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Abstract Tumor necrosis factor (TNF) is a master pro-

inflammatory cytokine, and inappropriate TNF signaling is

implicated in the pathology of many inflammatory diseases.

Ligation of TNF to its receptor TNFR1 induces the transient

formation of a primary membrane-bound signaling complex,

known as complex I, that drives expression of pro-survival

genes. Defective complex I activation results in induction of

cell death, in the form of apoptosis or necroptosis. This

switch occurs via internalization of complex I components

and assembly and activation of secondary cytoplasmic death

complexes, respectively known as complex II and necro-

some. In this review, we discuss the crucial regulatory

functions of ubiquitination—a post-translational protein

modification consisting of the covalent attachment of ubiq-

uitin, and multiples thereof, to target proteins—to the various

steps of TNFR1 signaling leading to necroptosis.
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Introduction

Host defense against invading microbes is mediated by the

selective sensing of some of their conserved components

by an array of innate immune receptors that are mainly

expressed by cells of the immune system and barrier cells

that line the outside world. Recognition of these so-called

pathogen-associated molecular patterns (PAMPs) by the

pattern recognition receptors (PRRs) leads to the activation

of signaling pathways [including the mitogen-activated

protein kinase (MAPK) and nuclear factor-jB (NF-jB)
pathways] that collectively drive the production and release

of pro-inflammatory cytokines and chemokines [1]. These

cytokines can modulate the innate immune response by

binding to different plasma membrane receptors, including

members of the tumor necrosis factor receptor superfamily

(TNFR-SF). In addition to their ability to further induce

inflammatory mediators, some TNFR-SF members known

as death receptors (DRs) possess a cytoplasmic death

domain (DD) that allows them to transduce a regulated pro-

death signal resulting in apoptotic or necroptotic death of

the cell [2]. The combination of inflammatory cytokine

production and activation of cell death pathways alerts the

immune system and clears the potentially harmful

microbes from the organism. Although crucial for the

protection of the organism from microbial insult, the

inflammation response needs tight regulation because

inappropriate inflammatory signals and excessive cell

death are at the origin of various pathologies.

Ubiquitination, a post-translational modification of

proteins consisting in the covalent attachment of the small
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8 kDa protein ubiquitin (Ub), and multiples thereof, to

target proteins, plays a crucial role in the regulation of

various aspects of the inflammatory response [3]. Ubiqui-

tination is a dynamic process that is catalyzed by the action

of a three-step enzymatic cascade involving a Ub-activat-

ing enzyme (E1), a Ub-conjugating enzyme (E2) and a Ub-

ligase (E3), and which is negatively regulated by de-

ubiquitinases (DUBs). Ubiquitin is first loaded on the E1 in

an ATP-dependent manner. Next, Ub is discharged from

the E1 and transferred to the E2. The E2 can then bind to an

E3 that mediates the transfer of Ub to a lysine (K) residue

of a substrate via an isopeptide bond. The attachment of a

single moiety of Ub to a target protein is referred to as

mono-ubiquitination. Since Ub itself contains seven lysine

residues (K6, K11, K27, K29, K33, K48 and K63) that can

all serve as acceptor sites for another Ub molecule, ubiq-

uitination can also result in the conjugation of at least

seven different poly-Ub chains to a substrate. An additional

chain, known as the M1-linked poly-Ub chain (also called

linear Ub chain) can be generated via a peptide bond

between the N-terminal methionine (M1) of one Ub to the

C-terminal glycine of another [4–6]. The Linear UBiquitin

chain Assembly Complex (LUBAC) is the only E3 iden-

tified so far capable of exclusively generating these M1-

linked ubiquitin linkages. Because the internal lysines of

Ub are present in different positions on the surface of the

protein, each of the eight possible Ub linkages adopts a

structurally distinct conformation [7]. Proteins harboring

Ub-binding domains (UBDs) specifically recognize these

structurally different Ub linkages, and thereby translate the

Ub code into distinct cellular functions [8]. De-ubiquiti-

nases terminate or modulate the Ub-dependent signal by

removing the Ub moieties from the substrates. Two major

classes of DUBs exist: substrate-specific DUBs and link-

age-specific DUBs [9]. The specificity of the former class

is regulated by substrate recognition and the enzymes that

constitute that group are usually able to cleave any type of

linkage. Most members of the Ub-specific protease (USP)

family are considered substrate-specific DUBs. In contrast,

the other families of DUBs are mainly linkage-specific and

are able to process only few specific types of Ub linkages.

