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Abstract Assuming that T is a potential blow up time for the Navier–Stokes system
in R

3+, we show that the norm of the velocity field in the Lorenz space L3,q with
q < ∞ goes to ∞ as time t approaches T .

1 Introduction

The question that is addressed in the paper is as follows. Let us consider the initial
boundary value problem for theNavier–Stokes system in the space-time domain Q+ =
�×]0,∞[ for vector-valued function v = (v1, v2, v3) = (vi ) and scalar function q,
satisfying the equations

∂tv + v · ∇v − �v = −∇q, div v = 0 (1.1)

in Q+, the boundary conditions

v = 0 (1.2)

on ∂� × [0,∞[, and the initial conditions

v(·, 0) = v0(·) (1.3)
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1328 T. Barker, G. Seregin

in �. It is assumed that the initial velocity field v0 is smooth, compactly supported,
and divergence free in �, i.e., v0 belongs to the space C∞

0,0(�), and that � is a domain
in R3 with sufficiently smooth boundary. Here,

C∞
0,0(�) := {v ∈ C∞

0 (�) : div v = 0}.

Our main aim is to study whether or not the velocity field v blows up in a finite
time, in other words, whether or not there exists a finite time T > 0 such that

lim
t↑T

‖v(·, t)‖L∞(�) = ∞. (1.4)

There is a huge number of papers dedicated to this problem. Among them the most
relevant to us are the following papers. In the first place, one should mention the
classical Leray necessary conditions for T to be a blowup time:

‖v(·, t)‖Ls (�) ≥ cs

(T − t)
s−3
2s

(1.5)

for any 0 < t < T , for all s > 3, and for a positive constant cs depending only on s.
Estimates (1.5) have been proven by Leray [11] for� = R

3 and then by Giga [5] for a
wide class of domains� including a half space and bounded domains with sufficiently
smooth boundaries. However, there is an interesting marginal case s = 3, in which no
estimate of type (1.5) is known. In papers [3,14,17], it has been shown that

lim sup
t↑T

‖v(·, t)‖L3(�) = ∞ (1.6)

for � = R
3, � = R

3+ := {x = (xi ) ∈ R
3 : x3 > 0} and for � being a bounded

domain with sufficiently smooth boundary.
Recent progress has been made in establishing the validity of (1.6) for other critical

spaces. We refer to X , consisting of measurable functions acting on domains inR3, as
critical if for u ∈ X such that uλ(x) = λu(λx) we have ‖uλ‖X = ‖u‖X . In [15,28],
it was shown that when X is the non endpoint Lorentz space with q finite L3,q(R3)

condition (1.6) remains to be true. Recently, Gallagher et al. proved in [4] that (1.6)

holds for X = Ḃ
−1+ 3

p
p,q (R3) in the framework of “strong” solutions.

Our work is motivated by the following question: what are the critical spaces X (�)

and domains � for which

lim
t↑T

‖v(·, t)‖X (�) = ∞ (1.7)

holds true?
In [21] it is proven that this holds for� = R

3 and X (�) = L3(R
3) using the theory

of local energy solutions in [10], in addition to ideas developed in [19,20]. The aim
of the paper is to prove
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A necessary condition of potential blowup… 1329

Theorem 1.1 Let � = R
3+. Let v : Q+ → R

3 be a Leray–Hopf solution to (1.2)–
(1.3), with initial data v0 ∈ C∞

0,0(�). Suppose 3 � q < ∞. Let T be a blow-up time.
Then it necessarily holds that

lim
t↑T

‖v(·, t)‖L3,q (R3+) = ∞.

Before commenting further let us define the Lorentz spaces. For a measurable function
f : � → R define:

d f,�(α) := |{x ∈ � : | f (x)| > α}|. (1.8)

Given a measurable subset � ⊂ R
n , the Lorentz space L p,q(�), with p ∈]0,∞[,

q ∈]0,∞], is the set of all measurable functions g on � such that the quasinorm
‖g‖L p,q (�) is finite. Here:

‖g‖L p,q (�) :=
⎛
⎝p

∞∫

0

αqdg,�(α)
q
p

dα

α

⎞
⎠

1
q

, (1.9)

‖g‖L p,∞(�) := sup
α>0

αdg,�(α)
1
p . (1.10)

It is well known that for p ∈]0,∞[, q1 ∈]0,∞] and q2 ∈]0,∞] with q1 � q2 we
have the following embedding L p,q1 ↪→ L p,q2 and the inclusion is known to be strict.
Roughly speaking, the second index of Lorentz spaces gives information regarding
nature of logarithmic bumps. For example, for any 1 > β > 0, q > 3 we have

|x |−1| log(|x |−1)|−βχ|x |<1(x) ∈ L3,q(R3) if and only if q >
1

β
. (1.11)

It should be stressed that, at the time of writing, (1.7) is open for the critical norm
L3,∞(�) that contains |x |−1. Furthermore, uniqueness of weak Leray–Hopf solutions
in the space L∞(0, T ; L3,∞(�)) remains open. We mention that interior regularity
results, that have smallness condition on L∞(L3,∞) norm, have been obtained in
[8,9,12], for example.

We would like to emphasise that to prove Theorem 1.1, a different approach is used
to that of the whole space. Though we focus on the half space, this also provides an
alternative to the proof given for the whole space in [21].

