of cluster estimation can be formulated as follows and describled in detail in

Algorithm (1). Let R represent the space of RSS tuples ofMSs from the neighbouring BSs, and

C be the space of cluster IDs, and Z ¼ R � C, which denotes the pair [RSS tuple, cluster ID]

for every MS in the area of interest. The clustering set C ¼ fC1;C2;C3; . . .;CTg and T is the

number of clusters. The training data set, TR, can be represented as TR ¼ fz1; z2; z3; . . .; zNg,
where zn ¼ ½rn; cn�, cn 2 C. The testing data set, TS, can be denoted as TS ¼ fzNþ1;
zNþ2; zNþ3; . . .; zNþSg. Note that the cluster ID of each test data tuple is assumed unknown in

the cluster identification process and is only used for cluster verification.

Algorithm 1 K-Nearest Neighbours Venn Probability Machine
Requried:

kmax: the maximum value of nearest neighbours used
Cluster ID: {C1, C2, C3, ..., CT }
Training data set TR = {z1, z2, z3, ..., zN}, (zn = [rn, cn], cn ∈ C)
Test data set TS = {zN+1, zN+2, zN+3, ..., zN+S}

Steps:
1: for s = 1 toS do
2: TM = {z1, z2, z3, ..., zN , zN+s}.
3: Using RSS to calculate the distances and get each zi its neighbours Neighbour(zi)

in ascending order of respective distance.
4: for t = 1 toT do
5: Assign zN+s ∈ Ct

6: for k = kmax to 1 do
7: if ∃zp ∈ TR such that Neighbour(zp)(1 : k) == Neighbour(zN+s)(1 : k) then
8: keff = k
9: Put zp into Z
10: Fill Z with all other zq in TR that satisfy

Neighbour(zq)(1 : keff ) = Neighbour(zN+s)(1 : keff )
11: Break
12: end if
13: end for
14: for τ = 1 toT do
15: Calculate the frequency of each cluster

Pt,τ = sizeof({zτ ∈Z,cτ ∈Ct})
sizeof(Z)

16: end for
17: end for
18: cN+s = argmaxcN+s≤T (min{PcN+s,1, ..., PcN+s,T } +max{PcN+s,1, ..., PcN+s,T })
19: end for
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First, choose one test MS from the test data set (step 1) and combine it with the training

set TR to form a new data set (step 2). Use KNN algorithm to obtain a list of neighbours for

each MS (step 3). Then the process works recursively on different cluster IDs (step 4).

Specifically, the test MS is assigned with current cluster ID (step 5), so each MS gets a list

of cluster IDs which can be converted from its list of neighbours. Compare the first k

(initially kmax) cluster ID in the respective list between the test MS and each training MS

(step 6). If there exists no training MSs that has the same sequence of the first k cluster ID

with the test MS (step 7), decrease k by one (step 6) and repeat. Once a training MS

satisfying this condition is found, the effective value of k is set as keff (step 8). Then, put

this training MS and all other eligible training MSs into collection Z (steps 9 and 10). The

normalised frequency of each cluster can be obtained by counting the number of MSs in Z
(steps 14–16). These probabilities also compose the corresponding column of the fre-

quency matrix. Repeat step 4 until all the cluster IDs are analysed. As a result, all the

columns of the matrix can also be filled. Finally, the mean of the maximum and minimum

values of each row is regarded as the probability that the selected test MS belongs to each

corresponding cluster. Therefore, the cluster ID of the test MS can be estimated as the one

with the largest probability (step 18). The cluster ID of the other test MSs can be estimated

in the same way. Further cluster verification will compare the estimated cluster IDs with

fcNþ1; cNþ2; cNþ3; . . .; cNþSg, and hence yields the accuracy of cluster identification.

3.1.3 Selecting the Number of Clusters

As demonstrated in the previous sections, the AP clustering and VPM method are com-

bined in the training phase. However, changes of the preference value of the AP clustering

can result in quite difference clustering results and impact on the accuracy of cluster

identification. In fact, a stable clustering result can be very useful for the purpose of

monitoring a dynamic MS environment and predicting users’ locations. Therefore, it

should be taken into consideration of the stable clustering and coherent partitioning in the

RSS space.