For both DUB types, substrate specificity can be further

regulated by the presence of additional UBDs, the binding

to UBD-containing adaptor proteins and post-translational

modifications [9].

It is evident that the spatiotemporal regulation of the

expression and/or activity of all these different types of Ub-

modulating enzymes tightly controls the intracellular Ub

code and, as a consequence, also the cellular response to a

specific trigger. Indeed, interfering with E3s and DUBs

greatly affects the responses activated downstream of

several innate immune receptors. In this review, we focus

on the TNF signaling pathway and discuss the literature on

the role of ubiquitination in the regulation of TNF-medi-

ated necroptosis, a caspase-independent regulated form of

necrosis. During this cell death process, and in contrast to

apoptosis, the cell and its organelles swell until this process

finally culminates in plasma membrane rupture and cell

death. TNF-mediated necroptosis relies on RIPK1 kinase-

dependent assembly of a cytosolic death complex, known

as the necrosome, whose core components apart from

RIPK1 are RIPK3 and MLKL [10–13]. The necrosome

presumably originates from the dissociation of a primary

plasma membrane-associated signaling complex, called

TNFR1 complex I or TNRF1-SC, which forms within

seconds following engagement of TNFR1 by TNF [14, 15].

It is therefore important to start our review by describing

the role of ubiquitination in the regulation of TNFR1

complex I assembly and function.

Role of poly-ubiquitination in regulating TNFR1
complex I assembly

Binding of TNF to TNFR1 induces the independent

recruitment of the adaptor protein TRADD and the kinase

RIPK1 to the receptor’s DD via homotypic DD interactions

(Fig. 1). Complex I-recruited TRADD serves as platform

for recruitment of TRAF2 and/or TRAF5. The cIAP

interaction motif (CIM) contained within TRAF2 allows

recruitment of two closely related members of the Inhibitor

of Apoptosis Protein (IAP) family, the Ub E3s cIAP1 and

cIAP2 [16, 17]. Following their recruitment, cIAP1/2

ubiquitinate components of complex I, such as RIPK1 and

cIAP1 itself, with K63-, K11- and K48-linked poly-Ub

chains [18–23]. The Ub chains generated by cIAP1/2 in

turn allow the subsequent recruitment of LUBAC, a Ub E3

complex consisting of the central catalytic component

HOIP (RNF31), HOIL-1 (RBCK1) and SHARPIN (SIPL1)

that exclusively generates M1-linked poly-Ub chains [17,

23–26]. LUBAC adds M1-linked Ub chains to components

of complex I, including RIPK1, NEMO, TRADD and

TNFR1 itself [17, 23, 26–28]. The Ub chains placed on

components of complex I by cIAP1/2 and LUBAC serve as

scaffold for recruitment and retention of the TAB 2/3/TAB

1/TAK1 and NEMO/IKKa/IKKb kinase complexes

(Fig. 1). Recruitment of these complexes to the Ub chains

is mediated by the UBDs present in TAB 2/3 and NEMO,

respectively [29–32]. Whereas TAB 2/3 specifically binds

K63-linked poly-Ub chains, NEMO binds to M1-, K63-,

and K11-linked chains, yet with approximately 100-fold

higher affinity to M1-linked over K63- and K11-linked

chains [22, 30, 32–35]. Following activation, TAK1 acti-

vates the downstream MAPKs (JNK, p38 and ERK) and

IKKb by phosphorylation. IKKb in turn phosphorylates

IjBa, which leads to its K48-linked poly-ubiquitination by
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the Skp1-Cullin-F-box (SCF)/b-TRCP E3 complex and

