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Abstract Biogrout is a method to strengthen granular soil, which is based on microbial-
induced carbonate precipitation. To model the Biogrout process, a reactive transport model
is used. Since high flow rates are undesirable for the Biogrout process, the model equations
can be solved with a standard Galerkin finite element method. The Biogrout process involves
the injection of dense fluids in the subsurface. In this paper, we present our reactive transport
model for Biogrout and use it to simulate an experiment in which a pulse of a dense fluid
is injected in a porous medium filled with water. In this experiment, front instabilities were
observed in the form of fingers. The numerical simulations showed that the fingering phe-
nomenon was less pronounced than in the experiment. By reducing the dispersion length and
implementing a randomly distributed permeability field, the fingering phenomenon could be
induced. Furthermore, the results of a case study to a Biogrout application are reported.

Keywords Biogrout · Fingering · Randomly distributed permeability field · Microbial-
induced carbonate precipitation (MICP) · Numerical simulation

List of symbols

x, y, z Cartesian coordinates (m)
t Time (s)
p Pressure (Pa)
patm Atmospheric pressure
q Darcy velocity (m/s)
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v Pore water flow velocity (m/s)
K Constant in the differential equation for the flow (m3/kmol)
1 − Vs Liquid volume that disappears per number of converted particles (m3/kmol)
k Intrinsic permeability (m2)
dm Mean particle size of the grains (m)
μ Dynamic viscosity of the fluid (Pa s)
ρl Density of the fluid (kg/m3)
mCaCO3 Molecular mass of calcium carbonate (kg/kmol)
ρCaCO3 Density of calcium carbonate (kg/m3)
g Gravitational constant (m/s2)
θ Porosity (1)
dm Mean particle size of the grains (m)
M Mean of the log-normal distribution logN (μ̃, σ 2) that is used to model the

porosity (1)
V Mean of the log-normal distribution logN (μ̃, σ 2) that is used to model the

porosity (1)
CNa+

Concentration of sodium and chloride ions (kmol/m3)
Curea Concentration of dissolved urea molecules (kmol/m3)
CCa2+ Concentration of dissolved calcium ions (kmol/m3)
CNH+

4 Concentration of dissolved ammonium ions (kmol/m3)
CCaCO3 Concentration of calcium carbonate molecules (kg/m3)
Sbac Ratio of the microorganisms that is fixated (with respect to the injected con-

centration) (1)
D Dispersion tensor (m2/s)
Dm Molecular diffusion coefficient (m2/s)
αL Longitudinal dispersivity (m)
αT Transverse dispersivity (m)
rhp Reaction rate of the hydrolysis and precipitation processes (kmol/m3/s)
vmax Maximal reaction rate (kmol/m3/s)
Km,urea Saturation constant of urea (kmol/m3)

1 Introduction

The current research is done within the framework of Biogrout. It is investigated what the
effects of buoyancy-driven flow and the associated fingering phenomenon can be onBiogrout.

Biogrout is a soil strengthening method, which is based on microbial-induced carbon-
ate precipitation (MICP). Microorganisms are used to produce the solid calcium carbonate
(CaCO3), which strengthens the soil by connecting soil particles. The microorganisms are
already present in the soil (Paassen et al. 2010) or injected into it (Whiffin et al. 2007). The
microorganisms are supplied with urea (CO(NH2)2) and calcium chloride (CaCl2). These
substrates are injected into the soil and transported by water flow, induced by injection and
extraction, to the desired location.Two reactions take place: a hydrolysis reaction and aprecip-
itation reaction. The microbial enzyme urease provides the hydrolysis of urea, by which car-
bonate (CO2−

3 ) is produced. The hydrolysis reaction equation is given inWhiffin et al. (2007):

CO(NH2)2 + 2H2O
bacteria−→ 2NH+

4 + CO2−
3 . (1)

In the presence of calcium ions (Ca2+), the carbonate precipitates as calcium carbonate
(CaCO3):
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Ca2+(aq) + CO2−
3 (aq) → CaCO3(s). (2)

Combining both reaction (1) and reaction (2) gives the overall reaction equation:

CO(NH2)2(aq) + Ca2+(aq) + 2H2O(l) → 2NH+
4 (aq) + CaCO3(s). (3)

The by-product of these reactions is ammonium chloride (NH4Cl), which is dissolved in
water. As it is not desirable that the ammonium chloride stays in the soil, it should be
removed. Therefore, the injection of substrates is followed by groundwater injection and
extraction to rinse the remaining by-product solution.

The substrates and by-product of the reactions are dissolved in water, which increases
the fluid density. For example, a 1 molar calcium chloride/urea solution has a density of
1.1 × 103 kg/m3. If all the calcium chloride and urea of a 1 molar solution react, one ends
up with a 2 molar ammonium chloride solution, which has a density of 1.03 × 103 kg/m3.
In a fresh groundwater environment, the dense fluid will move more easily downwards than
upwards as a result of density differences. The forces of gravity and buoyancy can generate
front instabilities in the form of fingers where a dense fluid is on top of a less dense fluid. In
order to get the microorganisms and their substrates at the desired location and extract the
by-product, it is important to examine the effect of fingering on the flow and transport. This
will help to decide which concentrations and what flow rate should be used and where the
injection and extraction wells should be positioned.

To examine the effect of buoyancy-driven flow and the associated fingering phenomenon,
an experiment has beenperformed, inwhich a pulse of salinefluid is injected in a porousmedia
flow cell, generating a two-dimensional flow field. The flow cell is filled with glass beads
and saturated with water. The saline pulse is followed by a pulse of water. The experimental
results are compared with the outcome of numerical simulations. Besides, a Biogrout case
study is performed and reported.

A lot of research on fingering has already been done, both on viscous fingering (Saffman–
Taylor instabilities) and instabilities caused by density differences; see, for example, Diersch
and Kolditz (2002), Duijn et al. (2004), Farajzadeh et al. (2013), and Khosrokhavar et al.
(2014). There are several approaches. One is the sharp interface approach in which the fluids
are assumed to be immiscible (Chevalier et al. 2006; DiCarlo 2013). Another approach is
the miscible fluid approach. If chemical reactions play a role (like in the Biogrout case), the
miscible fluid approach should be taken, since the concentration can have a whole range of
values and does not only have to be binary at the vicinity of a sharp interface; see, for example,
de Wit (2004), Johannsen et al. (2006), Musuuza et al. (2009), Simmons et al. (2001), and
Voss and Souza (1987).