The main difficulty in attempts to prove Theorem 1.1 is as follows. The proof of
this statement, for q = 3, in the case � = R

3 consists of two big parts: rescaling,
leading to a certain class of ancient solutions to the Navier–Stokes equations, and a
Liouville type theorem for those solutions based on the backward uniqueness. The
second part at least conceptually works in the case of a half space R3+ as well while
the first one does not. The reason is that the rescaling and the limiting procedure in
the case of the whole space R

3 give the special type of the so-called local energy
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1330 T. Barker, G. Seregin

ancient solutions to the Navier–Stokes that coincide with Lemarie–Rieusset solutions
to the Cauchy problem for the Navier–Stokes equations on some finite time interval.
Those solutions have been introduced by Lemarie–Rieusset [10], see also for some
definitions in [7]. Unfortunately, an analogue of Lemarie–Rieusset solutions for a half
space is not known yet. In fact, this is an interesting open problem. In this paper,
we are able to work without Lemarie–Rieusset type solutions in half space to get a
local energy ancient solution to which a Liouville type theorem based on backward
uniqueness is applicable. In comparison to [21], our approach doesn’t require a notion
of local energy solution, since we get all desired properties for the ancient solution
directly from a priori estimates associated to the blow up procedure. Those ideas can
be used for the construction of a global in time solution,

for non energy initial data that is contained in the sum of certain Lesbesgue spaces,
that applies in R

3 and is extendible to other unbounded domains with boundaries.
Further developments in this direction will be published elsewhere.1

2 Preliminaries

In this section, we will introduce notation that will be repeatedly used throughout the
rest of the paper. For spatial domains and space time domains, we will make use of
the following notation:

B(x0, R) = {x ∈ R
3 : |x − x0| < R},

B(θ) = B(0, θ), B = B(1),

Q(z0, R) = B(x0, R)×]t0 − R2, t0[, z0 = (x0, t0),

Q(θ) = Q(0, θ), Q = Q(1), Q−T,0 := R
3×] − T, 0[,

B+(x0, R) = {x ∈ B(x0, R) : x = (x ′, x3), x3 > x03},
B+(θ) = B+(0, θ), B+ = B+(1),

Q+(z0, R) = B+(x0, R)×]t0 − R2, t0[,
Q+(θ) = Q+(0, θ), Q+ = Q+(1), Q+

−T,0 := R
3+×] − T, 0[,

R
3+δ := {(x ′, x3) ∈ R

3+ : x3 ≥ δ}.

For � ⊂ R
3, mean values of integrable functions are denoted as follows

[p]� = 1

|�|
∫

�

p(x)dx .

For, � ⊂ R
3, the space [C∞

0,0(�)]Ls (�) is defined to be the closure of

C∞
0,0(�) := {u ∈ C∞

0 (�) : div u = 0}

1 After submission of this manuscript, the second author and Šverák have carried this out for data in L3.
See [22].
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A necessary condition of potential blowup… 1331

with respect to the Ls(�) norm. If X is a Banach space with norm ‖ · ‖X , then
Ls(a, b; X), a < b, will denote the usual Banach space of strongly measurable X -
valued functions f (t) on ]a, b[ such that the norm

‖ f ‖Ls (a,b;X) :=
⎛
⎝

b∫

a

‖ f (t)‖s
X dt

⎞
⎠

1
s

< +∞

for s ∈ [1,∞[, and with the usual modification if s = ∞. With this notation, we will
define

Ls,l(Q−T,0) := Ll(−T, 0; Ls(R
3)),

Ls,l(Q+
−T,0) := Ll(−T, 0; Ls(R

3+)).

We define the following Sobolev spaces with the mixed norm:

W 1,0
m,n(Q+

−T,0) =
{
v ∈ Lm,n(Q+

−T,0) : ‖v‖Lm,n(Q+
−T,0)

+‖∇v‖Lm,n(Q+
−T,0)

< ∞
}

,

W 2,1
m,n(Q+

−T,0) =
{
v ∈ Lm,n(Q+

−T,0) : ‖v‖Lm,n(Q+
−T,0)

+‖∇2v‖Lm,n(Q+
−T,0)

+ ‖∂tv‖Lm,n(Q+
−T,0)

< ∞
}

.

The analogues definitions for the above Sobolev spaces hold when the space-time
domain is replaced by Q−T,0.

3 A priori estimates

First we begin by stating and proving a simple (but important) fact about Lorentz
spaces concerning a decomposition. This will be formulated as a Lemma. Analogous
statement is Lemma II.I proven by Calderon [2].

Lemma 3.1 Take 1 < t < r < s � ∞, and suppose that g ∈ Lr,∞(�). For any
N > 0, we let gN− := gχ|g|�N and gN+ := g − gN− . Then

‖gN−‖s
Ls (�) � s

s − r
N s−r‖g‖r

Lr,∞(�) (3.1)

if s < ∞ and ‖gN−‖L∞(�) � N, and

‖gN+‖t
Lt (�) � r

r − t
N t−r‖g‖r

Lr,∞(�). (3.2)

Moreover for � = R
3 or R

3+, if g ∈ Lr,p(�) with 1 � p ≤ ∞ and div g = 0 in
weak sense (also g3(x ′, 0) = 0 for half space in weak sense), then g = g1 + g2 where
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1332 T. Barker, G. Seregin

g1 ∈ [C∞
0,0(�)]Ls (�) with

‖g1‖Ls (�) � C(s, r, p, ‖g‖Lr,p(�)) (3.3)

and g2 ∈ [C∞
0,0(�)]Lt (�) with

‖g2‖Lt (�) � C(r, t, p, ‖g‖Lr,p(�)). (3.4)

Proof Proof of decomposition (3.1), (3.2) can be found in [13].
Given g, satisfying assumptions of the lemma, we can find g1− and g1+ . We

then can use the Helmoltz–Weyl decomposition g1− = g1 + ∇q1 where g1 belongs
to the required space with the estimate ‖g1‖Ls (�) ≤ c‖g1−‖Ls (�), ‖∇q1‖Ls (�) ≤
c‖g1−‖Ls (�), and

∫

�

∇q1 · ∇ϕdx =
∫

�

g1− · ∇ϕdx, ∀ϕ ∈ C∞
0 (R3).

The same is true for the second counterpart. So, we have

∫

�

∇(q1 + q2) · ∇ϕdx = 0 ∀ϕ ∈ C∞
0 (R3).

Using properties of harmonic functions and the above global integrability of ∇q1 and
∇q2, we conclude that ∇(q1 + q2) = 0. From this, from estimates (3.1), (3.2), and
embedding Lr,p(�) into Lr,∞(�), we derive the required estimates (3.3) and (3.4). �
Let us consider a sufficiently smooth solution u and p to the Navier–Stokes system
in the space-time strip Q+

−2,0 = R
3+×] − 2, 0[ to the following initial boundary value

problem:

∂t u + div u ⊗ u − �u = −∇ p, div u = 0 (3.5)

in Q+
−2,0,

u(x ′, 0, t) = 0 (3.6)

for (x ′, t) ∈ R
2 × [−2, 0],

u(·,−2) = u0(·) ∈ L3,q(R3+).

