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Abstract We study the difference between a distribution of the random vectors [X, Y ] and
[X ′, Y ′], where X ′ and Y ′ are independent and X ′ has the same law as X and Y ′ as Y .
Particular interest is focused on positively quadrant dependent random variables X and Y , in
this case the bounds for the difference in question are expressed in terms of the covariance
of X and Y .
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Comparison theorems
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1 Introduction and the notation

Positive and negative dependence concepts play very important role not only in mathematical
statistics but also in applications of probability theory, in particular in mathematical physics.
The definitions of positively and negatively quadrant dependent random variables (r.v.’s)
were introduced by Lehmann in 1966 (cf. [5]) and soon after extended to the multivariate
case by Esary at al. and Joag-Dev and Proschan, who introduced the notion of positive and
negative association (cf. [3,4]). Nowadays, a comprehensive study of this topic is contained
in the monographs of Bulinski and Shashkin (cf. [2]), Oliveira (cf. [10]) and Prakasa Rao
(cf. [11]).
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36 P. Matuła, M. Ziemba

Let us recall that the random variables X, Y are positively quadrant dependent (PQD) if

HX,Y (t, s) := P(X ≤ t, Y ≤ s) − P(X ≤ t)P(Y ≤ s) ≥ 0

for all t, s ∈ R and X, Y are negatively quadrant dependent (NQD) if HX,Y (t, s) ≤ 0. It is
well known that X, Y are NQD iff X,−Y are PQD. In view of this duality, we shall focus
only on the PQD case later on.

Denote by

CovH(X, Y ) =
∫ ∞

−∞

∫ ∞

−∞
HX,Y (t, s)dtds

the so-called Hoeffding covariance (it is always well defined for PQD or NQD r.v.’s, even
though it may be infinite and if the usual product moment covariance exists, then it is equal
to the Hoeffding covariance). From this fact it follows that uncorrelated PQD (or NQD)
r.v.’s are independent. Therefore, in the study of limit theorems, covariance is usually used
to ”control” the dependence of r.v.’s. It is also well known that monotonic functions of
positively (negatively) dependent r.v.’s inherit such properties. In particular, the indicators
I(−∞,t〉(X), I(−∞,s〉(Y ) are PQD (NQD), provided X, Y are PQD (NQD). Here and in the
sequel IA(x) denotes the indicator function of a set A.

It is easy to see that

Cov
(
I(−∞,t〉(X), I(−∞,s〉(Y )

) = HX,Y (t, s),

thus, in the study of limit theorems for empirical processes based on positively or negatively
dependent observations, it is important to control HX,Y (t, s). In this context the upper bounds
for HX,Y (t, s) in terms of CovH(X, Y ) are very useful. On the other hand, it is interesting to
establish how far the random variables X, Y are from the independent ones, in the sense of
the difference between the joint distribution and the product of its marginals. The bounds for
the covariance of the indicator functions in terms of the covariance of the random variables
are called the covariance inequalities.

The first inequalities of the form

sup
t,s∈R

HX,Y (t, s) ≤ C · φ(Cov(X, Y )), (1.1)

where X, Y are associated and absolutely continuous andC depends on the densities of X, Y ,
were obtained by Bagai and Prakasa Rao (cf.[1]) and Roussas ([13]). These authors studied
properties of the estimators of the survival function and kernel estimators of the density based
on the sample of associated r.v.’s. The inequalities (1.1) were intensively studied in [6,7] and
[8]. In particular in [8], it was proved that if X, Y are absolutely continuous PQD r.v.’s with
bounded densities fX , fY (in the L∞ norm), then

sup
t,s∈R

HX,Y (t, s) ≤
(
3

2
‖ fX‖∞ ‖ fY ‖∞ CovH(X, Y )

)1/3

. (1.2)

The discrete case was considered in [6] and it was proved that if X, Y are integer-valued
PQD r.v.’s, then

sup
t,s∈R

HX,Y (t, s) ≤ CovH(X, Y ). (1.3)

Wewould also like to refer the reader to the monograph [2], where the covariance inequal-
ities for Lipschitz functions of associated r.v.’s are studied.