The setup of the experiment and the case study is given in the Sects. 2 and 3. The reactive
transport model for Biogrout, derived in Wijngaarden et al. (2011) and van Wijngaarden
et al. (2013), is presented in Sect. 4. Section 5 contains the numerical methods that are used
to solve the model equations, and Sect. 6 reports the results, including the effect of using a
random porosity/permeability field to induce the fingering. In Sect. 7, some conclusions and
discussion can be found.

2 Materials and Methods

To evaluate the effect of a buoyancy-driven flow on the distribution of injected solutes, a
two-dimensional porous media flow cell experiment is performed. The flow cell constructed
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Fig. 1 A picture of some glass beads (spheres) that are used in the buoyancy-driven flow experiment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

x [m]

z 
[m

]

Γclosed

Γout
Γin

Γout

Fig. 2 Setup of the experiment. Injection well is denoted by Γin and the extraction wells by Γout . The other
boundaries (Γclosed) are closed

from a PVC frame with plexiglass front and back plates is 95cm wide, 45cm high, and 3cm
thick. The space is filledwith glass beads, with a grain size ranging up to 200µm.A picture of
some glass beads is shown in Fig. 1. Beside glass beads, also some crystals can be seen. These
crystals result from the Biogrout experiment that is performed after the buoyancy-driven flow
experiment that is reported here. One injection well, a hollow steel tube, is installed at the
center of the flow cell, and two extraction wells are installed at mid-height about 12cm from
the side of the flow cell as shown in Fig. 2.

A solution of 0.5M sodium chloride (NaCl) is prepared to which a bit of red food dye
powder (Allura Red, E129) is added. The porous media flow cell is first filled with water and
flushed for several hours. The flow rate at the injection and extraction wells is kept constant,
where the injection flow rate is equal to the total extraction flow rate of about 300mL/h. At
a certain moment, the sodium chloride solution is injected for a period of 30min after which
tap water is injected again. The flow of the red sodium chloride solution is monitored using
a Canon G7 compact camera at 10min time-lapse intervals.
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3 Case Study Setup

Since the scale of the experiment is quite small compared to practical applications, we also
do a case study of an application of Biogrout, i.e., to create a cemented zone underneath a
levee in order to prevent piping (Blauw et al. 2012, 2013). Piping is an important failure
mechanism of levees in the Netherlands (van Beek et al. 2010). Piping starts with heave
and cracking of the soft soil top layer at the land side of the levee. The cracks in the top
soft soil layer allow for seepage via the permeable sand layer underneath the clay levee. If
the water level difference between river and land side is large enough, sand grains may be
transported along with the water flow. This will create a pipe underneath the levee, which
becomes wider and wider as the process proceeds. Finally, this will lead to failure of the
levee and to breakthrough.

One way of decreasing the risk of failure of the levee due to piping is to broaden the levee.
This will decrease the pressure gradients in the sandy layer, which is the driving force for
the process. This, however, is expensive and not always possible, for example, because of
existing buildings close to the levee.

In those cases, Biogrout can be used to decrease the risk of failure due to piping. As it
fixates the sand grains, it will prevent the creation of pipes, or block the propagation of pipes.
While the Biogrouted sand will only have a minor decrease in permeability, the seepage
water will flow through the fixated sand body. Hence, the water will not seek another way
and herewith the risk of pipe formation is reduced.

Figure 3 shows the cross section of the configuration for the case study. It shows the
levee and the desired location of the Biogrouted sand body. The blue arrows indicate the
seepage. The Biogrouted sand and the top clay layer should be connected to prevent the
formation of pipes in between. Therefore, the injection drain is located close to the top clay
layer. The extraction drains are 2m below the injection, since the dense fluid will tend to
move downwards and since we assume that a Biogrouted sand body of 2m depth provides a
sufficient barrier for the pipes. The distance between the extraction drains is 2m. This case
study can be modeled through a 2D simulation, because of the symmetry. For our domain
of computation Ω , we choose a depth of 6m and a width of 4m. We assume that these
dimensions are large enough so that the numerical results are not affected by the location of
the boundaries.

In the numerical simulation, the seepage is not taken into account. Therefore, we obtain
a symmetrical situation. Because of this symmetry, we only calculate the part left to the
injection drain and mirror the results. We take the mathematical model as described in Sect.

Fig. 3 Configuration for the case study (cross section). The levee is shown as well as the desired location of
the Biogrouted sand body. The location of the injection and extraction drains is indicated. The blue arrows
display the seepage for a high water situation
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4.2 and the configuration as in Fig. 3. We position the origin of the coordinate system above
the red circle in this figure, i.e., on the symmetry axes, at the bottomof the clay layer. Then, the
coordinates of the centers of the extraction wells are (±1,−2.2). The radius of the extraction
drains is 0.1m. The injection is placed under the clay layer of the dike. As a simplification,
we use a part of the symmetry axis as the inflow boundary, namely the line segment between
z = −0.3 m and z = −0.1 m. Hence, a line segment is used as the injection boundary rather
than a semicircle.

As a flow rate, we choose Qin = 0.5 m3 per day per running meter of the drain (for the
whole domain). For comparison, this is twice as much as the flow rate in the porous media
flow cell experiment. To prevent that the dense fluid will sink away, we choose a larger
extraction flow rate, that is, Qout = 2 m3 per day per running meter of the drain for both
the extraction drains. Since there are two extraction drains, the total extraction flow rate is
eight times as large as the injection flow rate. The injection Darcy velocity qin is calculated
from the injection flow rate via qin = Qin/Ain, in which Ain is the surface of the injection.
In the same way, we have that the extraction Darcy velocity qout equals qout = Qout/Aout.
The Biogrout liquids are injected for 12 hours, followed by the injection of water to rinse
the soil. As the inflow concentration of urea and calcium, we choose cin = 0.5 kmol/ m3.
Afterward, water is injected which implies that cin is given by cin = 0 kmol/ m3 for t > 12h.
Since ammonium chloride is a reaction product, the injected concentration is equal to 0.

4 Mathematical Model

In this section, we describe the model equations that are used to simulate the experiment. The
initial conditions and boundary conditions are given as well. This is done for the experiment
as well as for the case study.

4.1 Model Equations, Initial and Boundary Conditions for the Simulation of the
Experiment

In this subsection, we describe the mathematical model as well as the initial and boundary
conditions that are used to simulate the experiment. This model is based on the reactive
transport model for Biogrout as reported in Wijngaarden et al. (2011) and slightly adapted
for this experiment.