Suppose that

‖u0‖L3,q (R3+) = M < ∞. (3.7)

The key observation for Lorentz spaces is as follows. From Lemma 3.1 (along with
fact embedding into weak L3) we may decompose:
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A necessary condition of potential blowup… 1333

u0 := u1
0 + u2

0,

where

u1
0 ∈ [C∞

0,0(R
3+)]L 10

3
(R3+)

, u2
0 ∈ [C∞

0,0(R
3+)]L2(R

3+) (3.8)

‖u1
0‖L 10

3
(R3+) + ‖u2

0‖L2(R
3+) � c(M, q). (3.9)

We then decompose u = v1 + v2 where v1 and p1 solve the linear problem

∂tv
1 − �v1 = −∇ p1, div v1 = 0

in Q+
−2,0,

v1(x ′, 0, t) = 0

for (x ′, t) ∈ R
2 × [−2, 0],

v1(·,−2) = u1
0(·,−2) ∈ L 10

3
(R3+).

Below we give some relevant estimates for the linear problem. We note that the cases
k = 0, 1 and 10

3 � l < ∞ follow from [27, Theorem 3.1]. The case l = ∞ can be
obtained directly by using Solonnikov estimates for the Green function in half-space,
see [26]. The relevant estimates are ( 103 � l � ∞, k = 0, 1, . . .):

‖∇kv1(·, t)‖Ll (R
3+) � c(M)

(t + 2)
k
2+ 3

2 ( 3
10− 1

l )
. (3.10)

Thus

‖v1(·, t)‖L5(R
3+) � c(M)

(t + 2)
3
20

, ‖v1(·, t)‖L4(R
3+) � c(M)

(t + 2)
3
40

.

It is then seen that:

‖v1‖L5(Q+
−2,0)

+ ‖v1‖L4(Q+
−2,0)

+ sup
t∈]−2,0[

‖v1(·, t)‖L 10
3

(R3+) � c(M). (3.11)

The second counterpart of u satisfies the non-linear system

∂tv
2 + div u ⊗ u − �v2 = −∇ p2, div v2 = 0

123



1334 T. Barker, G. Seregin

in Q+
−2,0, the boundary conditions

v2(x ′, 0, t) = 0

for (x ′, t) ∈ R
2 × [−2, 0], and the initial conditions

v2(·,−2) = u2
0

in R3+.
The standard energy approach to the second system gives

∂t‖v2(·, t)‖2
L2(R

3+)
+ 2‖∇v2(·, t)‖2

L2(R
3+)

= 2
∫

R
3+

u ⊗ u : ∇v2dxds = I1 + I2,

where

I1 = 2
∫

R
3+

v1 ⊗ v1 : ∇v2dx, I2 = 2
∫

R
3+

v1 ⊗ v2 : ∇v2dx .

Next, let us consequently evaluate terms on the right hand side of the energy identity.
For the first term, we have

|I1| ≤ c‖v1(·, t)‖2
L4(R

3+)
‖∇v2(·, t)‖L2(R

3+).

The second term can be treated as follows:

|I2| ≤ c‖v1(·, t) ⊗ v2(·, t)‖L2(R
3+)‖∇v2(·, t)‖L2(R

3+)

≤ c‖v1(·, t)‖L5(R
3+)‖v2(·, t)‖L 10

3
(R3+)‖∇v2(·, t)‖L2(R

3+).

Applying the known multiplicative inequality to the second factor in the right hand
side of the latter bound, we find

|I2| ≤ c‖v1(·, t)‖L5(R
3+)‖v2(·, t)‖

2
5

L2(R
3+)

‖∇v2(·, t)‖
8
5

L2(R
3+)

.

Letting

y(t) := ‖v2(·, t)‖2
L2(R

3+)

and using the Young inequality, we find

y′(t) + ‖∇v2(·, t)‖2
L2(R

3+)
≤ c‖v1(·, t)‖5

L5(R
3+)

y(t) + c‖v1(·, t)‖4
L4(R

3+)
.
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A necessary condition of potential blowup… 1335

Next, elementary arguments lead to the inequality

(
y(t) exp

(
− c

t∫

−2

‖v1(·, s)‖5
L5(R

3+)
ds

))′

≤ c exp

(
− c

t∫

−2

‖v1(·, s)‖5
L5(R

3+)
ds

)
‖v1(·, t)‖4

L4(R
3+)

.

So,

y(t) ≤ c

t∫

−2

exp

(
c

t∫

τ

‖v1(·, s)‖5
L5(R

3+)
ds

)
‖v1(·, τ )‖4

L4(R
3+)

dτ

+‖u2
0‖2L2(R

3+)
exp

(
c

t∫

−2

‖v1(·, s)‖5
L5(R

3+)
ds

)

Using (3.9) and (3.11), it is easily seen that

sup
−2<t<0

y(t) � C(M), ‖∇v2‖L2(Q+
−2,0)

� C(M). (3.12)

From these estimates and from the multiplicative inequality, one can deduce that

‖v2‖Ls (Q+
−2,0)

≤ C(s, M) (3.13)

with any s ∈ [2, 10
3 ]. Moreover,

‖u‖L 10
3

(Q+
−2,0)

≤ C(M). (3.14)

Let

f = u · ∇u.

Using (3.10) and (3.12), one can decompose

f = f1 + f2 + f3.

Here,

f1 := v2 · ∇v2, (3.15)

f2 := v1 · ∇v1 + v2 · ∇v1, (3.16)

f3 := v1 · ∇v2. (3.17)
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1336 T. Barker, G. Seregin

Using (3.12) and multiplicative inequalities, one can readily verify that

‖ f1‖Ls,l (Q+
−2,0)

� C(M, s, l) (3.18)

provided that

3

s
+ 2

l
= 4.

Using (3.10) we see that

‖ f2‖L 10
3

(Q+
− 7
4 ,0

) � C(M). (3.19)

Finally, using (3.12) and (3.10) we see that

‖ f3‖L2(Q+
− 7
4 ,0

) � C(M). (3.20)

Putting everything together we have

‖ f1‖L 9
8 , 32

(Q+
− 7
4 ,0

) + ‖ f2‖L 10
3

(Q+
− 7
4 ,0

) + ‖ f3‖L2(Q+
− 7
4 ,0

) + ‖u‖L 10
3

(Q+
− 7
4 ,0

) � C(M).