In recent years, however, live interest in positively and negatively dependent r.v.’s have
led to fruitful results not only in range of covariance inequalities. Several limit theorems have
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Covariance and comparison inequalities 37

been proved under this kind of dependence, in particular: laws of large numbers, CLT and
the rate of convergence in the CLT, invariance principle, moment bounds, convergence of
empirical processes etc. (see [2,10,11] where further references are given).

Now let X, Y be any random variables and X ′, Y ′ independent copies of X and Y , i.e. X ′
has the same distribution as X , and Y ′ as Y and X ′, Y ′ are independent. We may write

HX,Y (t, s) = P ([X, Y ] ∈ Q(t, s)) − P
([X ′, Y ′] ∈ Q(t, s)

)
,

where Q(t, s) = (−∞, t〉 × (−∞, s〉 is a quadrant. Let us introduce the following notation
HX,Y (D) = P ([X, Y ] ∈ D) − P

([X ′, Y ′] ∈ D
)
,

for D ⊂ R
2. Because the notions of uncorrelatedness and independence coincide, the key

assumption in limit theorems for positively or negatively dependent r.v.’s always involves
their covariance structure. Indeed covariance plays the role of the measure of dependence
between r.v.’s. Taking this into account, it appears to be important to establish how, in fact,
the covariance assesses the dependence. The answer may be given by finding the bounds for
HX,Y (D) in terms of CovH(X, Y ) (we shall call from now on comparison inequalities). This
is the main goal of the paper.

The paper is organized as follows. In the second section we consider the comparison
inequalities for integer-valued r.v.’swhile the third one is devoted to the absolutely continuous
random vectors. Section 4 presents the special case of Farlie-Gumbel-Morgenstern (FGM)
r.v.’s.

2 Discrete case

With a view to stating the main result of this section we shall introduce the notion of a δ–hull
of a set D ⊂ R

2 as follows

D(δ) = {(x, y) ∈ R
2 : x = t + a, y = s + b,

for some (t, s) ∈ D and |a| ≤ δ, |b| ≤ δ}.
Let Z denote the set of integers. For integer-valued r.v.’s we have the following general
comparison theorem.

Theorem 2.1 Let X, Y be any random variables with values in Z and D ⊂ R
2 be any set,

then

|HX,Y (D)| ≤ 4
∫ ∫

D(1/2)

∣∣HX,Y (t, s)
∣∣ dtds. (2.1)

For the proof of this theorem and the results of the next section, we shall need the following
identity of Newman (cf. (4.10) in [9]).

Lemma 2.2 Let g1 and g2 be absolutely continuous functions and X, Y random variables
such that g1(X) and g2(Y ) are square-integrable. Then

Cov(g1(X), g2(Y ))

=
∫ +∞

−∞

∫ +∞

−∞
g′
1(t)g

′
2(s) [P(X > t, Y > s) − P(X > t)P(Y > s)] dtds

=
∫ +∞

−∞

∫ +∞

−∞
g′
1(t)g

′
2(s)HX,Y (t, s)dtds.
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38 P. Matuła, M. Ziemba

It is worth mentioning here, that

P(X > t, Y > s) − P(X > t)P(Y > s) = P(X ≤ t, Y ≤ s) − P(X ≤ t)P(Y ≤ s)

= HX,Y (t, s).

Proof of Theorem 2.1 For i ∈ Z let us define the functions

fi (x) = max (1 − 2|x − i |, 0) ,

which are absolutely continuous and differentiable except the points i − 1/2, i, i + 1/2. We
shall use these functions to approximate the indicators. In fact, we have fi (X) = I{i}(X).
Let us observe that for (i, j) ∈ Z, we have

HX,Y (D) =
∑

(i, j)∈D

(
P(X = i, Y = j) − P(X ′ = i, Y ′ = j)

) =
∑

(i, j)∈D

Cov
(

fi (X), f j (Y )
)

and by Lemma 2.2, we get

HX,Y (D) =
∫ +∞

−∞

∫ +∞

−∞

∑
(i, j)∈D

f ′
i (t) f ′

j (s)HX,Y (t, s)dtds.