results in proteasomal degradation of IjBa [36–39]. This

liberates the p50/RelA NF-jB dimer from IjBa-imposed

inhibition, and allows p50/RelA to translocate to the

nucleus where it drives expression of NF-jB target genes

(Fig. 1). The Ub-dependent signaling emerging from

complex I is negatively regulated by DUBs that mediate

disassembly of complex I by hydrolyzing the Ub modifi-

cations present in the complex. Some DUBs, such as A20

and Cezanne, are upregulated by TNF-induced NF-jB and

reported to be part of a negative feed-back mechanism

aimed at repressing NF-jB activation [40, 41]. A20 was

initially proposed to repress RIPK1-mediated NF-jB acti-

vation by functioning as a DUB removing the K63-linked

Ub chains from RIPK1, and as an E3 conjugating RIPK1

with K48-linked Ub chains promoting its proteasomal

degradation [41]. Several findings are now questioning the

validity of this model, such as the linkage specificity of its

DUB activity and, more importantly, the fact that mice

harboring mutations affecting A200s DUB or E3 activities

do not develop any signs of inflammation and are grossly

normal [42–45]. Other DUBs, such as CYLD and USP21,

are constitutively expressed and also implicated in regu-

lating TNFR1 signaling [46–49]. It was recently

demonstrated that CYLD is recruited to complex I via

direct binding to HOIP independently of LUBAC activity,

and that A20 directly binds to M1-linked Ub chains in

complex I, therefore requiring the E3 activity of LUBAC

for recruitment [28]. Once recruited, CYLD limits NF-jB
activation by removing K63-linked and M1-linked poly-Ub

chains on several components of complex I, including

RIPK1 [28, 47–50]. Interestingly, CYLD and A20 seem to

have opposing effect on M1-linked poly-Ub chain stability.

Whilst CYLD degrades them, A20 binds to them, thereby

preventing their cleavage and, hence, removal (Fig. 1)

[28]. Although the specific roles of all the individual DUBs

in complex I-dependent signaling are not yet fully under-

stood, the targeted recruitment of individual DUBs to

particular linkage types, together with their specificity in

hydrolyzing specific Ub linkages, likely serves to fine-tune

the precise extent and duration of signaling.

Role of poly-ubiquitination in regulating the two
TNFR1 complex I-dependent cell death
checkpoints

TNF-induced necroptosis is not the default cell death

pathway activated by TNFR1. Indeed, necroptosis only

occurs when caspase-8 activation fails or is inhibited,

indicating that caspase-8-mediated apoptosis actively

represses necroptosis [51–55]. Since any condition that

sensitizes to TNF-induced apoptosis will therefore also

sensitize to TNF-induced necroptosis when caspase-8 is

additionally inhibited, understanding how ubiquitination

regulates caspase-8 activation is therefore of great rele-

vance to comprehend TNF-induced necroptosis.

In most cases, TNFR1 engagement is insufficient to kill

cells but instead results in the ubiquitination-dependent

activation of gene induction through the NF-jB and MAPK

pathways (Fig. 2). However, when the NF-jB-dependent
response is inhibited, such as upon genetic deletion of NF-

jB, expression of a dominant-negative form of IjBa or in

the presence of transcriptional (actinomycin D) or trans-

lational (cycloheximide) inhibitors, cells succumb to

TNFR1 activation by TNF [56, 57]. Under these circum-

stances, the switch from a pro-survival to a pro-death

response involves the formation of a cytoplasmic caspase-

8-activating complex, known as TNFR1 complex II

(Fig. 2) [58, 59]. Complex II assembles when TRADD

dissociates from complex I and engages FADD in the

cytosol [14]. FADD in turn serves as a platform for the

recruitment and activation of caspase-8, resulting in

apoptotic cell death [60]. The transient formation of com-

plex II normally does not result in cell death since complex

I–dependent transcriptional upregulation of pro-survival

genes such as FLIP counteracts death induction from

complex II. FLIP is highly homologous to caspase-8 but

lacks catalytic activity and competes with caspase-8 for

recruitment to FADD in TNF complex II, thereby pre-

venting full caspase-8 activation.

It has now become clear that the NF-jB-dependent
induction of pro-survival genes is not the only cell death

checkpoint regulated by complex I, and that the role of

ubiquitination in preventing TNF-mediated cell death

exceeds canonical NF-jB activation [61]. Indeed, when

ubiquitination events in complex I are perturbed by the

absence of the E3 ligases cIAP1/2 or LUBAC, cells also

bFig. 1 TNFR1 complex I assembly and NF-jB activation. TNF

ligation to trimeric TNFR1 leads to recruitment of TRADD and

RIPK1 (1). TRAF2/5 and cIAP1/2 are then recruited to TRADD (2),

which allows cIAP1/2 to conjugate RIPK1 with Ub chains, including

K63-linked chains (3). The Ub chains added to RIPK1 then allow

further recruitment of the TAK1, IKK and LUBAC complexes via the

respective Ub binding domains of TAB 2/3, NEMO and HOIL/

Sharpin. Once recruited, LUBAC adds M1-linked Ub chains to

several complex I components, including RIPK1 and NEMO. This

leads to the recruitment of additional IKK complexes (4). Activated

TAK1 then activates IKKa/IKKb by phosphorylation (5). IKKb
subsequently phosphorylates IjBa at Ser32 and Ser36 (6) thereby