(3.21)

Let us fix a smooth cut-off function χ(t) so that χ(t) = 1 if −3/2 < t < 1 and
χ(t) = 0 if −2 < t < −7/4. Then, we may split χu and χp in the following way:

χu = u1 + u2 + u3

and

χp = p1 + p2 + p3

so that,

∂t u
i − �ui + ∇ pi = gi , div ui = 0

in Q+
−2,0,

ui (x ′, 0, t) = 0

for all (x ′, t) ∈ R
2 × [−2, 0] and

ui (x,−2) = 0
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A necessary condition of potential blowup… 1337

for x ∈ R
2+, where

gi (x, t) = −χ(t) fi (x, t) + δi2χ
′(t)u(x, t).

Ourmain tool here is the coercive estimates of the linear theory for theStokes system
developed in [25] when space and time exponents are the same and subsequently in
[6,24] for unequal space time exponents. In particular, using (3.14) and (3.18)–(3.20)
it follows from that

‖∂t u
1‖L 9

8 , 32
(Q+

−2,0)
+ ‖∇2u1‖L 9

8 , 32
(Q+

−2,0)

+‖∇ p1‖L 9
8 , 32

(Q+
−2,0)

≤ c‖g1‖L 9
8 , 32

(Q+
−2,0)

≤ C1(M) (3.22)

‖∂t u
2‖L 10

3
(Q+

−2,0)
+ ‖∇2u2‖L 10

3
(Q+

−2,0)

+‖∇ p2‖L 10
3

(Q+
−2,0)

≤ c‖g2‖L 10
3

(Q+
−2,0)

≤ C2(M) (3.23)

and

‖∂t u
3‖L2(Q+

−2,0)
+ ‖∇2u3‖L2(Q+

−2,0)
+ ‖∇ p3‖L2(Q+

−2,0)
≤ c‖g3‖L2(Q+

−2,0)
≤ C3(M)

(3.24)

In what follows, we are going to use the following Poincare type inequalities:

0∫

−3/2

∫

B(x0,R)

|p1 − [p1]B(x0,R)| 32 dxdt ≤ cR
1
2

0∫

−3/2

( ∫

B(x0,R)

|∇ p1| 98 dx

) 4
3

dt;

(3.25)
0∫

−3/2

∫

B(x0,R)

|p2 − [p2]B(x0,R)| 32 dxdt ≤ cR
63
20

0∫

−3/2

( ∫

B(x0,R)

|∇ p2| 103 dx

) 9
20

dt;

(3.26)
0∫

−3/2

∫

B(x0,R)

|p3 − [p3]B(x0,R)| 32 dxdt ≤ cR
9
4

0∫

−3/2

( ∫

B(x0,R)

|∇ p3|2dx

) 3
4

dt.

(3.27)

All the formulae are valid provided B(x0, R) ⊂ R
3+. They are also valid if we replace

B(x0, R) with semi-balls B+(x0, R) assuming that x03 = 0.
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1338 T. Barker, G. Seregin

4 Passage to the limit

Suppose that we have a sequence of sufficiently smooth functions u(n) and p(n) defined
in the domain Q+

−2,0 = R
3+×]−2, 0[ that are solutions to the following initial boundary

value problem:

∂t u
(n) + div u(n) ⊗ u(n) − �u(n) = −∇ p(n), div u(n) = 0 (4.1)

in Q+
−2,0,

u(n)(x ′, 0, t) = 0 (4.2)

for (x ′, t) ∈ R
2 × [−2, 0],

u(n)(·,−2) = u(n)
0 (·) ∈ L3,q(R3+). (4.3)

It is supposed also that

u(n)
0 ⇀ u0

in L3,q(R3+).
We let

M := sup
n

‖u(n)
0 ‖L3,q (R3+) < ∞.

Proposition 4.1 There exist subsequences still denoted in the same way with the
following properties:

u(n) ⇀ u (4.4)

in L 10
3
(Q+

−2,0),

∇u(n) ⇀ ∇u (4.5)

in L2(B+(R)×] − 2 + δ, 0[) for any R > 0 and any 0 < δ < 2,

u(n) → u (4.6)

in L3(B+(R)×] − 3/2, 0[) for any R > 0 and

p(n) ⇀ p (4.7)

in L 3
2
(B+(R)×] − 3/2, 0[) for any R > 0.

Functions u and p satisfy (3.5) in Q+
−3/2,0 and (3.6) for (x ′, t) ∈ R

2×] − 3/2, 0[.
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For the pressure p, the following global estimates are valid:

p =
3∑

i=1

pi ,

with the estimates

‖∇ p1‖L 9
8 , 32

(Q+
−3/2,0)

+ ‖∇ p2‖L 10
3

(Q+
−3/2,0)

+ +‖∇ p3‖L2(Q+
−3/2,0)

. < ∞ (4.8)

Moreover, for any R > 0, the limits pair u and p satisfies the local energy inequality

∫

B(x0,R)∩R3+

ϕ2(x, t)|u(x, t)|2dx + 2

t∫

t0−R2

∫

B(x0,R)∩R3+

ϕ2|∇u|2dxdt

≤
t∫

t0−R2

∫

B(x0,R))∩R3+

|u|2(∂tϕ
2 + �ϕ2) + u · ∇ϕ2(|u|2 + 2p)dxds (4.9)

for all −3/2 < t0 − R2 < t ≤ t0 ≤ 0, for all x0 ∈ R
3, and for all ϕ ∈

C∞
0 (B(x0, R)×]t0 − R2, t0 + R2[).

Proof Obviously, we may assume, without loss of generality, that (4.4) follows from
(3.14) . Moreover, the limit function obeys the estimate

‖u‖L10/3(Q+
−2,0)

< ∞. (4.10)

Obviously, (3.10) and (3.12) imply (4.5). From (3.22)–(3.24), we may split u(n) =
u(n),1 + u(n),2 + u(n),3 such that for (x, t) ∈ Q+

− 3
2 ,0

we have the following uniform

bounds:

sup
n

(
‖u(n),1‖W 2,1

9
8 , 32

(Q+
− 3
2 ,0

)
+ ‖u(n),2‖W 2,1

10
3

(Q+
− 3
2 ,0

)
+ ‖u(n),3‖W 2,1

2 (Q+
− 3
2 ,0

)

)
≤ C(M).