It is easy to see that∣∣∣∣∣∣
∑

(i, j)∈D

f ′
i (t) f ′

j (s)

∣∣∣∣∣∣ ≤ 4
∑

(i, j)∈D

I〈i−1/2,i+1/2〉×〈 j−1/2, j+1/2〉(t, s),

thus

∣∣HX,Y (D)
∣∣ ≤

∫ +∞

−∞

∫ +∞

−∞

∣∣∣∣∣∣
∑

(i, j)∈D

f ′
i (t) f ′

j (s)

∣∣∣∣∣∣
∣∣HX,Y (t, s)

∣∣ dtds

≤ 4
∫ ∫

D(1/2)

∣∣HX,Y (t, s)
∣∣ dtds.

��
For PQD r.v.’s we immediately obtain the following corollary.

Corollary 2.3 Let X, Y be PQD r.v.’s with values in Z and D ⊂ R
2 be any set, then

|HX,Y (D)| ≤ 4CovH(X, Y ). (2.2)

The inequality (2.2) is optimal up to a constant in this sense, that the left and the right
hand-side may approach 0 with the same speed. Let us illustrate it with an example.

Example 2.4 Let Xn, Yn have the following distribution: P(Xn = 0, Yn = 0) =
P(Xn = 1, Yn = 1) = 1

4 + 1
n , P(Xn = 0, Yn = 1) = P(Xn = 1, Yn =

0) = 1
4 − 1

n , n ≥ 5. Then Xn, Yn are PQD and P ([Xn, Yn] ∈ {(0, 0); (1, 1)}) =
1
2 + 2

n , P
([X ′

n, Y ′
n] ∈ {(0, 0); (1, 1)}) = 1

2 . Thus HXn ,Yn ({(0, 0); (1, 1)}) = 2
n . Moreover

Cov(Xn, Yn) = 1
n .

The inequality (2.2) may also be easily extended to the case of r.v.’s taking values in a
lattice. Let L(a, b) = {ia + b, i ∈ Z} be a set of lattice points, here a > 0. If X, Y are PQD,
assuming their values in L(a, b), then U = X−b

a and V = Y−b
a are PQD as well with values

in Z. Furthermore, CovH(U, V ) = 1
a2

CovH(X, Y ). Therefore we get another corollary.
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Covariance and comparison inequalities 39

Corollary 2.5 Let X, Y be PQD r.v.’s with values in the lattice L(a, b) and D ⊂ R
2 be any

set, then

|HX,Y (D)| ≤ 4

a2 CovH(X, Y ). (2.3)

3 Absolutely continuous case

In this section we shall study absolutely continuous random vectors [X, Y ]. Denote by
fX,Y (x, y) the joint density of [X, Y ] and by fX (x), fY (y) the marginal densities of X and
Y respectively. We shall assume that these densities are bounded in the essential supremum
norm (L∞ norm). We put

C f := ‖ fX,Y ‖∞ + ‖ fX‖∞ · ‖ fY ‖∞.

We will obtain bounds for HX,Y (D), where D ⊂ R
2 is a compact set which boundary is a

Peano curve � (continuous, piecewise C1, without self-intersections). The length of � will
be denoted by L and the planar measure of D by μ(D). Recall that, by the isoperimetric
inequality, we have μ(D) ≤ 1

4π L2.

Theorem 3.1 Let the r.v.’s X, Y and the set D be as above, then
∣∣HX,Y (D)

∣∣ ≤ C · 4

√
sup

(t,s)∈D

∣∣HX,Y (t, s)
∣∣, (3.1)

where C =
(
2
√
2

( 1
4π + 1

) (
C f + 1

) + 8
√
2
)
max(L2, 1).

In the proof we shall use the following elementary lemma.

Lemma 3.2 Let [X, Y ] be a random vector with bounded density fX,Y . Let ϕ,ψ : R2 → R

be the measurable functions such that 0 ≤ ϕ,ψ ≤ 1. Let us also put

A = {
(x, y) ∈ R

2 : ϕ(x, y) �= ψ(x, y)
}
,

then

|Eϕ (X, Y ) − Eψ (X, Y )| ≤ μ(A) · ∥∥ fX,Y
∥∥∞ .

