### organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### 5-Hydroxy-2-{(*E*)-[(3-nitrophenyl)iminio]methyl}phenolate

#### Muhammad Ashraf Shaheen,<sup>a</sup> M. Nawaz Tahir,<sup>b</sup>\* Rana Muhammad Irfan,<sup>a</sup> Shahid Igbal<sup>a</sup> and Saeed Ahmad<sup>c</sup>

<sup>a</sup>University of Sargodha, Department of Chemistry, Sargodha, Pakistan, <sup>b</sup>University of Sargodha, Department of Physics, Sargodha, Pakistan, and <sup>c</sup>University of Engineering and Technology, Department of Chemistry, Lahore 54890, Pakistan Correspondence e-mail: dmntahir\_uos@yahoo.com

Received 23 July 2012; accepted 27 July 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.105; data-to-parameter ratio = 12.3.

The title compound,  $C_{13}H_{10}N_2O_4$ , crystallized as the zwitterionic tautomer. As a result, the phenolate  $C-O^-$  bond [1.296 (2) Å] is shorter than a normal  $Csp^2 - O(H)$  bond, and the azomethine C=N bond [1.314 (2) Å] is longer than a normal C=N double bond. The molecule is nearly planar, the mean plane of the nitro-substituted benzene ring forming dihedral angles of 9.83 (7) and 8.45 (9) $^{\circ}$  with the other benzene ring and with the nitro group, respectively. The molecular conformation is stabilized by an intramolecular N- $H \cdots O$  hydrogen bond. In the crystal, strong  $O - H \cdots O$ hydrogen bonds link the molecules into double-stranded chains along the *b*-axis direction. Within the chains there are  $\pi$ - $\pi$  interactions involving the benzene rings of adjacent molecules [centroid–centroid distance = 3.669(1) Å]. The chains are linked via C-H···O hydrogen bonds, forming  $R_2^1(6), R_2^1(7)$  and  $R_2^2(10)$  ring motifs.

#### **Related literature**

For related structures, see: Yeap *et al.* (1992); Hijji *et al.* (2009). For graph-set analysis of hydrogen bonds, see: Bernstein *et al.* (1995).



#### **Experimental**

Crystal data  $C_{13}H_{10}N_2O_4$  $M_r = 258.23$ 

Monoclinic, C2/ca = 12.8518 (9) Å b = 7.8501 (5) Å c = 24.1316 (18) Å  $\beta = 101.593 (3)^{\circ}$   $V = 2384.9 (3) \text{ Å}^{3}$ Z = 8

## Data collection

| Bruker Kappa APEXII CCD area-              |
|--------------------------------------------|
| detector diffractometer                    |
| Absorption correction: multi-scan          |
| (SADABS; Bruker, 2009)                     |
| $T_{\rm min} = 0.975, T_{\rm max} = 0.985$ |

DEVUL COD

Refinement

| 2 2                             |                                                            |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.038$ | 173 parameters                                             |
| $wR(F^2) = 0.105$               | H-atom parameters constrained                              |
| S = 1.02                        | $\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}$    |
| 2126 reflections                | $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ |

Mo  $K\alpha$  radiation

 $0.30 \times 0.25 \times 0.22$  mm

5601 measured reflections 2126 independent reflections

1569 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.11 \text{ mm}^{-1}$ 

T = 296 K

 $R_{\rm int}=0.025$ 

# Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$               | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------|------|-------------------------|--------------|--------------------------------------|
| $N2-H2A\cdots O3$              | 0.86 | 1.87                    | 2.5716 (19)  | 138                                  |
| $O4-H4A\cdots O3^{i}$          | 0.82 | 1.79                    | 2.6100 (17)  | 179                                  |
| $C2-H2\cdot\cdot\cdot O2^{ii}$ | 0.93 | 2.54                    | 3.446 (2)    | 164                                  |
| C4−H4···O4 <sup>iii</sup>      | 0.93 | 2.54                    | 3.268 (2)    | 135                                  |
| C7−H7···O2 <sup>ii</sup>       | 0.93 | 2.49                    | 3.355 (2)    | 154                                  |
| $C10-H10\cdots O3^{i}$         | 0.93 | 2.56                    | 3.226 (2)    | 129                                  |
|                                |      |                         |              |                                      |

Symmetry codes: (i)  $-x + \frac{3}{2}$ ,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii)  $-x + \frac{1}{2}$ ,  $-y + \frac{1}{2}$ , -z; (iii)  $x - \frac{1}{2}$ ,  $y - \frac{3}{2}$ , z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2068).