marking it for K48-linked ubiquitination and subsequent proteasomal

degradation (7). Released from IjBa inhibition, the p50/p65 NF-jB
transcription factor translocates to the nucleus to induce expression of

several pro-survival genes (8). Ubiquitination in TNFR1 complex I is

negatively regulated by LUBAC-recruited CYLD, which removes

both K63- and M1-linked Ub chains from several substrates,

including RIPK1 (9). In contrast, binding of A20 to M1-linked

chains stabilizes them by preventing their degradation (10)
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die after TNF stimulation due to increased formation of

complex II [19, 58, 62–66]. In this case, complex II for-

mation is highly dependent on RIPK1 and its kinase

activity. It is thought that the absence of cIAP1/2 or

LUBAC results in insufficient ubiquitination of RIPK1 in

complex I, which results in RIPK1 promoting the forma-

tion of complex II and cell death. (Fig. 2) [59]. In contrast

with complex II-mediated apoptosis induced by inhibiting

the NF-kB response downstream, which occurs indepen-

dently of RIPK1, the kinase activity of RIPK1 is crucial for

complex II assembly and apoptosis induction in the

absence of cIAP1/2 or LUBAC [58, 67, 68]. Therefore, to

distinguish these two different modes of inducing complex

II, the former is also called complex IIa, and the latter

complex IIb. In addition to apoptosis, deficiency in cIAP1/

2 or LUBAC also sensitizes cells to TNF-induced

necroptosis that is dependent on the kinase activity of

RIPK1 [11, 23, 64, 69, 70]. These findings indicated that

cIAP1/2 and LUBAC negatively regulate the pro-death

function of RIPK1 on top of promoting canonical NF-jB
activation. The Ub chains conjugated to RIPK1 by cIAP1/2

and LUBAC are therefore not only required to activate the

canonical NF-jB pathway but also to repress RIPK1

kinase-dependent death (Fig. 2). This concept is supported

by the fact that cells expressing a form of RIPK1 that is

mutated for its Ub acceptor site (K377R) undergo RIPK1-

dependent death following TNFR1 engagement by TNF

[31, 71]. Further supporting the notion that cIAP1/2

Fig. 2 Regulation of the different TNFR1 cell death checkpoints by

poly-ubiquitination. Left panel cIAP1/2- and LUBAC-mediated

ubiquitination of TNFR1 complex I components activates the IKK

complex. Active IKKa/b then promote cell survival by NF-jB-
dependent upregulation of pro-survival genes that counteract the

activation of the cytosolic apoptosis-inducing complex IIa (TRADD-

FADD-caspase-8). In addition, IKKa/b directly phosphorylate RIPK1

in complex I thereby preventing RIPK1 activation and, as a

consequence, RIPK1-mediated cell death (apoptosis and necroptosis).

Middle panel inhibition of the NF-jB pathway downstream of the

IKK complex, i.e. by an undegradable IjBa (IjBa-SR), the

transcription inhibitor actinomycin D (Act. D) or the translation

inhibitor cycloheximide (CHX), induces complex IIa-dependent

apoptosis. In this scenario, the active IKK complex still prevents

RIPK1 activation and RIPK1-mediated cell death (apoptosis and

necroptosis). Right panel cIAP1/2 or LUBAC deficiency impairs

TNF-induced activation of the IKK complex. As a result, the IKK-

mediated brake on RIPK1 is relieved. Active RIPK1 then promotes

assembly of complex IIb (RIPK1-FADD-caspase-8) resulting in

RIPK1-dependent apoptosis. Inhibition of caspase-8 shifts the cell

death modality from RIPK1-dependent apoptosis to RIPK1-depen-

dent necroptosis, induced by the necrosome (RIPK1/RIPK3/MLKL)
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regulate the pro-death function of RIPK1 directly is the

formation of the ‘ripoptosome’, a RIPK1-dependent cas-

pase-8-activating complex similar to complex II. However,

in contrast to complex II, it forms spontaneously (inde-

pendently from death receptors) when cIAP1/2 are

depleted [72, 73].