Proof of Theorem 3.1 For i, j ∈ Z, δ > 0 and 0 < η ≤ δ/2 let us introduce the following
notation. Consider a family of squareswith vertices in the lattice L(δ, 0) and disjoint interiors

Si, j,δ = 〈iδ, (i + 1)δ〉 × 〈 jδ, ( j + 1)δ〉.
Define a family of ”square-rings”

Ri, j,δ,η = Si, j,δ \ (iδ + η, (i + 1)δ − η) × ( jδ + η, ( j + 1)δ − η)

and define a family of ”hat-like” functions

fi,δ,η(x) = min

(
max

(
δ

2η
− |x − δ(i + 1/2)|

η
; 0

)
1

)
.

These functions are absolutely continuous, equal to 0 for x ∈ (−∞, iδ〉 ∪ 〈(i + 1)δ,+∞),
equal to 1 for x ∈ 〈iδ + η, (i + 1)δ − η〉 and are linear otherwise. They are differentiable
except four points and | f ′

i,δ,η(x)| ≤ 1/η.
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40 P. Matuła, M. Ziemba

We begin with a comparison inequality for a square Si, j,δ . Let us observe that

∣∣HX,Y
(
Si, j,δ

)∣∣
= ∣∣EI〈iδ,(i+1)δ〉 (X) I〈 jδ,( j+1)δ〉 (Y ) − EI〈iδ,(i+1)δ〉

(
X ′)

I〈 jδ,( j+1)δ〉
(
Y ′)∣∣

≤ ∣∣EI〈iδ,(i+1)δ〉 (X) I〈 jδ,( j+1)δ〉 (Y ) − E fi,δ,η(X) f j,δ,η(Y )
∣∣

+ ∣∣EI〈iδ,(i+1)δ〉
(
X ′)

I〈 jδ,( j+1)δ〉
(
Y ′) − E fi,δ,η(X ′) f j,δ,η(Y

′)
∣∣

+ ∣∣E fi,δ,η(X) f j,δ,η(Y ) − E fi,δ,η(X ′) f j,δ,η(Y
′)
∣∣

≤ 4(δη − η2)
∥∥ fX,Y

∥∥∞ + 4(δη − η2) ‖ fX‖∞ ‖ fY ‖∞
+ ∣∣Cov (

fi,δ,η(X), f j,δ,η(Y )
)∣∣

by Lemma 3.2, therefore by Lemma 2.2 we get

∣∣HX,Y
(
Si, j,δ

)∣∣ ≤ 4(δη − η2)C f + 1

η2

∫ ∫

Ri, j,δ,η

∣∣HX,Y (t, s)
∣∣ dtds. (3.2)

Let
{

Si, j,δ
}
(i, j)∈I be a cover of D, i.e. (i, j) ∈ I ⊂ Z2 iff Si, j,δ ∩ D �= ∅. Let us split

the set of indices I into two disjoint parts I� and Iint . The family
{

Si, j,δ
}
(i, j)∈I�

covers the

boundary �, i.e. (i, j) ∈ I� iff Si, j,δ ∩ � �= ∅. The family
{

Si, j,δ
}
(i, j)∈Iint

infills the interior
of D, i.e. (i, j) ∈ Iint iff Si, j,δ ⊂ intD. Let us observe that

Card (Iint ) ≤
⌈

μ(D)

δ2

⌉
≤ μ(D)

δ2
+ 1 ≤ 1

4π

L2

δ2
+ 1. (3.3)

Further

Card (I�) ≤ 4

⌈
L

δ

⌉
≤ 4

(
L

δ
+ 1

)
, (3.4)

which follows from the fact that � may be divided into at most � L
δ
� consecutive parts of the

length δ (the last at most δ), each may be covered by a square of the side δ parallel to the
axis, which in turn may be covered by at most four squares Si, j,δ . Now, we have

∣∣HX,Y (D)
∣∣

≤
∣∣∣∣∣∣P

⎛
⎝[X, Y ] ∈

⋃
(i, j)∈Iint

Si, j,δ

⎞
⎠ − P

⎛
⎝[

X ′, Y ′] ∈
⋃

(i, j)∈Iint

Si, j,δ

⎞
⎠

∣∣∣∣∣∣

+ P

⎛
⎝[X, Y ] ∈

⋃
(i, j)∈I�

Si, j,δ ∩ D

⎞
⎠ + P

⎛
⎝[

X ′, Y ′] ∈
⋃

(i, j)∈I�

Si, j,δ ∩ D

⎞
⎠

≤
∑

(i, j)∈Iint

∣∣HX,Y
(
Si, j,δ

)∣∣ +
∑

(i, j)∈I�

P
(
[X, Y ] ∈ Si, j,δ

) +
∑

(i, j)∈I�

P
([

X ′, Y ′] ∈ Si, j,δ
)
.

