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Abstract For the Netherlands, accurate water level forecast-
ing in the coastal region is crucial, since large areas of the land
lie below sea level. During storm surges, detailed and timely
water level forecasts provided by an operational storm surge
forecasting system are necessary to support, for example, the
decision to close the movable storm surge barriers in the
Eastern Scheldt and the Rotterdam Waterway. In the past
years, a new generation operational tide-surge model (Dutch
Continental Shelf Model version 6) has been developed cov-
ering the northwest European continental shelf. In a previous
study, a large effort has been put in representing relevant phys-
ical phenomena in this process model as well as reducing
parameter uncertainty over a wide area. While this has result-
ed in very accurate water level representation (root-mean-
square error (RMSE) ~7-8 cm), during severe storm surges,
the errors in the meteorological model forcing are generally
non-negligible and can cause forecast errors of several
decimetres. By integrating operationally available observa-
tional data in the forecast model by means of real-time data
assimilation, the errors in the meteorological forcing are
prevented from propagating to the hydrodynamic tide-surge
model forecasts. This paper discusses the development of a
computationally efficient steady-state Kalman filter to
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enhance the predictive quality for the shorter lead times by
improving the system state at the start of the forecast. Besides
evaluating the model quality against shelf-wide tide gauge
observations for a year-long hindcast simulation, the predic-
tive value of the Kalman filter is determined by comparing the
forecast quality for various lead time intervals against the
model without a steady-state Kalman filter. This shows that,
even though the process model has a water level representa-
tion that is substantially better than that of other comparable
operational models of this scale, substantial improvements in
predictive quality in the first few hours are possible in an
actual operational setting.

Keywords Storm surge forecasting - Tide-surge modelling -
Data assimilation - Ensemble Kalman filter - Steady-state
Kalman filter

1 Introduction

Storm surges in the North Sea present a continuous threat to its
coastal areas. During storm surges, detailed and timely water
level forecasts provided by an operational storm surge fore-
casting system are necessary to issue warnings in case of high
water threats. This can only lead to effective precautions if
done with at least a few hours lead time. The importance of
providing precise and reliable warnings is only enhanced by
the presence of movable barriers such as the Thames Barrier,
the Eastern Scheldt Barrier and the Maeslant Barrier in the
Rotterdam Waterway, which require the decision to close to
be taken in advance and only when strictly necessary.

The countries around the North Sea have their own national
storm surge forecasting service with numerical models that
come in a range of resolutions and spatial extents. In the
Netherlands, the development of numerical tide-surge models
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for the northwest European shelf started in the 1980s. In
Verlaan et al. (2005), the main phases of the development
and operational set-up of the Dutch Continental Shelf Model
(DCSM) are described, starting with the emergence of the first
numerical hydrodynamic models for surge forecasting at the
beginning of the 1980s. Since the mid-1980s, these forecasts
are based on a numerical hydrodynamic model called the
DCSM version 5. For the development of DCSM version 5,
see Verboom et al. (1992), Philippart et al. (1998), Flather
(2000) and Verlaan et al. (2005). This model uses forecasts
of the meteorological high-resolution limited area model
(HiRLAM) as input. Since the 1980s, DCSM has been the
main hydrodynamic model for storm surge forecasting in the
Netherlands. The model has been through many rounds of
improvements since. In the early 1990s, a Kalman filter was
added to this system to improve the accuracy of the forecasts
further by assimilating measurements from a network of tide
gauges along the UK and Dutch coast (Verlaan et al. 2005;
Philippart et al. 1998; Heemink 1986, 1990; Heemink and
Kloosterhuis 1990).

After the November 2006 All Saints storm, it was decided
that further improvements to the then operational version of
the DCSM model were required. However, with a limited
spatial resolution of 1°/12° by 1°/8° and with doubts about
the quality of the model bathymetry at the time, further cali-
bration based on the existing schematization was assumed not
to be worthwhile (Verlaan et al. 2005). Instead, a decision was
made to develop a completely redesigned operational model,
DCSM version 6, as part of a more comprehensive develop-
ment to upgrade the operational forecasting framework for the
North Sea. In 2012, the new generation model (Zijl et al.
2013) became the preferred operational model for Dutch
coastal water level forecasting.