We assume that the flow is incompressible and therefore divergence free. Hence, in the
domain Ω , we have for time t ≥ 0:

∇ · q = 0. (4)

Here, q (m/s) is the Darcy flow velocity.
For the relation between the Darcy flow velocity and the pressure, Darcy’s law is used

(Zheng and Bennett 1995):

q = − k

μ
(∇ p + ρl gez), (5)

in which k (m2) is the intrinsic permeability, μ (Pa s) is the dynamic viscosity of the fluid, p
(Pa) is the pressure, ρl (kg/m3) is the density of the fluid, and g (m/s2) is the gravitational
constant.
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The pore water velocity relates to the Darcy flow velocity via

v = q
θ

, (6)

in which θ (1) is the porosity.
Substituting Eq. (5) into Eq. (4) gives a partial differential equation for the pressure:

∇ ·
(
k

μ
(∇ p + ρl gez)

)
= 0, in Ω. (7)

This is the Oberbeck–Boussinesq approximation; see, for example, Diersch and Kolditz
(2002). The Oberbeck–Boussinesq approximation consists in neglecting all density depen-
dencies, except for the crucial buoyancy term ρl g in Eqs. (5) and (7).

We model the intrinsic permeability as a function of the porosity via the Kozeny–Carman
relation (Bear 1972):

k = (dm)2

180

θ3

(1 − θ)2
. (8)

In this equation, dm (m) is the mean particle size.We assume that the porosity is log-normally
distributed θ ∼ logN (μ̃, σ 2), see Kosugi (1996) and Nimmo (2004).

Sodium chloride is dissolved in water. The resulting concentrations of sodium (Na+)
and chloride (Cl−) are equal, because their relation in sodium chloride is 1:1. Since the
concentrations of sodium and chloride are in the range of [0, 0.5], all sodium and chloride
ionswill dissolve. Hence, it is not necessary to use a crystal precipitationmodel like (Knabner
et al. 1995). We used the experimental outcomes of (Weast 1980) to find a relation between
the density of the fluid and the concentration of sodium (and chloride). In Fig. 4, we plotted
the fluid density against the concentrations of sodium and chloride and constructed a linear fit.
The (average) slope of this graph is 41kg/kmol. For a zero concentration, the density equals
1000kg/m3. That gives the following relation for the density as a function of the sodium (and
chloride) concentration:
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Fig. 4 Density of the sodium and chloride solution plotted against the concentration. Experimental values

and a linear fit: ρl = 1000 + 41CNa+
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ρl = 1000 + 41CNa+
, (9)

in which CNa+
(kmol/m3) is the concentration of sodium (which is equal to the chloride

concentration).
The concentration of sodium is modeled by an advection–dispersion equation:

∂
(
θCNa+)
∂t

= ∇
(
θD · ∇CNa+)

− ∇ · (qCNa+
), in Ω. (10)

In this equation, D (m2/s) is the dispersion tensor, which coefficients equal Di j = (αL −
αT)

viv j
|v| + δi jαT

∑
i

v2i|v| + δi j Dm, see Zheng and Bennett (1995). The constant αL (m) is the

longitudinal dispersivity, αT (m) is the transverse dispersivity, and Dm (m2/s) is themolecular
diffusion coefficient. In this study, we choose smaller values for αL and αT then given in
Gelhar et al. (1992), because the amount of dispersion is relatively small as indicated by the
presence of the fingers and the sharp fronts in the experiment. A large value for the entries in
the dispersion tensor would never show the observed fingering behavior. If dispersion would
bemore important, then the dependence of the dispersion lengths on the statistical distribution
of the permeability can be incorporated. Formore details andmathematical relations, we refer
to Talon et al. (2003, 2004).

We assume that the dispersion tensors for sodium and chloride are equal. Furthermore, it
is assumed that the porous medium is not charged. Together with similar initial and boundary
conditions, we have that the sodium concentration and the chloride concentration are equal.
Hence, we consider only one concentration, the sodium concentration. In this paper, we
choose the longitudinal dispersivity equal to the transverse dispersivity, αL = αT. Usually,
the transverse dispersivity is somewhat smaller than the longitudinal dispersivity as reported
in Gelhar et al. (1992). We want the fronts as sharp as possible for the given mesh. A smaller
dispersion length may lead to numerical instability, which is a result of the restriction on
the mesh Péclet number in case of central differences, see van Kan et al. (2005). Hence, we
choose equal dispersivities for this research.

The experiment is modeled in 2D with the configuration as shown in Fig. 2. The region
is denoted by Ω , which is bounded by Γclosed and by the holes Γin and Γout. The interfaces
with Ω and the injection and extraction wells are denoted by Γin and Γout, respectively.
The diameter of the injection and extraction wells is 0.02m. The length of the domain is
Lx = 0.95m, and the height is Lz = 0.45m.

Initially, the pores are filled with tap water, and hence, we have that CNa+
(t = 0, x) = 0

in Ω . In Table 1, the boundary conditions are given. Since the pressure should be prescribed
somewhere to get a unique solution for the pressure, we choose to prescribe the pressure at
the inflow. At the outflow boundaries, we prescribe the flow rate qout. The resulting injection
flow rate will be twice as large as the extraction flow rate. Of course, there is no flow over the
closed boundary. At the inflow boundary, we prescribe themass flux.We assume an advective
flux at the outflow boundary, and there is no flux over the closed boundary.

Table 1 Boundary conditions for the concentration and the flow

Γin Γout Γclosed

CNa+ (θD∇C − qC) · n = 2qoutcin (θD∇C) · n = 0 (θD∇C − qC) · n = 0

q p = patm + ρl (x, z)g(Lz − z) q · n = qout q · n = 0
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Fig. 5 Porosity in a region where fingers appear during the simulations. Left simulated porosity for the
experiment.Middle zoom in of left figure. Right simulated porosity for the case study. The porosity is shown
for a logN (0.42, 0.001) distribution

Table 2 Values that are taken for
the various constants dm = 200µm μ = 10−3 Pa s

Dm = 10−9 m2/s cin =
{
0.5 kmol/m3 0 ≤ t ≤ 0.5 h
0 else

qout = M/18,000 m/s g = 9.81 m/s2

αL = 0.001 m αT = 0.001 m

patm = 105 Pa

We use a mesh with more than three hundred thousand elements. We assign a value for
the porosity to each element of this mesh. The values come from a log-normal distribution:
θ ∼ logN (μ̃, σ 2). The mean M of this distribution equals M = eμ̃+σ 2/2, and the variance V
equals V = (eσ 2 − 1)e2μ̃+σ 2

. From the mean M and the variance V , one can calculate the μ̃

and σ 2 via μ̃ = log
(

M2

V+M2

)
and σ 2 = log

(
V+M2

M2

)
. For each simulation, we use the same

sampling from the standard normal distribution for reasons of reproducibility. Subsequently,
the resulting sample for each element is multiplied by the standard deviation of the normal
distribution, σ , and then shifted by the mean of this distribution, μ̃. Finally, the exponential
value is computed, which finally results into exp (μ̃ + σN (0, 1).) The variation in porosity
is shown in the left two figures of Fig. 5 for a logN (0.42, 0.001) distribution.