An example is shown in Fig. 2 to illustrate the selection of the optimal number of

clusters. The thick blue line represents the relationship between the AP preference
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parameter value and the number of clusters produced. The green dashed line depicts the

dependence of the cluster prediction accuracy on the number of clusters produced. It

can be seen that there is a trade-off between the number of clusters and the accuracy of

location estimation. A greater number of clusters generated in the training phase comes

at the cost of reduced cluster identification accuracy. For example, if there is only one

cluster, the cluster identification accuracy must be 100 % but the accuracy of location

estimation will be poor. On the contrary, if there are so many clusters that each MS

has an exclusive cluster, partitioning scheme will eventually useless for the location

estimation. Therefore, an optimal number of cluster is a vital factor for accurate

location estimation. In this example, the objective is to find the right balance between

the accuracy of cluster identification and the number of clusters. The number of

clusters is the maximum number of clusters that can still satisfy the accuracy

requirements for cluster identification. As can be seen in Fig. 2, if the threshold

accuracy of cluster identification is taken as 90 %, the corresponding maximum number

of clusters is 50.

3.1.4 Building RSS Distribution Model in Each Cluster

After the optimal number of clusters is determined, another regression models for each

combination of cluster and BS needs to be carried out to find the optimal parameter for the

RSS distribution model.

For a MS j in a cluster Ci, we use the signal strength received by MS j from BS b to

calculate the RSS distance between MS j and BS b following

d̂j;b ¼ 10ðPTR�rj;bÞ=10ai;b ; ð4Þ

where rj;b is the RSS of MS j from BS b, PTR is the value of the transmission power which

is given a default value of 48 dBm for outdoor GSM environment in this research. The

objective is to determine the optimal parameter ai;b for RSS distribution model of cluster Ci

and BS b. In this research, the optimal ai;b is calculated by minimizing the sum of the

squared errors
Pni

j¼1ðdj;b � d̂j;bÞ2 where dj;b is the geographical distance between the

locations of BS b and MS j. ni is the number of training MSs in cluster Ci.

3.2 Online Estimation Phase

In this phase, the location of a new MS is estimated. Given a new MS m, its the observed

RSS tuple from q neighbouring BSs is rm ¼ ðrm;1; rm;2; . . .; rm;qÞ. The detailed process of its
location estimation is described below:

Step 1 The cluster which MS m belonging to can be estimated following Algorithm (1).

Call this cluster Ci.

Step 2 Based on function (4) and the optimised parameter ai;b, the RSS distance from

MS m to each BS can be calculated as d̂m;bð1� b� qÞ, as shown in Fig. 3. For the

simplicity, only three BSs are plotted.

Step 3 By applying KNN algorithm, MS m’s K nearest neighbours in terms of RSS

distance can be found among the MSs in the cluster Ci of the training data set. These

neighbours are sorted as fp1; . . .; pk; . . .; pKg in ascending order of RSS distance. Then a

deviation value of each of MS m’s K neighbours is calculated using
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dpk ;b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dpk ;b � dm;b

�

�

�

�

q

; ð5Þ

where dpk;b
is the geographical distance between BS b and MS pk, dm;b is the geographical

distance from the centroid of the K nearest neighbours to BS b:

dp;b ¼
X

K

k¼1

dpk ;b=K: ð6Þ

Let l and r be the mean value and the standard deviation of these deviations,

respectively. Since the RSS distribution is skew in the real environment, the confidence

interval derived from the normal distribution cannot be used in this case. Instead, a

two-sided confidence interval can be estimated by applying Chebyshev’s inequality [23]

as

P jdm;b � lj � kr
� �

� 1

k2
; ð7Þ

which can provide a lower bound for how much probability mass lies outside a the chosen

confidence range. For example, if the value of 1
k2
on the right hand side is set as 0.01, there

is always at least 99 % of the probability of being inside the distance band interval no

matter what type of the distribution is. The value of the upper bound of the band width as

the uncertainly band, dm;b is now chosen. Thus, the estimated geographical distance, dm;b,

between the new MS m and BS b falls in the range of

dm;b 2 d̂m;b � dm;b; d̂m;b þ dm;b

� �

: ð8Þ

Step 4 At this step, the aim is to narrow the scope of where MS m is most likely to be

located. Here we use an intersection scheme as described as follows. Due to the uncertainty

of estimated geographical distance of MS m, several intersection areas are generated. This

is illustrated in Fig. 4, where the intersection areas that contain at least one MS are

ABCDEA and AEFGA. As inspired by [24], we design a search strategy to select the

optimal intersection as below.