Despite the huge improvements in water level representa-
tion achieved with the new model, forecast will always be
subject to uncertainty, caused by errors in the boundary or
surface forcing, uncertainty in model parameters and poorly
described or neglected physical processes in the system equa-
tions as well as mathematical approximations (Canizares et al.
2001). Many of these potential sources of error can be and
have been addressed during development of the DCSM ver-
sion 6 model, aided by the use of parameter estimation tech-
niques to decrease uncertainty in time-independent parameters
(Zijl et al. 2013). Since this has substantially improved the
accuracy of the tide representation and, through non-linear
tide-surge interaction, also the surge representation, the main
remaining source of errors is the inaccuracy in the meteoro-
logical forcing, especially during storm surge conditions. This
is due to errors in the parameters forecasted by the meteoro-
logical model as well as uncertainty in the parameterization of
the complex processes governing the exchange of momentum
between atmosphere and water (WMO 2011). Without a suit-
able real-time data assimilation procedure, errors in the
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meteorological forcing will inevitably be propagated to the
surge prediction. This can be prevented by integrating obser-
vational data, e.g. tide gauge observations, into the hydrody-
namic forecast model by means of real-time data assimilation.
Since the North Sea is one of the most intensively monitored
seas in the world, water level observations describing the state
of the system are readily available, also in near real time.

The assimilation of available observations into a real-time
operational numerical model leads to a more realistic estimate
of the initial state of the system at the start of the forecast. By
updating the system state in the model, the errors are
prevented from propagating further, leading to more accurate
forecast as the forecasted surge wave is, to some extent, de-
pendent on its initial state. Likewise, the meteorological
models used to drive storm surge models usually incorporate
observations through data assimilations. Still, by the time the
assimilated meteorological forecasts are available, which may
take a couple of hours, many new measurements describing
the system state have been obtained, which can then be used to
assimilate the storm surge model.

This paper aims to show the improved forecasting skill of a
dynamical model, by adopting an adequate data assimilation
procedure based on a tide gauge observational network around
the North Sea basin. While data assimilation of observed wa-
ter levels is commonly applied in storm surge modelling
(Verboom et al. 1992; Mouthaan et al. 1994; Gerritsen et al.
1995; Philippart et al. 1998; Canizares et al. 2001) and, as a
result, it is known that the assimilation of observational data
into real-time operational models is a successful approach to
improving forecasts, a key addition to the existing literature is
the completeness of the development presented here, charac-
terized by the following aspects.

1.1 Use of accurate, operational models

Most published material on real-time data assimilation
applied to storm surge forecasting systems concern proto-
types (e.g. Lionello et al. 2006; Canizares et al. 2001; Yu
2012; Karri et al. 2014) instead of real-life (pre-) opera-
tional systems. In Yu (2012), the applied process models
have a resolution that is modest compared to other models
proposed for the same area. Presumably, this affects the
accuracy of the model, giving more scope for the data
assimilation to enhance the results. In contrast, the pro-
cess model applied here has a high resolution compared to
other applications of this scale. In addition, the non-
assimilated model has been through rounds of rigorous
parameter optimization to reduce uncertainty in time-
independent parameters (Zijl et al. 2013). While this has
yielded superior accuracy of the non-assimilated model, it
raises the question whether further improvements with
real-time data assimilation are still possible.
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In many publications (e.g. Canizares et al. 2001; Lionello
et al. 20006), the impact of the data assimilation scheme is
assessed in hindcast mode only, with observations feeding into
the assimilation scheme available throughout the computa-
tion. In the present paper, we supplement the impact on
hindcast quality by an assessment of the impact on the fore-
casting skill, for various lead times.

1.2 Thorough assessment of effectiveness and applicability
in a real-life situation

To assess the effectiveness of a data assimilation scheme, we
use actual tide gauge observations to assimilate and compare
against, instead applying the commonly used twin experiment
method (Karri et al. 2014; Butler et al. 2012; Peng and Xie
2006), where real observations are replaced with synthetic
observations generated by running a perturbed non-
assimilated model. Our approach gives an essentially more
realistic picture of the effectiveness and applicability of the
data assimilation approach in a real-life situation.