We calculate the intrinsic permeability k with the Kozeny–Carman relation (8). Since the
permeability is a function of the porosity θ and the porosity varies from element to element,
the permeability varies as well. The scale of variation for the chosen mesh is 1.1mm, which
is the square root of the total surface divided by the number of elements.

The values that have been assigned to the various constants are given in Table 2. The value
of qout has been chosen in such a way that the red area at time t = 0.5 h in the simulation has
the same magnitude as in the experiment. As a result, the pore water velocities at the inflow
boundary are equal for all the simulations of the experiment.

4.2 Model Equations, Initial and Boundary Conditions for the Case Study

In this case study, we try to create a cemented zone underneath a levee in order to prevent
piping. Under the clay layer of the levee, the Biogrout substrates are injected for 12 hours,
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followed by water injection to rinse the soil. Extraction drains are placed a few meters below
the injection drain. In order to do this case study, we use the model for Biogrout as derived
in Wijngaarden et al. (2011) and van Wijngaarden et al. (2013). This model is based on the
biochemical reaction Eq. (3).

The concentrations of urea, calcium ions, and ammonium ions are modeled with the
advection–dispersion reaction equation:

∂(θCi )

∂t
= ∇ · (θD∇Ci ) − ∇ · (qCi ) + miθrhp. (11)

In this equation, Ci is the concentration of species i , i ∈ {urea,Ca2+,NH+
4 }, D is again

the dispersion tensor with coefficients as in Sect. 4.1, rhp is the rate of the overall Biogrout
reaction (3), and mi is a constant that follows from the stoichiometry of the reaction. As
urea and calcium are consumed in the same ratio, their values of mi are equal and negative:
murea = mCa2+ = −1. For the produced ammonium, we have mNH+

4
= 2. The reaction rate

rhp is modeled with the following relation:

rhp = vmaxS
bac Curea

Km,urea + Curea , (12)

in which vmax (kmol/m3/s) is the maximal microbial activity constant, Km,urea (kmol/m3) is
the saturation constant of urea and calcium chloride, and Sbac (1) is the ratio of microorgan-
isms (with respect to the injected concentration) that is fixated in the placement procedure
prior to the injection of the cementation fluids.

Since it is assumed that calcium carbonate is not transported, there is only a reaction term
in the differential equation for the time derivative of its concentration:

∂CCaCO3

∂t
= mCaCO3θrhp. (13)

In this equation, CCaCO3 is the concentration of calcium carbonate in mass per total volume
rather than per liquid volume (kg/m3), and mCaCO3 (kg/kmol) is the molar mass of calcium
carbonate which is used to convert from kilomoles into kilograms.

As illustrated in Fig. 1, the calcium carbonate crystals are formed in the pores. This
causes a decrease in porosity where the increase in volume of calcium carbonate is equal to
the decrease in pore space. Hence, the following differential equation holds:

∂θ

∂t
= − 1

ρCaCO3

∂CCaCO3

∂t
, (14)

in which ρCaCO3 (kg/m
3) is the density of calcium carbonate. In a homogenization procedure,

this equation is obtained if only one pore is considered. In Noorden (2009), a level set
formulation is used to describe the crystal boundary for more complex geometries, and a
formal homogenization procedure is applied to obtain upscaled equations. Equation (14) is a
compromise between generality and complexity in the modeling. From the above differential
equation, the following relation between the porosity and the calcium carbonate content is
derived:

θ(x, t) = θ(x, 0) − CCaCO3(x, t) − CCaCO3(x, 0)
ρCaCO3

. (15)

Note that the above relation is an averaged approach compared to the upscaling approaches
by Bringedal et al. (2015), Noorden (2009) and van Noorden et al. (2010).
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For the flow, we also use the Oberbeck–Boussinesq approximation; see Eqs. (4)–(7).
However, since the liquid volume decreases due to the reaction and since a solid (calcium
carbonate) is formed in the pore space, the right-hand side of Eq. (4) (and hence Eq. (7)) is
not equal to zero. Instead, we have:

∇ · q = K θrhp. (16)

The constant K (m3/kmol) has been defined as

K :=
(
mCaCO3

ρCaCO3

− (1 − Vs)

)
. (17)

As a result of the production of the solid calcium carbonate in the pores, there is less space
available for the fluid. The decrease in pore space per unit of time ismCaCO3/ρCaCO3θrhp. This
process is partly canceled since the hydrolysis and precipitation reactions cause a decrease in
liquid volume. The decrease in liquid volume per kmol reacted urea/calcium chloride equals
1 − Vs. For more details, we refer to van Wijngaarden et al. (2013). In the absence of the
reaction (rhp = 0), this is again the Oberbeck–Boussinesq approximation. Substitution of
Darcy’s law (5) gives the following partial differential equation for the pressure:

∇ ·
(

− k

μ
(∇ p + ρl gez)

)
= K θrhp. (18)

Again, we use the Kozeny–Carman relation (8) to model the intrinsic permeability as a
function of the porosity. The porosity is again log-normally distributed, with meanM = 0.42
and variance V = 0.001. In the right plot of Fig. 5, a part of the porosity distribution in the
domain of computation is shown. In this case study, urea, calcium chloride, and ammonium
chloride are dissolved, rather that sodium chloride. Hence, the liquid density depends on
these species. As a relation between the liquid density ρl (kg/m3), and the urea concentration
[Curea (kmol/m3)], the concentration of calcium ions [CCa2+ (kmol/m3)], and the ammonium
concentration [CNH+

4 (kmol/m3)], we have:

ρl = 1000 + 15.4996Curea + 86.7338CCa2+ + 15.8991CNH+
4 . (19)

The values that have been assigned to the various parameters are partly given in Table
2. The used parameters that are not given in that table and the parameters that have another
value as in the simulation of the experiment are given in Table 3.