(3.5)

123



Covariance and comparison inequalities 41

Therefore, from (3.2), (3.3) and (3.4), it follows that
∣∣HX,Y (D)

∣∣ (3.6)

≤ 4(δη − η2)C f

(
1

4π

L2

δ2
+ 1

)
+ 1

η2

∫ ∫
⋃

(i, j)∈Iint
Ri, j,δ,η

∣∣HX,Y (t, s)
∣∣ dtds

+ 4

(
L

δ
+ 1

)
δ2C f

≤ 4δη

(
1

4π

L2

δ2
+ 1

)
Cf + 1

η2

(
1

4π

L2

δ2
+ 1

)
4δη sup

(t,s)∈D

∣∣HX,Y (t, s)
∣∣

+ 4

(
L

δ
+ 1

)
δ2Cf .

Let us put h = sup(t,s)∈D

∣∣HX,Y (t, s)
∣∣ and assume that h > 0. If h = 0, then it is easy to

prove that
∣∣HX,Y (D)

∣∣ = 0. Further, let L̃ = max(L , 1) and assume that δ ≤ 1. Then

∣∣HX,Y (D)
∣∣ ≤ 4η

δ

(
1

4π
+ 1

)
L̃2C f + 4

δη

(
1

4π
+ 1

)
L̃2h + 8δ L̃2C f .

We put δ = √
2 4
√

h and η = √
h to obtain an optimal exponent at h. Since h ≤ 1

4 we see that
δ ≤ 1 and η ≤ δ/2. Thus we get

∣∣HX,Y (D)
∣∣ ≤ 4

√
hL̃2

(
2
√
2

(
1

4π
+ 1

)
(C f + 1) + 8

√
2

)

and the proof is completed. ��

By direct application of (1.2) to Theorem 3.1, for PQD r.v.’s, we get the following inequal-
ity

∣∣HX,Y (D)
∣∣ ≤ C · (CovH(X, Y ))1/12 ,

where C =
(
2
√
2

( 1
4π + 1

)
(C f + 1) + 8

√
2
) ( 3

2C f
)1/12

max(L2, 1).

A more careful study of the proof of Theorem 3.1, in the case of PQD r.v.’s, leads to the
following result.

Theorem 3.3 Let the assumptions of Theorem 3.1 be satisfied and X, Y be PQD r.v.’s, then
∣∣HX,Y (D)

∣∣ ≤ C · (CovH(X, Y ))1/5 ,

where C = 4 + C f
( 1
4π + 10

)
max(L2, 1).

Proof As in the proof of Theorem 3.1, from (3.6) we get

∣∣HX,Y (D)
∣∣ ≤ 4η

δ

(
1

4π
+ 1

)
L̃2C f + 1

η2
CovH(X, Y ) + 8δ L̃2C f .

If CovH(X, Y ) ≥ 1 then the conclusion is a trivial inequality. Assume CovH(X, Y ) < 1
and take δ = 5

√
CovH(X, Y ) and η = (CovH(X, Y ))2/5 /2 to optimize the exponent in

CovH(X, Y ) and arrive at the conclusion. ��
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42 P. Matuła, M. Ziemba

4 FGM case

It is said that the r.v.’s X, Y have the joint FGM distribution function if

FX,Y (x, y) = FX (x)FY (y) + ρFX (x)(1 − FX (x))FY (y)(1 − FY (y)),

where ρ ∈ [−1, 1], FX,Y , FX , FY are the joint distribution function and marginal d.f.’s
respectively. Denote by fX,Y , fX , fY their densities. The corresponding copula takes the
form

C(u, v) = uv + ρu(1 − u)v(1 − v). (4.1)

(For details on copulas see [12]). In this section we shall consider a more general form of
(4.1).