(4.11)

By known compact embeddings we infer, that there exists a subsequence (denoted
here by the original sequence) such that the following holds for any a > 0:

u(n),1 → u1 in C([−3/2, 0]; L 9
8
(B+(a))), (4.12)

u(n),2 → u2 in C([−3/2, 0]; L 10
3
(B+(a))), (4.13)

u(n),3 → u3 in C([−3/2, 0]; L2(B+(a))). (4.14)
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1340 T. Barker, G. Seregin

Using the above, along with the fact u(n) is bounded in L 10
3
(Q+

−2,0), we can deduce
(4.6).

Now, let us treat the pressure p(n), using the decomposition of the previous section

p(n) =
3∑

i=1

p(n),i .

Then, using (3.22)–(3.24) and (3.25)–(3.27), we can justify (4.7) and (4.8).
Since functions u(n) and p(n) satisfy the local energy inequality, i.e.,

∫

B(x0,R)∩R3+

|ϕ2(x, t)|u(n)(x, t)|2dx + 2

t∫

t0−R2

∫

B(x0,R)∩R3+

ϕ2|∇u(n)|2dxdt

≤
t∫

t0−R2

∫

B(x0,R)∩R3+

|u(n)|2(∂tϕ
2 + �ϕ2) + u(n) · ∇ϕ2(|u(n)|2 + 2p(n))dxds

for all−2 < t0−R2 < t ≤ t0 ≤ 0, for all x0 ∈ R
3, and for allϕ ∈ C∞

0 (B(x0, R)×]t0−
R2, t0 + R2[), we can find (4.9) by passing to the limits and taking into account (4.6)
and (4.7). �
Proposition 4.2 Let u and p be a limit function from Proposition 4.1. There exists a
number R1 > 0 such that

|u(x, t)| ≤ c (4.15)

for all (x, t) ∈ (R3+\B+(R1))×] − 5/4, 0[ and for some universal constant c. More-
over, given δ > 0 and k = 1, 2, . . .,

|∇ku(x, t)| ≤ c1(k, δ) (4.16)

for all (x, t) ∈ (R3+δ\B+(R1))×] − 5/4, 0[. Here, R3+δ := R
3+ ∩ {x3 > δ}.

Proof By (4.8), we can state that

0∫

−3/2

∫

R
3+\B+(R)

|u|3dxdt +
0∫

−3/2

⎛
⎜⎜⎝

∫

R
3+\B+(R)

|∇ p1| 98 dx

⎞
⎟⎟⎠

4
3

dt

+
0∫

−3/2

⎛
⎜⎜⎝

∫

R
3+\B+(R)

|∇ p2| 103 dx

⎞
⎟⎟⎠

9
20

dt +
0∫

−3/2

⎛
⎜⎜⎝

∫

R
3+\B+(R)

|∇ p3|2dx

⎞
⎟⎟⎠

3
4

dt → 0

as R → ∞.
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Given ε > 0, there exists a positive number R1 > 0 such that

1

r2

∫

Q(z0,r)

(|u|3 + |p − [p]B(x0,r)| 32 )dxdt

≤ 1

r2

∫

Q(z0,r)

|u|3dxdt + c

r2

3∑
i=1

∫

Q(z0,r)

|pi − [pi ]B(x0,r)| 32 dxdt

≤ 1

r2

∫

Q(z0,r)

|u|3dxdt

+cr− 3
2

0∫

−3/2

⎛
⎜⎝

∫

B(x0,r)

|∇ p1| 98 dx

⎞
⎟⎠

4
3

dt + cr
23
20

0∫

−3/2

⎛
⎜⎝

∫

B(x0,r)

|∇ p2| 103 dx

⎞
⎟⎠

9
20

dt

+cr
1
4

0∫

−3/2

⎛
⎜⎝

∫

B(x0,r)

|∇ p3|2dx

⎞
⎟⎠

3
4

dt < ε

with r = 1/100 and Q(z0, r) ⊂ (R3+\B+(R1/2))×] − 3/2, 0[.
The same can be done for boundary points:

1

ρ2

∫

Q+(z0,ρ)

(|u|3 + |p − [p]B+(x0,ρ)| 32 )dxdt ≤ 1

ρ2

∫

Q+(z0,ρ)

|u|3dxdt

+ c

ρ2

3∑
i=1

∫

Q+(z0,ρ)

|pi − [pi ]B+(x0,ρ)| 32 dxdt ≤ 1

ρ2

∫

Q+(z0,ρ)

|u|3dxdt

+ cρ− 3
2

0∫

−3/2

⎛
⎜⎝

∫

B+(x0,ρ)

|∇ p1| 98 dx

⎞
⎟⎠

4
3

dt + cρ
23
20

0∫

−3/2

⎛
⎜⎝

∫

B+(x0,ρ)

|∇ p2| 103 dx

⎞
⎟⎠

9
20

dt

+ cρ
1
4

0∫

−3/2

⎛
⎜⎝

∫

B+(x0,ρ)

|∇ p3|2dx

⎞
⎟⎠

3
4

dt < ε

with � = 1/10 and Q+(z0, �) := B+(x0, �)×]t0 − �2, t0[⊂ (R3+\B+(R1/2))×] −
3/2, 0[, x03 = 0. From the ε-regularity theory developed in [1,16,18], see details
also in [3], in particular, we can show the validity of (4.15) in (R3+\B+(3R1/2))×] −
4/3, 0[.

The second statement of the proposition can be deduced from the local regularity
theory for the heat equation and bootstrap arguments applied to the vorticity equation
and is described in detail in [23]. �
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1342 T. Barker, G. Seregin

5 Rescaling: scenario I

Let us go back to our original problem (1.1)–(1.3).
We assume that T > 0 is a blowup time. Theorem 1.1 can be proven ad absurdum.