#### References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hijji, Y. M., Barare, B., Butcher, R. J. & Jasinski, J. P. (2009). Acta Cryst. E65, 0291–0292.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yeap, G.-Y., Gan, C.-L., Fun, H.-K., Shawkataly, O. & Teoh, S.-G. (1992). Acta Cryst. C48, 1143–1144.

# supporting information

Acta Cryst. (2012). E68, o2622 [doi:10.1107/S1600536812033740]

# 5-Hydroxy-2-{(E)-[(3-nitrophenyl)iminio]methyl}phenolate

## Muhammad Ashraf Shaheen, M. Nawaz Tahir, Rana Muhammad Irfan, Shahid Iqbal and Saeed Ahmad

### S1. Comment

The title compound (Fig. 1) has been synthesized as a precursor for complex formation and other studies.

In contrast to the closely related structure of 2-[(3-nitrophenylimino)methyl]phenol (Yeap *et al.*, 1992), the title compound is a zwitterion, in which the hydroxy H<sup>+</sup> ion is transferred to the imino N atom (Fig. 1). Analogous zwitterionic structure is observed for 2-{[(2-hydroxy-5-nitrophenyl)iminio]methyl}phenolate (Hijji *et al.*, 2009).

The molecule consists of two roughly planar groups, the 3-nitroaniline fragment (C1—C6/N1/N2/O1/O2) and the rest of 2,4-dihydroxybenzaldehyde (C7—C13/O3/O4), the mean deviations from the planes are 0.070Å and 0.023Å, respectively. The dihedral angle between the planes of these groups is 9.37 (6)°.

Strong intramolecular N—H···O hydrogen bond (Table 1, Fig. 2) produce S(6) ring motif (Bernstein *et al.*, 1995). Due to the intermolecular O—H···O hydrogen bonds, the C(6) chains along the *b*-axis direction are formed (Table 1, Fig. 2). The C—H···O interactions join these chains, generating the  $R_2^1(7)$  and  $R_2^2(10)$  rings. motifs. Due to the C—H···O and O —H···O hydrogen bonds, the  $R_2^1(6)$  ring motif is also formed (Table 1, Fig. 2).

### S2. Experimental

3-Nitroaniline (0.138 g, 1.0 mmol) was dissolved in distilled methanol. Solution of 2,4-dihydroxybenzaldehyde (0.138 g, 1.0 mmol) in methanol was added dropwise. The mixture was refluxed for 2 h and orange prisms of the title compound were obtained after 48 h.

### **S3. Refinement**

At initial stages, all H atoms were refined freely, indicating the zwitterion structure. Later, all H atoms were positioned geometrically at C—H = 0.93, N—H = 0.86 and O—H = 0.82 Å, respectively, and refined as riding with  $U_{iso}(H) = xU_{eq}(C, N, O)$ , where x = 1.5 for hydroxy and x = 1.2 for other H atoms.



### Figure 1

Molecular structure of the title compound with the atom-numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.



### Figure 2

The packing diagram showing the chains along the [010] direction and various ring motifs.

F(000) = 1072

 $\theta = 3.1 - 25.3^{\circ}$ 

 $\mu = 0.11 \text{ mm}^{-1}$ 

Prism, orange

 $0.30 \times 0.25 \times 0.22 \text{ mm}$ 

T = 296 K

 $D_{\rm x} = 1.438 {\rm Mg m^{-3}}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 1569 reflections

#### 5-Hydroxy-2-{(*E*)-[(3-nitrophenyl)iminio]methyl}phenolate

#### Crystal data

C<sub>13</sub>H<sub>10</sub>N<sub>2</sub>O<sub>4</sub>  $M_r = 258.23$ Monoclinic, C2/c Hall symbol: -C 2yc a = 12.8518 (9) Å b = 7.8501 (5) Å c = 24.1316 (18) Å  $\beta = 101.593$  (3)° V = 2384.9 (3) Å<sup>3</sup> Z = 8