Table 3 Values that are taken for
the various constants in the case
study

mCaCO3 = 100.1 kg/kmol 1 − VS = 0.02965m3/kmol

ρCaCO3 = 2710 kg/m3 vmax = 4.26 × 10−5 kmolurea/m3/s

Km,urea = 0.01 kmol/m3 Sbac = 0.25

Ain = 0.2 m Qin = 0.25m3/day/meter drain

Aout = 0.628 m Qout = 1.00m3/day/meter drain

qin = Qin/Ain qout = Qout/Aout

αL = 0.002 m cin =
{
0.5 kmol/m3 0 ≤ t ≤ 12 h
0 else

αT = 0.002 m
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Table 4 Boundary conditions for the case study

Boundary Concentration Flow

Symmetry boundary (qC − Dθ∇C) · n = 0 q · n = 0

Top boundary (“closed” clay layer) (qC − Dθ∇C) · n = 0 q · n = 0

Injection boundary Urea and calcium

(qC − Dθ∇C) · n = −qincin q · n = −qin
Ammonium

(qC − Dθ∇C) · n = 0 q · n = −qin
Extraction boundaries (Dθ∇C) · n = 0 q · n = qout

Right and bottom if q · n > 0 : (Dθ∇C) · n = 0 p = 2 · 105+
Boundary (open) else: (qC − Dθ∇C) · n = 0 −ρl g(z − min(z))

We use a mesh with almost two million elements. Since the porosity varies from element
to element, the scale of variation (defined by the square root of the total surface divided by
the number of elements) is 2.5mm.

The boundary conditions for the flow and concentration in this case study are shown in
Table 4. We have a no-flux condition on the top boundary and the symmetry boundary. At the
injection boundary, we prescribe the flow rate and the mass flux. At the extraction boundary,
we also prescribe theflowrate, and since the concentration is unknownbeforehand,we assume
an advective flux. At the bottom, right (and left) boundary, we assume hydrostatic pressure.
We assume an advective flux in case of outflow over these boundaries and a zero mass flux in
case of inflow, although we aimed at choosing the boundaries sufficiently far away such that
the concentration at the boundary is (approximately) equal to zero. As an initial condition for
the aqueous concentrations, we take Curea = CCa2+ = CNH+

4 = 0 kmol/m3, for all points in
the domain of computation at time t = 0h. Initially, there is no calcium carbonate present in
the domain: CCaCO3 = 0 kg/m3, for all points in the domain of computation at time t = 0
h. The partial differential equations for the concentrations of urea and calcium are equal
(assuming that the dispersion coefficients are equal as well). Since the initial and boundary
conditions are also similar, these concentrations are equal. We will only show some results
for the urea concentration.

5 Numerical Methods

In this section, we explain which numerical methods are used to solve the partial differential
equations.

The partial differential equations are solved using the standard Galerkin finite element
method, with triangular elements and linear functions of local basis.

Since high flow rates are not desirable in the Biogrout process, the advection is not
dominant and an upwind/stabilization method is not necessary. Since an upwind method
decrease the order of convergence, in our case the Standard Galerkin method is a better
choice.

Of course, also other, mass conserving, methods could have been applied like the mixed
finite element method (MFEM) or the finite volume (FV) method; see, for example, Kumar
et al. (2013), Kumar et al. (2014), and Radu and Pop (2011), in which the convergence is
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studied aswell. In Radu et al. (2013), themixed finite elementmethod is applied on a concrete
carbonationmodelwith a variable porosity. Since the finite elementmethod is known to suffer
frompossible numericalmass conservation errors, we checkedmass conservation for the time
and mesh resolution that we used. We found numerically that the relative violation of the
mass balance was as small as a few tenths of a percent over the entire simulation.

In order to derive the weak formulation of the differential equations, the partial differential
equations are multiplied by a test function η and integrated over the domain Ω . For the time
integration, an implicit Euler scheme is used.

The Newton–Cotes quadrature rules are used for the calculation of the element matrices
and vectors. From these element matrices and vectors, the large matrices and vector are
built in MATLAB (R2013b_64). The MATLAB standard direct solver is used to solve the
subsequent systems. As a time step, we choose �t = 36s.

Most equations are coupled. We solve them decoupledly.
In order to simulate the experiment, the various partial differential equations are solved,

and updates are done in the following order (in pseudocode):

1. ρn+1
l : ρn+1

l = ρ(CNa+,n), according to Eq. (9);

2. pn+1 : ∇ ·
(
k
μ
(∇ pn+1 + ρn+1

l gez)
)

= 0, partial differential Eq. (7);

3. qn+1: qn+1 = − k
μ
(∇ pn+1 + ρn+1

l gez), partial differential Eq. (5);

4. CNa+,n+1:
(
θCNa+,n+1 − θCNa+, n

)
/�t=∇·(θDn+1∇CNa+,n+1)−∇·(qn+1CNa+,n+1),

partial differential Eq. (10).

The following list presents in pseudocode the order in which the equations are solved and
the updates are done for the Biogrout case study:

1. ρn+1
l : ρn+1

l = ρ(Curea,n,CCa2+,n,CNH+
4 ,n), according to Eq. (19);

2. θn+1 : θn+1 = θ(θ0,CCaCO3,n), according to Eq. (15);
3. kn+1 : kn+1 = k(θn+1), according to Eq. (8);

4. pn+1 : ∇ ·
(
kn+1

μ
(∇ pn+1 + ρn+1

l gez)
)

= K θn+1rnhp, partial differential Eq. (18);

5. qn+1: qn+1 = − kn+1

μ
(∇ pn+1 + ρn+1

l gez), partial differential equation (16);

6. Curea,n+1 : (
θn+1Curea,n+1 − θnCurea,n

)
/�t = ∇ · (θn+1Dn+1∇Curea,n+1) − ∇ ·

(qn+1Curea,n+1) − θrn+1
hp , partial differential equation (11). Due to the reaction term,

this partial differential equation is nonlinear in the urea concentration. Newton’s method
is used to deal with that. In the Biogrout case, this method usually converges in three
iterations.

7. CNH+
4 ,n+1:

(
θn+1CNH+

4 ,n+1 − θnCNH+
4 ,n+1

)
/�t = ∇ · (θn+1Dn+1∇CNH+

4 ,n+1) −
∇ · (qn+1CNH+

4 ,n+1) − θrn+1
hp , partial differential equation (11). The values for rn+1

hp
follow from the last Newton iteration in the previous step;

8. CCaCO3,n+1:
(
CCaCO3,n+1 − CCaCO3,n

)
/�t = mCaCO3θ

n+1rn+1
hp , partial differential

equation (13).