Suppose that there exists a sequence tn ↑ T such that

M := sup
n

‖v(·, tn)‖L3,q (R3+) < ∞,

then T is NOT a blowup time.
It is known that there exists a global weak Leray–Hopf solution (energy solution)

to initial boundary value problem (1.1)–(1.3). This solution coincides with v on the
interval ]0, T [ and that is why we are going to denote it still by v. Arguments similar
to used in the previous section show that for every ε > 0 there exists R1(ε) > 0 such
that

sup
x∈R3+\B+(R1),ε≤t≤T

|v(x, t)| < ∞.

So, by the definition of blowup time T , there should be a singular point x0 =
(x

′
0, x03) ∈ R

3+ at t = T , i.e., a point such that v /∈ L∞(B(x0, r)∩R
3+)×]T − r2, T [)

for any positive r . Without loss of generality, we may assume that x ′
0 = 0. Then one

should consider two case

x03 = 0

and

x03 > 0.

Now let us focus on the first case, which will be referred to as ‘Scenario I’. The
case x03 > 0 will be referred to as ‘Scenario II’. We know from [16,18] that it must
be

1

a2

∫

Q+((0,T );a)

(|v|3 + |q − [q]B+(a)| 32 )dxdt > ε

for all 0 < a < a0, for some positive a0, and for some universal constant ε.
In this scenario, our rescaling will be as follows:

u(n)(y, s) = λnv(x, t), p(n)(y, s) = λ2nq(x, t),

where

x = λn y, t = T + λ2ns, λn =
√

T − tn
2
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So, sufficiently smooth solutions u(n) and p(n) satisfy (4.1)–(4.3) with

u(n)
0 (y) = λnv(λn y, tn).

Hence,

sup
n

‖u(n)
0 ‖L3,q (R3+) = M.

Without loss of generality, we may assume

u(n)
0 ⇀ u0

in L3,q(R3+). So, all assumptions and statements of Propositions 4.1 and 4.2 hold for
u(n) and p(n) and for their limits u and p.

First examine the profile. Let us recall the known fact that C∞
0 (R3+) is dense in

Ls,p(R3+), for 1 < s, p < ∞. Also, recall that

(Ls,p(R3+))′ = Ls′,p′
(R3+), s′ = s

s − 1
, p′ = p

p − 1
.

The identification is as follows, if f ∈ Ls′,p′
(R3+) and g ∈ Ls,p(R3+):

T f (g) =
∫

R
3+

f gdx .

Now, we mention that our assumption that v : R3+×]0,∞[→ R
3 is a weak Leray

Hopf solution implies that v can be adjusted on some set of time of Lebesgue measure
zero such that v(·, t) ∈ L2(R

3+). Moreover, for any ϕ(x) ∈ C∞
0 (R3+) the following

functional is continuous in time on [0,∞[:

t →
∫

R
3+

v(x, t) · ϕ(x)dx .

Our assumption that ‖v(·, tn)‖L3,q (R3+) � M implies by O’Neil’s inequality that for

ϕ ∈ C∞
0 (R3):

∣∣∣∣∣∣∣∣

∫

R
3+

v(x, tn) · ϕ(x)dx

∣∣∣∣∣∣∣∣
� M‖ϕ‖

L
3
2 ,q′

(R3+)
.
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1344 T. Barker, G. Seregin

Hence, the weak-continuity implies

∣∣∣∣∣∣∣∣

∫

R
3+

v(x, T ) · ϕ(x)dx

∣∣∣∣∣∣∣∣
� M‖ϕ‖

L
3
2 ,q′

(R3+)
.

This implies, from the aforementioned facts regarding Lorentz spaces, that

‖v(·, T )‖L3,q (R3+) � M. (5.1)

Now, we shall show that

u(x, 0) = 0 (5.2)

Indeed, it follows from (4.12)–(4.14) that

∫

B+(a)

|u(n)(x, 0)|dx →
∫

B+(a)

|u(x, 0)|dx .

Using generalized Holder inequality for Lorentz spaces (along with scale invariance),
it is not so difficult to show

1

a2

∫

B+(a)

|u(n)(x, 0)|dx � c‖u(n)(·, 0)‖L3,q (B+(a)) = c‖v(·, T )‖L3,q (B+(λna)).

Now v(·, T ) ∈ L3,q(R3+) and obviously dv(·,T ),B+(λna))(α) → 0. This implies,

‖v(·, T )‖L3,q (B+(λna)) → 0.

Now, we need to show that the limit function is not identically zero. Fix 0 < a∗ <

1/4 then we have

1

a2

∫

Q+(a)

(|u(n)|3 + |p(n) − [p(n)]B+(a)| 32 )dxdt

= 1

(λna2)

∫

Q+((0,T ),λna)

(|v|3 + |q − [q]B+(λna)| 32 )dxdt > ε

for 0 < a < a∗.

123



A necessary condition of potential blowup… 1345

We know that

M1(a∗) := sup
n

{
1

(2a∗)2

∫

Q+(2a∗)

(|u(n)|3 + |p(n) − [p(n)]B+(2a∗)|
3
2 )dxdt

+ sup
−(2a∗)2<t<0

‖u(n)(·, t)‖22,B+(2a∗) + ‖∇u(n)‖22,Q+(2a∗)

}
< ∞. (5.3)

Let us fix a C2-domain �∗ such that B+(a∗) ⊂ �∗ ⊂ B+(2a∗) and let Q∗ =
�∗×] − a2∗, 0[. We may use the same type of decompositions as in the previous
sections

u(n) = w1 + w2, p(n) = r1 + r2

so that

∂tw
1 − �w1 + ∇r1 = 0, divw1 = 0

in Q∗,

w1(x ′, 0, t) = 0

for all (x, t) ∈ ∂�∗ × [−a2∗, 0] with x3 = 0,

w1(x,−a2∗) = u(n)(x,−a2∗)

for all x ∈ �∗ and

∂tw
2 − �w2 + ∇r2 = −div u(n) ⊗ u(n), divw2 = 0

in Q∗,

w2 = 0

on the parabolic boundary of Q∗.
By coercive estimate for the linear Stokes system with different time and space

exponents, see [6,24], we have

‖w2‖W 2,1
12
11 , 32

(Q∗) + ‖r2‖W 1,0
12
11 , 32

(Q∗) � C(a∗)‖u(n) · ∇u(n)‖L 12
11 , 32

(Q∗). (5.4)