#### Data collection

| Bruker Kappa APEXII CCD area-detector             | 5601 measured reflections                                                 |
|---------------------------------------------------|---------------------------------------------------------------------------|
| diffractometer                                    | 2126 independent reflections                                              |
| Radiation source: fine-focus sealed tube          | 1569 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                            | $R_{\rm int} = 0.025$                                                     |
| Detector resolution: 8.10 pixels mm <sup>-1</sup> | $\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ |
| $\omega$ scans                                    | $h = -15 \rightarrow 15$                                                  |
| Absorption correction: multi-scan                 | $k = -9 \longrightarrow 8$                                                |
| (SADABS; Bruker, 2009)                            | $l = -28 \rightarrow 27$                                                  |
| $T_{\min} = 0.975, \ T_{\max} = 0.985$            |                                                                           |

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.105$                               | neighbouring sites                                         |
| S = 1.02                                        | H-atom parameters constrained                              |
| 2126 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0478P)^2 + 0.8634P]$          |
| 173 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.13 \  m e \  m \AA^{-3}$          |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ |
|                                                 |                                                            |

#### Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x            | у             | Ζ           | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|----|--------------|---------------|-------------|-------------------------------|
| 01 | 0.15456 (11) | -0.19142 (18) | 0.02818 (6) | 0.0662 (5)                    |