We also investigated the effect of inner iterations on the results. This was done by recal-
culating the density at each time step. If the difference between the previously calculated
density was larger than some tolerance, the equations were solved with the updated density
until the difference was smaller than some tolerance. Convergence was usually reached in
one or two iterations. Figure 6 shows some results for the scheme for Biogrout, proposed
above. The left plot of Fig. 6 shows the convergence behavior on a cross section for a two-
dimensional Biogrout test case. In each refinement step, the time step size is divided by two
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Fig. 6 Left Convergence of the Biogrout scheme without inner iterations. Right Scheme without inner itera-
tions compared to the scheme with inner iterations

and the mesh size is divided by
√
2, since the expected order of convergence isO(h2 + �t),

with h a measure for the mesh size and �t the size of the time step. Figure 6 shows a nice
convergence behavior. In the right plot of this figure, the scheme without inner iterations is
compared to the scheme with inner iterations. This is done for the coarsest and the finest
simulation. It appears that the scheme with inner iterations only leads to small differences
compared to the scheme that was proposed here. When using small time steps, there were no
noticeable changes. Similar results were obtained for the other scheme, while investigating
the effect of inner iterations on the results.

6 Results

6.1 Results of the Experiment and a Simulation with a Homogeneous Porous
Medium

This section reports some results of the two-dimensional porous media flow cell experiment
that has been performed. The experimental results are compared to the results of a simulation
using a constant porosity and permeability. The left column of Fig. 7 shows some results of
the flow cell experiment. The red fluid is the dense fluid. The color of the zones, where only
water is present, ranges fromwhite to yellow, depending on the daylight and the artificial light.
The colors in between this background color and the red color correspond to a concentration
between 0 and the injected concentration which is 0.5kmol/m3, but the exact relation is not
known. At t = 0.5h, the injection of the dense fluid stops and the injection of water starts.
This gives the red ring in the pictures for t = 1h, t = 2h, t = 3h, t = 4h and t = 5h. From
t = 2h, fingers appear on roughly two locations: on the bottom of the ring and on the top
of the ring where the heavy fluid is above the less dense fluid. In either case, fingers appear
on positions where a dense fluid is on top of a less dense fluid. Note that the fingers on the
bottom of the ring are larger.

The right column of Fig. 7 shows some results of a simulation of this experiment, using
a porosity of θ = 0.42 and a permeability of k = 5.0 × 10−11 m2. As can be seen in the
simulation, no fingers appear. Apparently, the numerical noise is not sufficient to trigger the
fingering. Hence, in the next section, we will vary the porosity and permeability to trigger
the fingering.
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Fig. 7 Some pictures of the experiment (left) and the numerical simulation with a homogeneous porous
medium (right) at several times (from top to bottom t = 0.5h, t = 1h, t = 2h, t = 3h, t = 4h and t = 5h).
In the simulation, the porosity θ equals θ = 0.42 and the intrinsic permeability k is k = 5.0 × 10−11 m2
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6.2 Numerical Results for an Inhomogeneous Porous Medium

In this section, we use an inhomogeneous porosity within our simulations. We assign a value
for the porosity to every element of themesh. The values come from a log-normal distribution:
θ ∼ logN (μ̃, σ 2). We vary the mean porosity M and the variance V of this distribution and
do several simulations. As the mean M we choose: M = 0.36, M = 0.42, and M = 0.49.
For the variance we choose: V = 0.0001, V = 0.001, and V = 0.005. This results in nine
different combinations. From the mean M and the variance V , one can calculate the μ̃ and

σ 2 via μ̃ = log
(

M2

V+M2

)
and σ 2 = log( V+M2

M2 ). The permeability that corresponds to a

mean porosity of M = 0.36 equals k = 2.5 × 10−11 m2, according to the Kozeny–Carman
relation (8). The corresponding permeabilities of the means M = 0.42 and M = 0.49 are
k = 5.0 × 10−11 m2 and k = 10 × 10−11 m2, respectively.

In the right column of Fig. 8, some results are shown for one of the simulations. In this
simulation, the mean porosity is M = 0.42 and the variance is V = 0.001. In the numerical
simulation with the homogeneous medium, of which the results are shown in Fig. 7, no
fingers appear. In contrast to this simulation, we now see the same phenomenon as in the
experiment in Fig. 8. Moreover, fingers start to appear at approximately the same time as in
the experiment.

There are also some differences between modeling and the experiment. In the simulation,
the fingers only appear on the bottom side of the ring, whereas in the experiment, also some
small fingers appear at the bottom side of the top of the ring. Furthermore, the speed of the
fingers in the experiment is larger than in the numerical simulation. From the results of the
experiment, it can be seen that the layer close to the lowest boundary is more permeable than
elsewhere. At time t = 4h, the red fluid reaches the bottom, and in one hour (at time t = 5h),
it has already reached the left and right boundaries. Apparently, there is some space between
the frame and the plexiglass.

Figure 9 shows the effect of the value of the variance. Since the random number generator
is reset before every simulation, the values of the porosity are constructed from the same set
of random numbers, as explained in Sect. 4. Hence, the fingers appear at the same location.
The magnitude, however, depends on the value of the variance. A larger variance results in
longer fingers.

Figure 10 displays the effect of the variation in the meanM. Clearly, the value of the mean
has a large effect on the fingering phenomenon. For a small mean, hardly any fingers arise.
A larger mean results in more fingers, and clearly, the bottom is reached earlier. The effect
of the mean value of the porosity on the density effect is explained below. Remember that
the pore water velocity at the inlet is kept constant in the simulations.