The importance of cIAP1/2- and LUBAC-mediated

ubiquitination in preventing uncontrolled RIPK1 activation

and consequent cell death has also been elegantly demon-

strated in a number of genetic mouse models. While the

genetic deletion of the catalytic component of LUBAC,

HOIP, is embryonically lethal at day E10.5, a null mutation

in the Sharpin gene is not lethal but instead results in the

development of a severe multi-organ inflammatory phe-

notype called chronic proliferative dermatitis (cpdm) [64,

74, 75]. These cpdm mice display severe inflammation in

the skin, liver, gut, lung and oesophagus, together with a

loss of Peyer’s patches and splenomegaly [74, 76]. The

inflammatory phenotype of cpdm mice is driven by aber-

rant TNFR1-mediated cell death [23, 65, 77]. Interestingly,

the cpdm phenotype can also be completely prevented by

crossing with RIPK1 kinase-dead knockin mice as well as

with the combination of RIPK3 deficiency and caspase-8

heterozygosity [65, 66]. These genetic studies confirm the

role of LUBAC-mediated ubiquitination in repressing

RIPK1 pro-death function and demonstrate that in the

absence of fully functional LUBAC, the kinase activity of

RIPK1 can both induce apoptosis and necroptosis in vivo.

The role of cIAP1/2 in vivo has been more difficult to study

as the single knock-outs do not show any overt phenotype

whereas the double knock-out, similar to the HOIP-/-

mice, causes embryonic lethality at day E10.5 due to car-

diovascular failure as a consequence of TNFR1-driven yolk

sac endothelial cell death [63, 78, 79]. Dysregulation of

RIPK1 in these knockouts has also been shown genetically

since deletion of RIPK1 slightly delays the lethality of

cIAP1-/- cIAP2-/- animals [63]. However, RIPK1 defi-

ciency on its own causes early postnatal lethality by

uncontrolled caspase-8-mediated apoptosis and RIPK3-

mediated necroptosis [80–82]. It would therefore be

interesting to test whether replacing wild-type RIPK1 by a

kinase-dead RIPK1 via gene knockin could prevent

embryonic lethality of cIAP1/2 or HOIP deficiency as this

would impair RIPK1’s pro-death function whilst keeping

its pro-survival scaffold function intact.

Importantly, CYLD repression was shown to protect

cells from TNF-mediated RIPK1 kinase-dependent apop-

tosis and necroptosis, which additionally supports the

notion that the K63- and M1-linked poly-Ub chains added

to complex I components by cIAP1/2 and LUBAC prevent

RIPK1 from initiating the formation of the cytosolic death

complex II [28, 50, 58, 67, 70]. Apart from functioning as

an inhibitor of the canonical NF-jB pathway, A20 is also

known as a potent inhibitor of TNF-induced apoptosis and

necroptosis, but the mechanism accounting for this func-

tion had remained unclear [69, 83, 84]. The recent finding

that A20 protects M1-linked poly-Ub chains from CYLD-

mediated degradation in complex I now provides a crucial

element in our understanding of the cell-protective function

of A20 [28].

It was initially believed that the Ub chains conjugated to

RIPK1 directly prevent RIPK1 from integrating into

complex IIb or the necrosome. More recent findings also

suggest that not only the Ub chains themselves, but also the

kinases recruited to them control RIPK1 kinase-dependent

death. Indeed, IKKa/IKKb were shown to prevent RIPK1

from integrating into complex IIb through direct phos-

phorylation in complex I, thereby suggesting a model

according to which IKKa/IKKb directly repress RIPK1

kinase activity (Fig. 2) [85]. In accordance with this model,

any conditions affecting IKKa/IKKb activation down-

stream of RIPK1 ubiquitination, such as deficiency in

TAK1, NEMO or IKKa/IKKb, were shown to sensitize

cells to RIPK1 kinase-dependent apoptosis and necroptosis

without affecting RIPK1 ubiquitination in complex I [67,

85–89]. Importantly, this role of IKKa/IKKb was demon-

strated to be independent of NF-jB activation.