1. The intersection area that has the most nearest neighbours of MS m is selected. In

Fig. 4, the intersection area ABCDEA has three neighbours and the area AEFGA has

two. Therefore intersection area ABCDEA is selected as MS m’s estimate area.

2. If more than one intersection areas are qualified, select the one where the sum of RSS

distance between each nearest neighbour and MS m is the smallest.

Fig. 3 Application of RSS
distribution models for new MS m
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Step 5 Collect all the training MSs in cluster Ci that are located in the selected inter-

section area, and use the WKNN algorithm to determine MS m’s location. Assuming there

are K
0
qualified training MSs, and ðr1; . . .; ri; . . .; rK

0 Þ and ðl1; . . .; li; . . .; lK
0 Þ denote their

RSS tuples and location vectors, respectively. The location of MS m is finally estimated by

l̂m ¼
X

K 0

i¼1

wili; ð9Þ

where the weighting factor wi is a normalized weight for each training MS and can be

calculated as

wi ¼
1

ri � rmk �
PK0

i¼1
1

ri�rmkk

�

�

�

ð10Þ

Figure 5 briefly illustrates how the above six steps are processed using a real training

data set.

4 Performance Evaluation

In this section the proposed location estimation scheme is tested with three different data

sets. In each experiment, we randomly divide the data into two sets of equal size. The first

one is processed in the training phase, while the other half is used only for the online phase.

Fig. 4 Uncertainty area of
location estimation
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Fig. 5 An example of the
location estimation for
a new MS m
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The performance of the proposed intersection strategy is compared with KNN algorithms

using different nearest neighbours based on two different partitioning models, viz. grid and

clustering. For fair comparison the number of grid elements is equal to the number of

clusters produced by AP clustering method.

4.1 Simulated Data and Real Data

4.1.1 Scenario 1: A Numerically Simulated Urban Propagation Model

A 2 km� 2 km square area with four BSs at each corner is built as shown in Fig. 6. The

propagation model used in the simulation is based on the reference propagation model of

COST-231 urban that is the combination of typical logarithmic path loss model and

Rayleigh fading model. For simplicity, reflection, diffraction and scattering effects are not

taken into account. The area is divided into 20� 20 elements with rectangular grids. For

each grid element, there is a propagation feature that represents the shadowing variation in

the urban environment. The shadowing feature in each grid is given by the mean of the

shadowing variation deviation using the uniform distribution of (0, 1). The mean of the

shadowing variation is �5, 0, 7, 15 and 25 dBm, respectively, as shown in Fig. 6.

Additionally, the MSs are uniformly distributed over the whole area and an equal

number of sample MSs are selected from each grid element. Every MS can receive signal

strength from the four BSs. The parameters of simulation configuration are given in

Table 1. To verify whether the clusters represent the features of the topography, transmitter

power is emitted from each BS to accommodate different physical situations. Two settings

for BS transmit powers are applied: high power (48 dBm) and low power (40 dBm).

Therefore, there are in total 24 possible combinations of power settings and the BSs. If the

Fig. 6 Topography of the urban environment simulation
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high power setting is denoted as ‘‘1’’ and the low power setting as ‘‘0’’, these 24 factorial

experiments can be simply expressed as: 0000, 0001, ..., 1110, 1111.

In order to better analyse and compare the results of 16 settings, the locations of MSs

are unchanged in all experiments. Figure 7 shows four examples of the results of clustering

MSs based on deviation RSS over different powers at the four BSs. In the figure, different

Table 1 Configuration parameters used in the simulation

System setting

Distance between BS to BS 2.0 km

Minimum mobile-to-BS distance 20 m

Total number of MSs 3200 (8 MSs in each grid element)

Propagation Environment

Minimum transmit power 40 dBm

Maximum transmit power 48 dBm

Shadowing deviation

Building I 0 dBm

Building II 7 dBm

Building III 15 dBm

Building IV 25 dBm
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Fig. 7 Clustering results in scenario 1. a 0000, b 0110, c 1101, d 1111
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colours represent different clusters and the cluster distribution can be seen to reflect the

topological feature of the simulation area to some extent, especially for the places with a

relatively small shadow variation. For the area with relatively large shadow variation, such

as block IV in Fig. 6, the cluster distribution is scattered with respect to the geographical

locations of the MSs, though in the four dimensional RSS space they are compact.