The pore water velocity is determined by combining Eqs. (5), (6) and (8):

vx = − (dm)2

180μ

θ2

(1 − θ)2

∂p

∂x
, (20)

vz = − (dm)2

180μ

θ2

(1 − θ)2

∂p

∂z
− (dm)2

180μ

θ2

(1 − θ)2
ρl g. (21)

In case of a higher porosity, the term θ2

(1−θ)2
is also larger. Now, remember that the pore water

velocity at the inlet is constant. Hence, the increase in the porosity term in the first term at
the right-hand side of Eqs. (20) and (21) is compensated by smaller pressure gradients in
these terms. Now, let the ratio between the buoyancy term and the pressure gradient term in
the right-hand side of Eq. (21) be a measure for the effect of the density differences. This
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Fig. 8 Some pictures of the experiment (left) and the numerical simulation (right) at several times (from top
to bottom t = 0.5h, t = 1h, t = 2h, t = 3h, t = 4h and t = 5h). In the numerical simulation, the medium
is inhomogeneous with a mean porosity of θ = 0.42 and a variance of 0.001. This mean porosity corresponds
to an intrinsic permeability of k = 5.0 × 10−11 m2
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Fig. 9 Concentration given at time t = 5 h. The mean porosity is M = 0.42. The variance is V = 0.0001
(left), V = 0.001 (middle) and V = 0.005 (right)

Fig. 10 Concentration given at time t = 5 h. The variance is V = 0.001. The mean porosity is M = 0.36
(left), M = 0.42 (middle) and M = 0.49 (right)

Fig. 11 Lowest position of the dense fluid as a function of time for various values of themean and the variance.
The mean porosity is M = 0.36 (left), M = 0.42 (middle), and M = 0.49 (right)

ratio equals: ρl g/
∂p
∂z . A higher porosity results in smaller pressure gradients, and therefore,

the value of this ratio increases which indicates a larger effect of density differences.
To quantify the effect of the porosity on the downward movement of the dense fluid, the

lowest location of the front is plotted as a function of time in Fig. 11. For every time step, this
location is determined by finding the smallest z value for which the concentration exceeds
some threshold. As a threshold, we choose C threshold = 0.05 kmol/m3. Figure 11 displays
some results for various values of the mean and the variance.

This figure confirms the observations in Fig. 10: If the mean is larger, the dense fluid
moves faster downwards. Furthermore, a larger variance results in larger fingers, as we
concluded from Fig. 9. As a result, the dense fluid is earlier at the bottom of the domain.
In our simulations, the variation in the mean has a larger effect on the fingering than the
variation in the variance.

6.3 Variation in Substrate Concentration

In this section, we vary the inflow concentration of the dense fluid to investigate its effect. In
the previous section, cin = 0.5 kmol/m3 has been used as an inflow concentration, like in the
experiment. In this section, we choose cin = 1 kmol/m3 and cin = 2 kmol/m3. As a mean
porosity, we set M = 0.42, and for the variance, V = 0.001 is chosen. Figure 12 shows the
concentration at consecutive times for the various inflow concentrations. For these inflow
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Fig. 12 Concentration for an inflow concentration of cin = 1 kmol/m3 (left column) and cin = 2 kmol/m3

(right column) at several times (from top to bottom t = 0.5h, t = 1h, t = 2h, t = 3h, t = 4h and t = 5h).
The mean porosity is M = 0.42, and the variance is V = 0.001

concentrations, the flow is considerably affected by the density differences. A higher inflow
concentration results into a heavier fluid. Therefore, the gravity component is larger, and
hence, the dense fluid reaches the bottom earlier. Since the gravity component becomes more
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significant for a higher inflow concentration, the pressure term is relatively less important,
and this results into a buoyancy-dominated flow. Since the bottom is earlier reached, there
is less time for the formation of fingers. At the other hand, the density differences are larger,
which is in favor of the formation of the fingers.

6.4 Case Study Simulations

In this section, we present the results of the case study simulations. We use the configuration,
initial and boundary conditions as proposed in Sect. 4.2, combined with the heterogeneous
porosity distribution. The aim was to construct a calcium carbonate wall as a barrier for
the pipes. In order to prevent waste of materials, it is desirable that the urea (and calcium)
are consumed rather than extracted. Besides that, it is necessary to remove the ammonium
because of its impact on the environment.

6.4.1 Development of the Various Concentrations

Figure 13 shows how the concentrations of urea, calcium carbonate, and ammonium develop
in the domain of computation. The concentration profiles are shown at several times. After
12 hours, the injection of the Biogrout substrates (in the top of the domain) was stopped
and the water injection started. This causes a region around the injection well with zero urea
concentration, which is visible in the plot of the urea (and calcium) concentration at time
t = 13h. The urea is forced downward by injection/extraction and by the density differences.
At time t = 13h, the large urea plume just started splitting in two large fingers. We see the
same for the produced ammonium. In the right plot of Fig. 5, the initial porosity distribution
is shown for this particular region.

At time t = 22h, in the same region small fingers arise, but also at the deepest location
of the urea and ammonium front. At time t = 25h, these small fingers are increased.

At time t = 45h, the urea and calcium are consumed, and the calcium carbonate wall
has his final shape. A barrier for the pipes has been formed. The plot of the ammonium
concentration for this time shows thatmore andmore fingers arise. Due to density differences,
these fingers tend to flow down. On the other hand, the extraction (indicated by the white
circles) pulls them upward.

6.4.2 Extraction of Ammonium

In the left column of Fig. 14 is shown how the ammonium concentration evolves further in
time. The heterogeneous porosity causes the ammonium plume to split into two parts (time
t = 22 h) and later on in multiple fingers that are being extracted (times t = 60 h and t = 100
h). On the symmetry axis x = 0, the horizontal fluid velocity caused by the extraction drains
is equal to zero, since the effect of one extraction well is canceled by the other. Closer to the
extraction drain, the horizontal velocity in the direction of the drain increases. The splitting
of the ammonium plume brings the ammonium closer to the extraction wells. After all the
urea are consumed, the ammonium concentration decreases as a result of the extraction.
Hence, the density difference with the surrounding water decreases, which makes it easier
to extract the ammonium. After 100h, only 4 mol ammonium is left in the domain and 121
mol ammonium was extracted.
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Fig. 13 Results of the case study simulation with the heterogeneous porosity distribution for time t = 13 h,
t = 22 h, t = 25 h and t = 45h. Presented are the urea concentration (left column), the calcium carbonate
concentration (middle column), and the ammonium concentration (right column)
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6.4.3 Comparison with a Homogeneous Porosity Distribution

We repeated the same simulation for a homogeneous porosity. The ammonium concentration
at several times is shown for this simulation in the right column of Fig. 14. In this case,
only one plume is observed and no fingers appear. The ammonium plume moves downwards
between the extraction wells. Although the flow rate of the extraction wells is eight times as
large as the injection flow rate, only a part of the ammonium is extracted. After 100h, only
50 mol is extracted, while 75 mol ammonium is still in the soil. In these simulations, the
formation of fingers is advantageous for the removal of ammonium.