Let H be a family of monotonically nonincreasing functions h : 〈0, 1〉 → R such that

(1) ||h||∞ ≤ 1
(2)

∫ 1
0 h(t)dt = 0

(3)
∫ x
0 h(t)dt ≥ 0 for x ∈ 〈0, 1〉.

Let
C(u, v) = uv + ρH1(u)H2(v), (4.2)

where H1(u) = ∫ u
0 h1(t)dt, H2(v) = ∫ v

0 h2(t)dt for some h1, h2 ∈ H and ρ ∈ (0, 1〉. It
is easy to see that C(u, v) is now a copula with PQD property. Covariance inequalities for
absolutely continuous r.v.’s X, Y with copula of the form (4.2) were studied in [7], where
measurability of the functions h1 and h2 is only demanded.

From the monotonicity of the functions hi ∈ H, i ∈ {1, 2}, we conclude that Hi (x) is a
concave function. As a result, we get

∫ 1

0
Hi (x)dx ≥ 1

2
Hi (x), for any x ∈ 〈0, 1〉 (4.3)

which means that under the graph of Hi one can fit in a triangle with the unit base and height
Hi (x).

Now, let us put xi = sup {x ∈ 〈0, 1〉 : hi (x) ≥ 0} . From
∫ 1
0 hi (t)dt = 0, we get∫ xi

0 hi (t)dt = − ∫ 1
xi

hi (t)dt. Thus, it is easy to see that

∫ 1

0
|hi (t)|dt =

∫ xi

0
hi (t)dt −

∫ 1

xi

hi (t)dt = 2
∫ xi

0
hi (t)dt = 2Hi (xi ). (4.4)

Formulas (4.3) and (4.4) lead to

∫ 1

0
|hi (t)|dt ≤ 4

∫ 1

0
Hi (x)dx . (4.5)

The above inequality enables us to prove the following comparison theorem for the FGM
distributed r.v.’s.

Theorem 4.1 Let X, Y be absolutely continuous r.v.’s with the copula (4.2) and bounded
densities. Then, for any Borel set B ⊂ R

2

∣∣HX,Y (B)
∣∣ ≤ 16‖ fX‖∞‖ fY ‖∞ CovH(X, Y ). (4.6)
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Proof Under our assumptions

FX,Y (x, y) = FX (x)FY (y) + ρH1(FX (x))H2(FY (y))

and

fX,Y (x, y) = fX (x) fY (y) + ρh1(FX (x)) fX (x)h2(FY (y)) fY (y).

Thus, for any Borel set B ⊂ R
2 we get

HX,Y (B) = ∣∣P([X, Y ] ∈ B) − P([X ′, Y ′] ∈ B)
∣∣

=
∣∣∣∣
∫ ∫

B
ρh1(FX (x)) fX (x)h2(FY (y)) fY (y)dxdy

∣∣∣∣
≤ ρ

∫ 1

0

∫ 1

0
|h1(u)h2(v)| dudv ≤ 16ρ

∫ 1

0

∫ 1

0
H1(u)H2(v)dudv

= 16
∫ 1

0

∫ 1

0
(C(u, v) − uv) dudv ≤ 16‖ fX‖∞‖ fY ‖∞ CovH(X, Y ),

by applying the transformation u = FX (x), v = FY (y) and inequality (4.5). ��
Similarly as in Example 2.4, it may be shown that (4.6) is optimal up to a constant, i.e.

the left and the right-hand side of this inequality may converge to 0 with the same rate.

Example 4.2 Let

h1(t) = h2(t) =
{

1
n , t ∈ 〈

0, 1
2

〉
− 1

n , t ∈ ( 1
2 , 1

〉
Consider a random vector [X, Y ], such that X and Y have uniform distributions on the
interval 〈0, 1〉 and the distribution of [X, Y ] coincides with the copula and is given by (4.2)
with ρ = 1. Then

HX,Y

(〈
0,

1

2

〉
×

〈
0,

1

2

〉
∪

(
1

2
, 1

〉
×

(
1

2
, 1

〉)
= 1

2n2

and

Cov (X, Y ) = 1

16n2 .
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permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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