| O2  | 0.20746 (12) | 0.03661 (18) | -0.00681 (6) | 0.0724 (6) |
|-----|--------------|--------------|--------------|------------|
| 03  | 0.62612 (10) | 0.43187 (15) | 0.22353 (5)  | 0.0534 (4) |
| O4  | 0.76284 (11) | 0.95669 (16) | 0.17361 (5)  | 0.0575 (5) |
| N1  | 0.21457 (12) | -0.0694 (2)  | 0.03061 (7)  | 0.0496 (6) |
| N2  | 0.49661 (11) | 0.26941 (19) | 0.14644 (6)  | 0.0474 (5) |
| C1  | 0.43511 (13) | 0.1203 (2)   | 0.13474 (7)  | 0.0410 (6) |
| C2  | 0.35653 (14) | 0.1006 (2)   | 0.08681 (7)  | 0.0421 (6) |
| C3  | 0.29944 (13) | -0.0494 (2)  | 0.08125 (7)  | 0.0414 (6) |
| C4  | 0.31558 (15) | -0.1781 (2)  | 0.12040 (8)  | 0.0481 (6) |
| C5  | 0.39528 (16) | -0.1569 (3)  | 0.16724 (8)  | 0.0530 (7) |
| C6  | 0.45478 (14) | -0.0106 (3)  | 0.17409 (7)  | 0.0487 (6) |
| C7  | 0.50024 (13) | 0.4025 (2)   | 0.11385 (7)  | 0.0447 (6) |
| C8  | 0.56478 (13) | 0.5432 (2)   | 0.13102 (7)  | 0.0405 (6) |
| C9  | 0.62972 (13) | 0.5521 (2)   | 0.18714 (7)  | 0.0403 (6) |
| C10 | 0.69554 (13) | 0.6942 (2)   | 0.20049 (7)  | 0.0406 (6) |
| C11 | 0.69865 (13) | 0.8209 (2)   | 0.16195 (7)  | 0.0416 (6) |
| C12 | 0.63360 (14) | 0.8146 (2)   | 0.10705 (7)  | 0.0461 (6) |
| C13 | 0.56882 (14) | 0.6792 (2)   | 0.09292 (7)  | 0.0459 (6) |
| H2  | 0.34268      | 0.18528      | 0.05936      | 0.0505*    |
| H2A | 0.53731      | 0.27396      | 0.17938      | 0.0569*    |
| H4  | 0.27414      | -0.27611     | 0.11547      | 0.0578*    |
| H4A | 0.79725      | 0.94912      | 0.20604      | 0.0862*    |
| H5  | 0.40893      | -0.24223     | 0.19446      | 0.0636*    |
| H6  | 0.50928      | 0.00111      | 0.20566      | 0.0584*    |
| H7  | 0.45787      | 0.40280      | 0.07774      | 0.0536*    |
| H10 | 0.73819      | 0.70276      | 0.23640      | 0.0487*    |
| H12 | 0.63551      | 0.90201      | 0.08126      | 0.0553*    |
| H13 | 0.52555      | 0.67518      | 0.05708      | 0.0551*    |
|     |              |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| O1  | 0.0630 (9)  | 0.0603 (9)  | 0.0709 (10) | -0.0201 (8) | 0.0033 (7)  | -0.0121 (7) |
| O2  | 0.0882 (12) | 0.0606 (9)  | 0.0540 (9)  | -0.0102 (8) | -0.0198 (8) | 0.0103 (8)  |
| O3  | 0.0592 (8)  | 0.0484 (7)  | 0.0437 (8)  | -0.0070 (6) | -0.0110 (6) | 0.0081 (6)  |
| O4  | 0.0692 (9)  | 0.0485 (8)  | 0.0460 (8)  | -0.0139 (7) | -0.0092 (6) | 0.0048 (6)  |
| N1  | 0.0527 (10) | 0.0446 (9)  | 0.0478 (10) | -0.0009 (8) | 0.0010 (7)  | -0.0077 (8) |
| N2  | 0.0451 (9)  | 0.0506 (9)  | 0.0399 (9)  | -0.0003 (8) | -0.0072 (6) | -0.0014 (7) |
| C1  | 0.0396 (10) | 0.0429 (10) | 0.0386 (10) | 0.0018 (8)  | 0.0037 (7)  | -0.0030 (8) |
| C2  | 0.0469 (10) | 0.0370 (10) | 0.0389 (10) | 0.0026 (8)  | 0.0002 (8)  | 0.0031 (7)  |
| C3  | 0.0418 (10) | 0.0400 (10) | 0.0401 (10) | 0.0022 (8)  | 0.0031 (8)  | -0.0036 (8) |
| C4  | 0.0514 (11) | 0.0426 (10) | 0.0510 (11) | 0.0008 (9)  | 0.0117 (9)  | 0.0057 (9)  |
| C5  | 0.0567 (12) | 0.0538 (12) | 0.0484 (12) | 0.0081 (10) | 0.0103 (9)  | 0.0167 (9)  |
| C6  | 0.0469 (11) | 0.0619 (12) | 0.0347 (10) | 0.0056 (10) | 0.0023 (8)  | 0.0053 (9)  |
| C7  | 0.0391 (10) | 0.0532 (11) | 0.0374 (10) | 0.0041 (9)  | -0.0025 (8) | -0.0024 (9) |
| C8  | 0.0368 (9)  | 0.0432 (10) | 0.0378 (10) | 0.0029 (8)  | -0.0016 (7) | -0.0044 (8) |
| C9  | 0.0391 (10) | 0.0399 (10) | 0.0385 (10) | 0.0062 (8)  | -0.0002 (7) | 0.0001 (8)  |
| C10 | 0.0414 (10) | 0.0429 (10) | 0.0318 (9)  | 0.0022 (8)  | -0.0059 (7) | -0.0033 (8) |
|     |             |             |             |             |             |             |