The number of clusters produced in every test is not exactly the same but quite close

about 50 clusters. All the 16 results show that the distributions of produced clusters exhibit

roughly the same structure as expected mathematically as a result of using the deviation

RSS. Moreover, with unchanged parameters, each experiment has been tested many times

and the results showed good stability in the clustering results. Although the simulated

urban model used is simple, it can be further improved by analysing the azimuth and

elevation power distribution of the transmission antenna to make sure whether this

approach can be used in various scenarios in wireless networks.

Table 2 summarizes the information in terms of the mean, variance, 50th, 75th and 90th

percentile values of the error distance for the intersection and KNN approaches based on

cluster and grid partitions. Although the propagation model in scenario 1 is based on grid

elements, the results show that the cluster-based positioning methods provide better

accuracy than the grid-based partitioning. For example, 50 % of distance errors using the

Cluster-Intersection scheme are within 97.3 m, whereas the Grid-Intersection scheme re-

ports 116.0 m, i.e. a 19.7 m improvement.

4.1.2 Scenario 2: The Island of Jersey

The pilot signal strength data for the island of Jersey from network planning tool ASSET

3G is processed in this scenario. Figure 8 shows the topographic map of the centre of the

island. There are six BSs covering an area of 8 km � 6 km and the clustering result is

depicted in Fig. 9.

As can be seen from the results in Fig. 9, the clusters can generally represent the

features of the current geographical patterns to a certain extent, particularly the contour of

highways and roads. Combining with the results in scenario 1, it can be found that less

shadowing variability in an area can result in more topographical features in clustering

results.

This experiment has been tested several times as well and the clustering result is quite

stable. Note that as many as 160 clusters are produced in the central area due to of the

complex terrain. Despite this, considering the large number of test points and the

Table 2 Comparison of estimation error between KNN and intersection methods based on cluster and grid
Models in scenario 1 (in meters)

Scenario 1: a simple simulated urban propagation model

KNN Intersection

Cluster Grid Cluster Grid

Mean error 145.7 186.7 144.8 161.2

Variance 127.9 174.2 142.5 152.1

50 percentile 107.8 119.0 97.3 116.0

75 percentile 196.4 279.6 199.2 224.4

90 percentile 319.1 446.1 335.4 361.0
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complexity of the model, the result is quite inspiring since the topography features are well

exhibited.

Comparisons of estimation errors between KNN and intersections methods based on

cluster and grid models are given in Table 3. For the KNN methods, the results of cluster-

base models show a significant improvement comparing with the grid-based models. The

localisation accuracies of intersection methods are quite similar and much higher than

those of KNN method. For example, the 90 % of distance errors of Cluster-KNN method

are within 42.5 m, while for Cluster-Intersection method it reads 23.3 m. Overall, the

proposed intersection method presents much higher accuracy in this rural scenario.

4.1.3 Scenario 3: Queen Mary Campus with Real Data

To test the proposed location estimation scheme in a real environment, the data from a

GSM network is collected around the Queen Mary campus. The campus is in a city area

with some high buildings nearby. The data was acquired from mobile application devel-

oped for an Android smartphone. Every second the application records the latitude and

longitude of the current location from GPS, and collects the signal strengths from the

Fig. 8 The topography map in
scenario 2

Fig. 9 Clustering result in
scenario 2

378 C. Ning et al.

123



surrounding BSs. The locations of all the nearby BSs were obtained from the server of

Sony Ericsson lab. Here we focus on the four nearest BSs. Figure 10 shows a map of

Queen Mary campus that covers 475 m � 365 m. The colour-lines represents the result of

clustering 9277 test points on different paths. The optimal number of clusters is 70.

Table 4 shows comparison of the results using the intersection and KNN methods based

on grid and cluster model, respectively. As can be clearly seen that the intersection and

KNN methods based on the cluster model outperforms these two methods based on the grid

Table 3 Comparison of estima-
tion error between KNN and
intersection methods based on
cluster and grid models in sce-
nario 2 (in meters)

Scenario 2: the Island of Jesery

KNN Intersection

Cluster Grid Cluster Grid

Mean error 17.8 26.0 10.5 10.5

Variance 31.3 18.0 15.6 15.7

50 percentile 7.8 22.3 5.3 5.2

75 percentile 17.3 30.6 11.1 11.0

90 percentile 42.5 44.0 23.3 23.4

Fig. 10 Clustering results in
scenario 3

Table 4 Comparison of estima-
tion error between KNN and
intersection methods based on
cluster and grid models in sce-
nario 3 (in meters)

Scenario 3: Queen Mary campus

KNN Intersection

Cluster Grid Cluster Grid

Mean error 27.7 57.4 22.8 57.1

Variance 37.7 76.9 26.0 77.6

50 percentile 14.3 20.3 13.4 20.4

75 percentile 32.5 76.3 30.6 73.8

90 percentile 58.2 174.5 50.2 176.7
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model. Particularly, the proposed Cluster-Intersection scheme also shows a better perfor-

mance than the Cluster-KNN scheme.