Direct control of the necrosome
by poly-ubiquitination

Necroptosis induction was initially reported to occur fol-

lowing recruitment of RIPK3 to a RIPK1/FADD/caspase-8

complex, suggesting that the necrosome originates from an

inactive complex IIb. More recent papers however sug-

gested a model in which an independent RIPK1/RIPK3/

MLKL complex is formed in parallel to complex IIb [12].

The precise relation between complex IIb and the necro-

some is therefore currently unclear and additional work is

required to better define whether they represent two inde-

pendent complexes or variations of the same complex.

As mentioned in the previous section, poly-ubiquitina-

tion plays crucial roles in regulating necroptosis by

allowing complex I assembly and fine-tuning the two

complex-I-dependent cell death check points, namely the

NF-jB-dependent induction of pro-survival factors and the

NF-jB-independent contribution of RIPK1 to the cell

demise. Recent studies suggest that poly-ubiquitination

also plays a regulatory role at the level of the cell death-

inducing complex itself (Fig. 3). Indeed, TNFR1-induced

complex IIb/necrosome-associated components have been

reported to show post-translational modifications reminis-

cent of ubiquitination [67, 90–93]. Necrosome-associated

RIPK3 is conjugated with K63-linked poly Ub chains [91],

whereas RIPK1 has been reported to contain both M1- and
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K63-linked Ub chains [90, 93]. It is currently unclear

whether these ubiquitin chains regulate the cell death

outcome in a positive or negative manner, and whether

they additionally regulate a non-cell death signaling path-

way emanating from this complex. It appears that only a

fraction of the complex IIb/necrosome-associated RIPK1

(and RIPK3) is ubiquitinated, whereas all of the RIPK1

associated with TNFR1 complex I is ubiquitinated [67].

This difference in the amount of ubiquitinated RIPK1

molecules in both complexes may question the importance

of these post-translational modifications in the regulation

of the cell death complex itself. Indeed, it was demon-

strated that HOIP knockdown partially affects RIPK1

ubiquitination in the necrosome, while not affecting

necroptotic cell death significantly [93]. The identity of the

E3s ubiquitinating the different components of the

necrosome are still under debate, and it is not entirely clear

whether the poly-Ub chains conjugated to RIPK1 originate

from its ubiquitination in TNFR1 complex I. RIPK1

ubiquitination in the necrosome was reported to occur

independently of cIAP1/2 and only partially depending on

HOIP, which would suggest implication of additional E3s

[93]. In vitro studies have shown that cIAP1/2 are able to

add different types of poly-Ub chains to RIPK3, yet the

relevance of this observation for necroptotic signaling is

not established [94]. TRAF2 was also shown to bind to

MLKL in cells and was proposed to suppress TNF-induced

necroptosis by preventing MLKL to exert its pro-death

function [95]. Nevertheless, although MLKL was reported

to be ubiquitinated in cells, the suppressive function of

TRAF2 appears to occur independently of its supposed

activity as a Ub E3 [95, 96].

Fig. 3 Direct control of the necrosome by poly-ubiquitination.

Activated RIPK3 in the necrosome induces MLKL activation by

phosphorylation. Active MLKL then translocates to phosphatidyl

inositol phosphates in the plasma membrane. Plasma-membrane

associated MLKL oligomerizes into high-molecular weight com-

plexes and dysregulates the cellular ion homeostasis resulting in cell

swelling and plasma membrane rupture. Although the functional

relevance is not entirely clear at this time, RIPK1 and RIPK3 are

reported to be poly-ubiquitinated in the necrosome, presumably

independently of ubiquitination in TNFR1 complex I. RIPK1 is

associated with both M1-linked and K63-linked ubiquitin chains

while only K63-linked Ub chains have been described for RIPK3.

LUBAC and cIAP1/2 have been involved in the conjugation of these

Ub chains. From the DUB point of view, CYLD is reported to

promote necroptosis induction by removing the K63-linked Ub chains

on RIPK1. In contrast, A20 prevents necroptosis induction by

removing the K63-linked Ub chains on RIPK3
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Poly-ubiquitination at the level of the necrosome was