# supporting information

| C11             | 0.0429 (10)        | 0.0391 (10) | 0.0403 (10)    | 0.0018 (8)                | 0.0024 (8)  | -0.0024 (8) |  |
|-----------------|--------------------|-------------|----------------|---------------------------|-------------|-------------|--|
| CI2             | 0.0514 (11)        | 0.0479 (11) | 0.0356 (10)    | 0.0027 (9)                | 0.0007 (8)  | 0.0050 (8)  |  |
| <u>C13</u>      | 0.0462 (11)        | 0.0528 (11) | 0.0337 (10)    | 0.0048 (9)                | -0.0040 (8) | 0.0004 (8)  |  |
| Geometr         | ric parameters (Å, | . ?         |                |                           |             |             |  |
| 01—N1           |                    | 1.224 (2)   | ) C            | 27—C8                     | 1           | 393 (2)     |  |
| O2—N1           |                    | 1.218 (2    | ) C            | 28—C13                    | 1.4         | 417 (2)     |  |
| 03—С9           |                    | 1.296 (2    | ) C            | 28—C9                     | 1.4         | 443 (2)     |  |
| O4—C1           | 1                  | 1.343 (2)   | ) C            | 9—C10                     | 1.          | 1.398 (2)   |  |
| O4—H4           | A                  | 0.8200      | C              | 210—C11                   | 1.          | 368 (2)     |  |
| N1-C3           |                    | 1.474 (2)   | ) C            | C11—C12                   | 1.4         | 418 (2)     |  |
| N2C7            |                    | 1.314 (2)   | ) C            | C12—C13                   | 1.          | 351 (2)     |  |
| N2-C1           |                    | 1.409 (2)   | ) C            | 2—H2                      | 0.          | 9300        |  |
| N2—H2           | A                  | 0.8600      | Ć              | 24—H4                     | 0.          | 9300        |  |
| C1—C6           |                    | 1.388 (3    | ) C            | 25—Н5                     | 0.          | 9300        |  |
| C1—C2           |                    | 1.383 (2    | ) C            | 6—H6                      | 0.          | 9300        |  |
| C2—C3           |                    | 1.380 (2    | ) C            | 27—H7                     | 0.          | 9300        |  |
| C3—C4           |                    | 1.370 (2    | ) C            | 210—H10                   | 0.          | 9300        |  |
| C4—C5           |                    | 1.375 (3    | ) C            | 12—H12                    | 0.          | 9300        |  |
| C5—C6           |                    | 1.371 (3    | ) C            | 13—H13                    | 0.          | 9300        |  |
| C11 0           | 4 1144             | 100.00      | C              | 19 C0 C10                 | 11          | 7 (5 (14))  |  |
| CII = 0         | 4—п4А<br>02        | 109.00      | (17)           |                           | 11/.03 (14) |             |  |
| OI NI           | 02                 | 123.14 (    | 17) C          | C9-C10-C11 121.51         |             | 6 45 (14)   |  |
| 01-N1           | C3                 | 118.52 (    | 15) C          | 04-C11-C12 110.450        |             | 0.43(14)    |  |
| C1 N2           | -C3                | 118.33 (    | 15) C          | $^{4-}$ C11-C10           | 12          | (2.36(13))  |  |
| C1 - N2         |                    | 128.80 (    | 13) C          | C11 - C12 - C13           |             | 8 74 (15)   |  |
| C = N2          | —п2А<br>— Ц2А      | 116.00      |                | 11 - C12 - C13            | 11          | 0.74(13)    |  |
| $N_2 = C_1$     | —п2А<br>С2         | 123.13 (    | 15) (          | 1 - C13 - C12             | 12          | 21.02 (10)  |  |
| $N_2 = C_1$     |                    | 123.13 (    | 15) C          | $C_1 = C_2 = H_2$         | 12          | 21.00       |  |
| $N_2 = C_1$     |                    | 117.42 (    | 15) C          | -C2 - H2                  | 121.00      |             |  |
| $C_2 - C_1$     |                    | 117.49 (    | 10) C          | 5 C4 H4                   | 12          | 21.00       |  |
| N1 - C3         |                    | 117.49 (    | 1 <i>4</i> ) C | 23—C4—H5                  | 12          | 20.00       |  |
| N1 - C3         |                    | 117.52 (    | 15) C          | стано<br>С. 115<br>С. 115 | 12          | 20.00       |  |
| $C^2 - C^3$     | —C4                | 123.95 (    | 16) C          | 1-C6-H6                   | 11          | 9.00        |  |
| $C_2 = C_3$     | —C5                | 117 53 (    | 10) C          | 5-C6-H6                   | 11          | 9.00        |  |
| C4 - C5         |                    | 120.39 (    | 19) N          | 2-C7-H7                   | 11          | 9.00        |  |
| C1 - C6         | —C5                | 120.59 (    | 16) C          | 2 С7 Н7<br>%—С7—Н7        | 119.00      |             |  |
| N2              |                    | 121.15 (    | 15) C          | 9-C10-H10                 | 119.00      |             |  |
| C7 - C8         |                    | 122.00 (    | 15) C          | 11 - C10 - H10            | 11          | 119.00      |  |
| C7-C8           |                    | 120.11 (    | 15) C          | 11 - C12 - H12            | 11          | 1.00        |  |
| $C_{9}$ $C_{8}$ | —C13               | 118 88 (    | 15) C          | 13-C12-H12                | 12          | 1 00        |  |
| 030             |                    | 120.53 (    | 14)            | 8-C13-H13                 | 12          | 9.00        |  |
| 03-09           |                    | 120.33 (    | 15) C          | 12—C13—H13                | 11          | 9.00        |  |
| 55 67           | 010                | 121.02 (    | ,              | 12 015 1115               | 11          |             |  |
| 01—N1           | C3C2               | -171.10     | (16) C         | 24—C5—C6—C1               | 1.          | 1 (3)       |  |
| 01—N1           | C3C4               | 7.6 (2)     | N              | 2                         | -1          | .9 (3)      |  |