Using (5.4) one infers

∫

Q+(a∗)

|r2 − [r2]B+(a∗)|
3
2 dxdt ≤ c(a∗)

0∫

−a2∗

( ∫

B+(a∗)

|∇r2| 1211 dx

) 11
8

dt
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≤ c(a∗)
0∫

−a2∗

( ∫

�∗

|∇r2| 1211 dx

) 11
8

dt

≤ c(a∗)
0∫

−a2∗

( ∫

�∗

|u(n) · ∇u(n)| 1211 dx

) 11
8

dt

≤ c(a∗)‖∇u(n)‖
3
2
L2(Q∗)‖u(n)‖

3
4
L2,∞(Q∗)‖u(n)‖

3
4
L3(Q∗)

≤ c(a∗, M1)‖u(n)‖
3
4
L3(Q∗) ≤ c(a∗, M1)

( ∫

Q+(2a∗)

|u(n)|3dxdt

) 1
4

. (5.5)

By the local regularity theory up to the boundary for the Stokes system developed in
[16,18] and by (5.3)–(5.5), for any s > 12

11 ,

0∫

−(a∗/2)2

( ∫

B+(a∗/2)

|∇r1|sdx
) 3

2s
dt

≤ c(a∗, s)

(
‖w1‖

3
2
L 12

11 , 32
(Q+(a∗)) + ‖∇w1‖

3
2
L 12

11 , 32
(Q+(a∗))

+‖r1 − [r1]B∗(a∗)‖
3
2
L 12

11 , 32
(Q+(a∗))

)

≤ c(a∗, s)

(
‖w2‖

3
2
L 12

11 , 32
(Q+(a∗)) + ‖∇w2‖

3
2
L 12

11 , 32
(Q+(a∗))

+‖un‖
3
2
L 12

11 , 32
(Q+(a∗)) + ‖∇un‖

3
2
L 12

11 , 32
(Q+(a∗))

+
∫

Q+(a∗)

|r1 − [r1]B∗(a∗)|
3
2 dxdt

⎞
⎟⎠

≤ c(a∗, M1, s)(
∫

Q+(a∗)

(|p(n) − [p(n)]B+(a∗)|
3
2 + |r2 − [r2]B∗(a∗)|

3
2 )dxdt + 1)

≤ c(a∗, M1).

Next, we have for 0 < a < a∗/2 and for s = 9,

ε <
1

a2

∫

Q+(a)

(|p(n) − [p(n)]B+(a)| 32 + |u(n)|3)dxdt

≤ 1

a2

∫

Q+(a)

(|r1 − [r1]B+(a)| 32 )dxdt
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+ 1

a2

∫

Q+(a)

(|r2 − [r2]B+(a)| 32 + |u(n)|3)dxdt

≤ c(a∗, M1)a
2 + 1

a2

∫

Q+(a)

(|r2 − [r2]B+(a)| 32 + |u(n)|3)dxdt

≤ c(a∗)
a2

∫

Q+(a∗)

(|u(n)|3 + |r2 − [r2]B+(a∗)|
3
2 )dxdt + c(a∗, M1)a

2

≤ c(a∗)
a2

∫

Q+(a∗)

|u(n)|3dxdt + c(a∗, M1)

a2

( ∫

Q+(2a∗)

|u(n)|3dxdt

) 1
4

+ c(a∗, M1)a
2

≤ c(a∗, M1)

a2

( ∫

Q+(2a∗)

|u(n)|3dxdt

) 1
4

+ c(a∗, M1)a
2.

For sufficiently small a > 0,

0 < ε/2 < ε − c(a∗, M1)a
2 ≤ c(a∗, M1)

a2

⎛
⎜⎝

∫

Q+(2a∗)

|u(n)|3dxdt

⎞
⎟⎠

1
4

and thus

∫

Q+(2a∗)

|u(n)|3dxdt >

(
a2ε

c(a∗, M1)

)4

.

Passing to the limit as n → ∞, we find

∫

Q+(2a∗)

|u|3dxdt >

(
a2ε

c(a∗, M1)

)4

. (5.6)

Next, we follow arguments of the paper [3] that related with backward uniqueness
for the heat operator with lower order terms. By Proposition 4.2, we have

|∂tω − �ω| ≤ c(|ω| + |∇ω|), |ω| � c

in {x ∈ R
3 : x3 > 2R1}×] − 5/4, 0[, where ω = ∇ ∧ u. Next recall (5.2), which

implies

ω(x, 0) = 0
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for x ∈ {R3 : x3 > 2R1}. Thus, we can apply arguments from the paper [3] that
are related with backward uniqueness for the heat operator with lower order terms
(Theorem 5.1 of [3]) to obtain

ω(x, t) = 0 (5.7)

for all (x, t) ∈ {x ∈ R
3 : x3 > 2R1}×] − 6/5, 0[. Recall that from Proposition 4.2

that for arbitrary δ > 0 and k = 0, 1, 2, . . . we have the decay estimate for spatial
derivatives,

|∇ku(x, t)| ≤ c1(k, δ) (5.8)

valid for all (x, t) ∈ (R3+δ\B+(R1))×] − 5/4, 0[. This allows one to apply unique
continuation through spatial boundaries (Theorem 3.1 of [3]) to conclude that (5.7) is
valid in (R3+\B+(R1))×] − 7/6, 0[.