also demonstrated in studies making use of cells depleted

of the DUBs CYLD and A20. CYLD deficiency greatly

protects against TNF-induced necroptosis and this protec-

tion correlates with an increase in RIPK1 poly-

ubiquitination [28, 53, 70, 90]. Indeed, CYLD can hydro-

lyze M1- and K63-linked Ub chains conjugated to RIPK1

[28, 47–50]. Interestingly, Chan and colleagues showed

that CYLD-deficiency also affects ubiquitination of RIPK1

in the necrosome, which implies a role of CYLD in arming

RIPK1 in both, complex I and the necrosome [90]. In

contrast to CYLD, A20-deficient cells are strongly sensi-

tized to TNF-induced necroptosis and a recent study

associates this sensitization to increased RIPK3 poly-

ubiquitination in the necrosome [91]. In support of this

interpretation, the authors showed that mutation of Lys5 in

RIPK3 partially inhibited necrosome-associated RIPK3

poly-ubiquitination and TNF-induced necroptotic cell

death [91]. It is also of interest to note that absence of A20

does not only increase the amount of poly-ubiquitinated,

but also of non-ubiquitinated, RIPK3 in the necrosome.

This may be the result of an increased stability of the

necrosome in presence of poly-ubiquitinated RIPK3, or

reflective of the more upstream role of A20 in the pathway.

Indeed, A20 protects M1-linked poly-Ub chains in com-

plex I and thereby prevents RIPK1 from initiating the

formation of the cytosolic death-inducing complex II [28].

It is intriguing to note that ubiquitination of RIPK1 and

RIPK3 in the necrosome is reported to have opposite effect

on necroptosis induction. Those post-translational modifi-

cations would repress RIPK1 but activate RIPK3. Future

work on the identification of the type of Ub chains con-

jugated to each protein is clearly needed to provide a

molecular basis for the better understanding of these

apparent opposing consequences. Also, uncoupling com-

plex I from necrosome assembly may help evaluating the

respective contribution of the different E3s and DUBs to

the two different steps of the pathway. It might, for

example, be interesting to study how the presence or

absence of these enzymes affects necroptosis induced by

forced homo- and heterodimerization of RIPK1 and

RIPK3.

Concluding remarks

In recent years, great advances have been made in the

understanding of the molecular mechanisms of TNFR1-

induced necroptosis. However, the exact consequences,

functions and interconnections between the diverse post-

translational modifications regulating this signaling path-

way still remain to be investigated in more detail. Although

ubiquitination has clearly emerged as a major regulatory

mechanism, the identity of all the substrates, the exact

linkage composition of the different poly-Ub chains, the

precise roles of the diverse Ub-related enzymes and their

specificity for complex I vs. complex II/necrosome still

require better understanding. Most of the knowledge

acquired over the past years has been generated by the use

of cutting-edge biochemistry, often combined with

sophisticated in- vivo models employing component-defi-

cient mice and/or cells. It is now important to understand

how the activities of the ubiquitination-modifying enzymes

are regulated under physiological conditions and how this

is deregulated in pathological conditions. It is for example

known that binding of TNF to TNFR2 induces degradation

of a pool of TRAF2/cIAP1/cIAP2 that consequently affects

ubiquitination in TNFR1 complex I and switches the

TNFR1-mediated response from survival to death [97]. Co-

stimulation with other members of the TNFR superfamily

can exert similar effects. What are, however, the conditions

that regulate other ubiquitination-modifying enzymes? A

possible hint comes from the fact that necroptosis is often

associated with the generation of ROS and that the activity

of A20 and other OTU deubiquitinases was shown to be

regulated by reversible oxidation [98]. Also, viral infection

can trigger necroptosis and some viruses have been

reported to interfere with the enzymatic activities of

endogenous E3s and DUBs [99, 100].

RIPK1 plays a pivotal role in determining the cellular

response to TNF. While it functions as a central signaling

platform in the TNFR1 complex I to drive NF-jB- and

MAPK-mediated cell survival and inflammation, it also

plays a crucial role in the cytosolic complex II and, con-

sequently, in the induction of cell death. In accordance,

ubiquitination of RIPK1 in both complexes is a key event

in regulating the TNFR1 signaling pathway to necroptosis.

Nevertheless, necroptosis induced by receptors other than

TNFR1, such as TLR3 and DAI, does not require RIPK1.

Downstream of these receptors, the RHIM domain required

to recruit and activate RIPK3 is respectively provided by

TRIF or DAI itself [101–104]. Studying the role of E3s and

such as cIAP1/2 and LUBAC as well as DUBs such as A20

and CYLD in the ubiquitination-dependent regulation of

necroptosis downstream of these receptors are therefore

interesting perspectives.
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