| O2—N1—C3—C2<br>O2—N1—C3—C4      | 8.8 (2)<br>-172.56 (17) | N2—C7—C8—C13<br>C7—C8—C9—O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 177.02 (16)<br>-2.7 (3) |
|---------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| C7—N2—C1—C2                     | -8.0 (3)                | C7—C8—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 177.49 (16)             |
| C7—N2—C1—C6                     | 172.80 (17)             | C13—C8—C9—O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 178.36 (16)             |
| C1—N2—C7—C8                     | 179.59 (16)             | C13—C8—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.5 (2)                |
| N2—C1—C2—C3                     | -177.80 (16)            | C7—C8—C13—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -177.19 (17)            |
| $C_{6} - C_{1} - C_{2} - C_{3}$ | 1.4 (3)                 | C9—C8—C13—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.8 (3)                 |
| N2-C1-C6-C5                     | 1/7.00 (17)             | 03-09-010-011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1/9.76(16)             |
| $C_2 = C_1 = C_0 = C_3$         | -2.2(3)<br>179.08(15)   | $C_{9}$ $C_{10}$ $C_{11}$ $C_{9}$ $C_{10}$ $C_{11}$ $C_{9}$ $C_{10}$ $C_{11}$ $C_{10}$ $C_{11}$ $C_{10}$ $C_{11}$ $C_{10}$ $C_{11}$ $C_{1$ | 0.1(2)<br>-178 67 (16)  |
| C1 - C2 - C3 - C4               | 0.5 (3)                 | C9-C10-C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1 (3)                 |
| N1—C3—C4—C5                     | 179.88 (17)             | O4—C11—C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 178.96 (16)             |
| C2—C3—C4—C5                     | -1.6 (3)                | C10-C11-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.9 (3)                |
| C3—C4—C5—C6                     | 0.7 (3)                 | C11—C12—C13—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.6 (3)                |

Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H···A | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|---------------------------|-------------|-------|--------------|-------------------------|
| N2—H2A···O3               | 0.86        | 1.87  | 2.5716 (19)  | 138                     |
| O4—H4A···O3 <sup>i</sup>  | 0.82        | 1.79  | 2.6100 (17)  | 179                     |
| C2—H2···O2 <sup>ii</sup>  | 0.93        | 2.54  | 3.446 (2)    | 164                     |
| C4—H4···O4 <sup>iii</sup> | 0.93        | 2.54  | 3.268 (2)    | 135                     |
| C7—H7···O2 <sup>ii</sup>  | 0.93        | 2.49  | 3.355 (2)    | 154                     |
| C10—H10…O3 <sup>i</sup>   | 0.93        | 2.56  | 3.226 (2)    | 129                     |
|                           |             |       |              |                         |

Symmetry codes: (i) -*x*+3/2, *y*+1/2, -*z*+1/2; (ii) -*x*+1/2, -*y*+1/2, -*z*; (iii) *x*-1/2, *y*-3/2, *z*.