Figure 15 shows the distribution of the calcium carbonate for the simulation with the
heterogeneous porosity distribution and the one with the homogeneous porosity. The aim
was to create a calcium carbonate wall below the clay layer of at least 2m length to decrease
the risk on piping. The top 2m of the calcium carbonate wall is similar for both simulations.
Below these 2m, the distribution of calcium carbonate is rather different. The fingers in the
urea and ammonium plume in the simulation with the heterogeneous porosity are also visible
in the calcium carbonate profile. Of course, this is not surprising, since calcium carbonate
can only be formed where urea is present. In the simulation with the heterogeneous porosity,
6.22kg of calcium carbonate was formed in the soil. In the simulation with the homogeneous
porosity, the amount of extracted urea was a little lower and the amount of produced calcium
carbonate was therefore a little higher: 6.25kg.

7 Discussion and Conclusions

In the experiment, fingers arise as expected where the dense fluid is on top of the less dense
fluid. This happens particularly at the bottom side of the ring. But also at the bottom side of the
top of the ring, small fingers come into being, which flow downwards, in opposite direction to
the flow that is generated by injection and extraction. In the simulation, no fingers appeared
in case of a homogeneous medium. When using a variable porosity according to a log-
normal distribution, fingers developed in the numerical simulation. Fingers started to appear
at approximately the same time as in the experiment. Several simulations were performed
for various values of the mean porosity and variance. These simulations showed that a large
variation in porosity (and hence permeability) results in larger fingers than a small variation,
but this effect is not very large. The variation in the mean porosity has a much larger effect
on the fingers as shown in Fig. 10. The reason is explained in Sect. 6.2.

In comparison with the experiment, the numerical simulations seem to underestimate
the fingering phenomenon. Fingers only appear at the bottom side of the ring, while in the
experiment also some small fingers appear at the inside of the top of the ring. Furthermore,
the flow velocity of the fingers in the experiment is larger than in the numerical simulations.

The numerical simulation, in which the inflow concentration was varied, showed that the
concentration has a large effect on the flow as shown in Fig. 12. Compared to the experiment
and simulation with an inflow concentration of cin = 0.5 kmol/m3, the dense fluid moves
downward more rapidly for a higher value for the inflow concentration.

The case study simulations showed that the fingering phenomenon has not necessarily a
negative effect on the extraction of the ammonium. By the formation of fingers, the front is
dispersed, which brings the dense fluid closer to the extraction drains, with the result that
is was easier to extract most of the ammonium. On the other hand, while comparing the
experimental results with the numerical simulations, it was concluded that the numerical
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Heterogeneous porosity Homogeneous porosity

CNH+
4 at t=22 h CNH+

4 at t=22 h

CNH+
4 at t=60 h CNH+

4 at t=60 h

CNH+
4 at t=100 h CNH+

4 at t=100 h

Fig. 14 Ammonium concentration at several times in the case study. The left column shows the results with
the heterogeneous porosity distribution, and the right column displays the results for a homogeneous porosity

123



356 W. K. van Wijngaarden et al.

Fig. 15 Final calcium carbonate concentration for the simulation with the heterogeneous porosity distribution
(left) and the homogeneous porosity (right)

simulations were underestimating the velocity of the fingers. If the velocity of the fingers
would be higher than simulated in the case study, it is likely that more fingers escape from
the vicinity of the extraction drains and that more ammonium is left in the soil.

Since the finite element method is known to suffer from possible numerical mass conser-
vation errors, we checked mass conservation for the time and mesh resolution that we used.
We found numerically that the relative violation of the mass balance was as small as a few
tenths of a percent over the entire simulation.

We showed the results of simulations for only one particular drawing from the log-normal
distribution. To get an idea of the bandwidth, the simulations should be repeated for a large
number of (different) drawings from the same log-normal distribution. Further, the sensitivity
of the parameters in the log-normal distribution should be investigated to be able to make a
good prediction of the fluid transport.

The scale of porosity and permeability variation in the simulation of the experiment is
1.1mm (Sects. 6.2 and 6.3) and 2.5mm for the case study simulation (Sect. 6.4). The question
is what this scale of variation is in practice.

In this article, the transverse dispersivity was chosen equal to the longitudinal dispersivity
in order to get the front as sharp as possible for the given mesh. By using a finer mesh, it can
be investigated what the effect is of a smaller transverse dispersivity.

In reality, a horizontal seepage flow is occurring from surface water toward drainage
ditch. In the case study, the seepage flow is not taken into account during the injection of the
Biogrout fluids. However, this flow influences the transport of the fluids and should really be
taken into account, while designing an injection and extraction strategy for a real case.

Buoyancy-driven flow and associated fingers significantly affect the rate of salt extraction,
which is required when applying Biogrout in practice. To reduce the density effect, one can
use lower concentrations. However, this leads to a larger injected volume in order to reach a
certain target amount of calcium carbonate. Also, the reaction rate should be adapted when
using lower concentrations in order to prevent that all the calcium carbonate will precipitate
close to the injection wells. Another option tomitigate fingeringwould be to increase the flow
rate. This decreases the retention time, such that the dense fluid has less time to form fingers.
A drawback of a lower retention time is that the reaction rate should be larger to get the
same calcium carbonate production. Furthermore, high injection rates cause large pressure
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drops close to the injection well which can fracture the soil in its surroundings affecting the
distribution of injected fluids. Finally, it is also possible to reduce the effect of density by
gradually increasing the inflow concentration. In that case, there is no sharp front, and it is
less likely that fingers come into being.

In laboratory and scale-up experiments ofBiogrout, typically a concentration of 1kmol/m3

is used as an injection concentration for urea and calcium chloride (Harkes et al. 2010; van
Paassen et al. 2009). The density of this fluid is 1.1 × 103 kg/m3, which is even denser than
the 2kmol/m3 sodium chloride solution that was used in the simulation described in Sect.
6.3, i.e., 1.08 × 103 kg/m3. If all the urea and calcium chloride react, one ends up with a 2
kmol/m3 ammonium chloride solution, which has a density of 1.03×103 kg/m3. This density
lies in between the density of the 0.5kmol/m3 and the 1kmol/m3 sodium chloride solution.
According to our simulations, all these dense fluids easily sink away in the subsoil. By the
formation of fingers, the dense fluid sinks even faster.

This paper clearly shows that it is important to take buoyancy-driven flow into account
while simulating the Biogrout process. It is possible to simulate the fingering phenomenon by
varying the porosity and the permeability and using a sufficiently finemesh. In the simulations
in this article, the formation of fingers is advantageous for the application of Biogrout, since
the ammonium is extracted more easily.
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