4.2 RSS Deviations and Raw RSS

Comparing with using raw RSS in the calculation of RSS distance, using RSS deviations

instead improves the estimation precision. This is because the similarity calculation using the

raw RSS are dominated by the distance path loss rather than the topography. By comparison,

clusters produced from the deviation data are a better reflection of the topography.

Figure 11 depicts the comparisons of clustering distribution between using the raw RSS

and deviation RSS when the same number of clusters is created using the island of Jersey

data. It is obvious that significant improved results is obtained in Fig. 11b by using the RSS

deviations where the contour of the highway and road is well depicted.

Remarkable difference between the two results can be noticed in the vicinity of the BSs.

In fact, if the topography were uniform, there would be only ring segments generated

around the BSs in Fig. 11a. This would simply reflect the RSS attenuation with distance

rather than topography. On the other hand, Fig. 11b illustrates that clusters produced using

RSS deviations resulting from the observed path loss model which capture better the

wireless topography especially in a complex environment than in Fig. 11a.

Another comparison is made using the Queen Mary data. The cumulative distribution

function of the error distance for intersection method based on both RSS deviation and raw

RSS data sets as shown in Fig. 12, under the premise that the same number of clusters is

Fig. 11 The comparisons of clustering results between using the raw RSS and deviation RSS in the island
of Jersey data. a Clustering based on raw RSS. b Clustering based on deviation RSS
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Fig. 12 Location estimation
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using intersection approach
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produced. For the intersection method the mean values of the distance error using RSS

deviations is 22.8 m, which is much more accurate than the result of using raw RSS data

which is 72.6 m. Moreover, To achieve the same cumulative probability approaching

100 %, the location error of using RSS deviation is less than 200 m while the location error

of using raw RSS data is about 700 m. This also indicates that the clustering using RSS

deviation data can produce more accurate results than using raw RSS data.

4.3 Mahalanobis Distance and Euclidean Distance

The correlation between signal strength is very pervasive in the real environment, which

impacts on the estimation accuracy. Therefore, eliminating these correlation information in

the clustering needs to be considered. For this purpose, the Mahalanobis distance function

can be applied to calculate the RSS similarity between any two MSs from different

transmitters. As a result the high correlation between signal strength from different

transmitters can be mitigated. Another advantage of using Mahalanobis is that it can

automatically account for the scaling of the coordinate axes.

Figure 13 compares the cumulative probability with respect to the localisation error of the

two distance functions. The results are generated by applying theCluster-intersectionmethod

to the Queen Mary data, under the premise that the same number of clusters is created. It can

be clearly observed that the proposed method using Mahalanobis distance function signifi-

cantly outperforms that based on clustering using Euclidean distance. More specifically, the

cumulative probability curve of using Mahalanobis distance function rises dramatically at

small location errors and reaches 100 % at location error about 140 m. By comparison, the

curve of Euclidean distance function grows relatively slow frombeginning and becomes even

slower after location error of 200 m. This indicates that the accuracy of the clustering

identification of using Mahalanobis distance function is much higher than using Euclidean

distance function. Thus, the Mahalanobis distance function could be used as an appropriate

alternative to the Euclidean distance for location estimation in positioning systems.

5 Conclusion

In this paper, an outdoor location estimation scheme based on a cluster-based intersection

fingerprinting technique using Received Signal Strength (RSS) has been proposed. The

improved performance of the proposed scheme is demonstrated by making comparisons of
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Mary scenario
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results using three different outdoor data sets including numerically simulated data and

read data. Several improvements have been made to the similarity calculation involved in

the clustering. First the RSS deviations resulting from the observed path loss model which

capture better the wireless topography in a complex environment is used in similarity

calculation instead of raw RSS data. Second the Mahalanobis distance function is applied

instead of Euclidean distance function to eliminate the correlation information in the

clustering results. Combining with these improvements, our proposed clustering and

intersection schemes provide good support for outdoor location estimation and, as a result,

the accuracy of localisation is significantly improved.
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