Since div u(·, t) = 0 in R
3+\B+(R1) with u(x ′, 0, t) = 0 for t in ] − 6

5 , 0[, we see
that for u = (ui (x, t))i=1,2,3 we have

∂u3(x ′, 0, t)

∂x3
= −∂u1(x ′, 0, t)

∂x1
− ∂u2(x ′, 0, t)

∂x2
= 0 (5.9)

for x = (x ′, 0) ∈ R
3+\B+(R1) and a.a t in ]− 6

5 , 0[. Additionally, since∇×u(·, t) = 0
in R3+\B+(R1) with u(x ′, 0, t) = 0 for t in ] − 6

5 , 0[, we see that we have

∂u1(x ′, 0, t)

∂x3
= ∂u3(x ′, 0, t)

∂x1
= 0 (5.10)

and

∂u2(x ′, 0, t)

∂x3
= ∂u3(x ′, 0, t)

∂x2
= 0 (5.11)

for x = (x ′, 0) ∈ R
3+\B+(R1) and the same t . From (5.9)–(5.11), one can deduce

that

∇u(x ′, 0, t) = 0 (5.12)

for x = (x ′, 0) ∈ R
3+\B+(R1) and the same t . Indeed, one may argue further to

conclude that for any multi-index α

Dαu(x ′, 0, t) = 0 (5.13)

for x = (x ′, 0) ∈ R
3+\B+(R1) and a.a t in ] − 6

5 , 0[. Using �u(·, t) = 0 in
R
3+\B+(R1), one can also infer that an appropriate extension of u(·, t) is harmonic
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and hence analytic in R
3\B(R1). From the analyticity of this extension and (5.13),

one can deduce that

u(x, t) = 0 (5.14)

for all x ∈ R
3+\B+(2R1) and for the same t . Recall, from (4.12)–(4.14) that we have

continuity on [− 6
5 , 0] for the following functional in time (here ϕ ∈ C∞

0 (R3)):

t →
∫

R
3+

ϕ(x) · u(x, t)dx . (5.15)

Now, (5.14) also implies that there exists � ⊂] − 6
5 , 0[ with |�| = 0 such that for

t ∈] − 6
5 , 0[\�:

∫

R
3+

|∇u|2dx < ∞. (5.16)

Recall from Proposition 4.1 that (u, p) satisfy a local energy inequality. These facts
imply that there exists a sufficiently smooth bounded domain � ⊂ R

3+ and a set
�

′ ⊂ � ⊂] − 6
5 , 0[ such that for any t0 ∈ �

′
, u is a Leray–Hopf solution to (1.1)–

(1.3) on �×]t0, 0[ with initial data that additionally has finite dirichlet norm (5.16)
over �. By local in time solvability for the Navier–Stokes equations with initial data
with finite Dirichlet integral, see details in [3,21], one can infer that there exists δ0 > 0
such that for any 0 < ε < δ0 and k = 1, 2 . . .:

sup
t0+ε<t<t0+δ−ε

sup
�

|∇ku(x, t)| < ∞.

An application of unique continuation through spatial boundaries allows us to deduce
that ω = 0 in R

3+×]t0 + ε, t0 + δ − ε[. Using this, along with u ∈ L 10
3
(Q+

− 6
5 ,0

) and

(5.15), gives that u = 0 in R3+×] − 6
5 , 0[.

The latter contradicts with (5.6) and thus T is not a blowup time. �

6 Rescaling: scenario II

Recall that ‘Scenario II’ refers to the case x03 > 0 for the singular point at blowup time
T . Here, the scaling is x = x0 + λn y. So, we replace R3+ with R

3
h = {y = (y′, y3) ∈

R : y3 > h} with h = hn = −x03/λn .
In the case, sufficiently smooth functionsu(n) and p(n) are a solution to the following

initial boundary value problem:

∂t u
(n) + div (n) ⊗ u(n) − �u(n) = −∇ p(n), div u = 0
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in R3
hn

×] − 2, 0[,

u(n)(x ′,−hn, t) = 0

for (x ′, t) ∈ R
2 × [−2, 0],

u(n)(·,−2) = u(n)
0 (·) ∈ L3,q(R3

hn
)

and

sup
n

‖u(n)
0 ‖L3,q (R3

hn
) ≤ M.

Without loss of generality, we may assume

u(n)
0 ⇀ u0

in L3,q(R3
h) for any h > −∞.

We can use estimates of Sect. 2 in domains R3
hn

with constants independent of n.

Proposition 6.1 There exist subsequences still denoted in the same way with the
following properties:

u(n) ⇀ u (6.1)

in L 10
3
(R3

h×] − 2, 0[) for any h > −∞ with u ∈ L 10
3
(Q−2,0) and Q−2,0 = R

3×] −
2, 0[,

∇u(n) ⇀ ∇u (6.2)

in L2(B(R)×] − 2 + δ, 0[) for any R > 0 and any 0 < δ < 2,

u(n) → u (6.3)

in L3(B(R)×] − 3/2, 0[) for any R > 0;

p(n) ⇀ p (6.4)

in L 3
2
(B(R)×] − 3/2, 0[) for any R > 0.

Functions u and p satisfy the Navier–Stokes system in Q−3/2,0.
For the pressure p, the following global estimates are valid:

p =
3∑

i=1

pi ,
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with the estimates

‖∇ p1‖L 9
8 , 32

(Q−3/2,0) + ‖∇ p2‖L 10
3

(Q−3/2,0) + +‖∇ p3‖L2(Q−3/2,0) < ∞. (6.5)

Moreover, for any R > 0, the limits pair u and p satisfies the local energy inequality

∫

B(x0,R)

ϕ2(x, t)|u(x, t)|2dx + 2

t∫

t0−R2

∫

B(x0,R)

ϕ2|∇u|2dxdt

≤
t∫

t0−R2

∫

B(x0,R))

|u|2(∂tϕ
2 + �ϕ2) + u · ∇ϕ2(|u|2 + 2p)dxds (6.6)

for all −3/2 < t0 − R2 < t ≤ t0 ≤ 0, for all x0 ∈ R
3, and for all ϕ ∈

C∞
0 (B(x0, R)×]t0 − R2, t0 + R2[).

The proof of Proposition 6.1 goes along the lines of the proof of Proposition 4.1 with
minor modifications. Scenario II can then be ruled out in the same way as in [21].

We would like to stress that a major simplification in Scenario II, compared with
Scenario I, is related to showing non-triviality of the limit solution. In the interior
case we may follow the local pressure decomposition used in [21] one of which is
harmonic and the other satisfies a coercive estimate. Interior properties of harmonic
functions are essential in the use of this decomposition for showing non-triviality of
the limit function. In the boundary case of Scenario I the same decomposition doesn’t
apply. Instead, in order to show non-triviality, one uses a local decomposition of the
velocity and pressure together with estimates for the Stokes system near the boundary
as described in Scenario I. �
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