1.3 Complete set-up

Our set-up is complete in the sense that the system uses many
techniques of practical significance such as regionalization or
localization (identified as a first direction of improvement in
Karri et al. 2014), where the spatial influence of assimilated
observations is gradually limited, in order to avoid spurious
oscillations far away from an observation location. Finally,
WMO (2011) notes that the main challenge for local and re-
gional applications is to be accurate while practicable, ensur-
ing that useful forecasts reach the public in a timely fashion.
Besides using a time-efficient data assimilation scheme, our
set-up includes parallelization of the code to enhance the
speed with which forecasts become available.

The data assimilation schemes used in this study are de-
scribed in Section 2, while the study domain and the set-up of
the hydrodynamic model and monitoring network are de-
scribed in Section 3. The assessment of the effectiveness of
the real-time data assimilation is described in Section 4. This
includes the model validation against shelf-wide tide gauge
measurements, addressing the improvements in water level
representation both in space (away from the assimilation sta-
tions) and in time (i.e. the forecast accuracy). The results are
summarized and discussed in Section 5.

2 Data assimilation schemes

2.1 The data assimilation methods

The data assimilation method used in this work is based
on the Kalman filter (Kalman 1960). It provides optimal

state estimates by sequentially combining model and
observations and also by taking into account the
uncertainties of the model and observations. A complete
description of the Kalman filter can be found in Jazwinski
(1970) and Maybeck (1979). For linear systems, the
Kalman filter provides optimal solution in various senses.
Difficulties in implementing a Kalman filter are the line-
arity assumption and the dimensionality problem. The en-
semble Kalman filter (EnKF) provides a solution for these
difficulties and can be implemented relatively easily.

2.1.1 Ensemble Kalman filter

EnKF (Evensen 2003) approximates the Kalman filter equa-
tions using a Monte Carlo approach in representing the uncer-
tainties. In the forecast step, a forecast state x} of ensemble
member 7 is generated by propagating the model state in time
while being perturbed by a realization of the model error

wil(ty).
x] (tr) = M(t)x (1) + wilte), (1)

and the forecast mean x/(;) is approximated by the ensemble
mean ¥/ (;)

N

S 1 r
X (1) = > ) @
where N is the ensemble size. The covariance is approximated

by
P/ ()=l (1)L (1) (3)
where I/(z;) is defined as

f

L(w) = [ (0)F (@) )F ()| @)

1
VN-1

Here, it should be noted that model operator M(z;) in
Eq. (1) can be non-linear and it is not necessary in practice

to compute P/(;).
In the analysis step, each ensemble member is updated by

X (0x) = ¥ (1) + Ko (1) (3 () ~H (0] (1) +vilw) ) ()

where v,(#;) is a realization of the observational error. The
analysis state is approximated by the analysis ensemble mean

1

N i=1

() =Y (n) (6)

and the Kalman gain K(#;) is computed by

K.(tr) = L' (i) (6) H' (1) (H (6) L (1)L (6) H' (1) + R(1r))~ (7)
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Inherent in any ensemble-based method is the problem of
spurious correlation due to a limited ensemble size. This prob-
lem may lead to filter divergence. A common way to reduce
this problem in EnKF is the use of a distance-dependent co-
variance localization (Houtekamer and Mitchell 2001; Hamill
etal. 2001). Covariance localization cuts off longer-range cor-
relation in the error covariance at a specified distance and is
formally performed by applying a Schur product between the
forecast error covariance and the correlation function with a
local support. Local support here means that the function is
non-zero only in a small local region and zero elsewhere. In
this study, however, the localization is performed directly on
the Kalman gain (e.g. Zhang and Oliver 2011)

K(y) = PD(Lf(tk)Lf/(tk)H'(lk)(H(’k)Lf(fk)Lf/(fk)H/(fk) +R(tk))7l>
(8)

where each column of p is the compactly supported fifth order
piecewise rational function of Gaspari and Cohn (1999) and
(A4 o B) denotes the Schur product of two matrices, 4 and B, of
identical dimension, i.e. (4oB);;=(A), (B); .

EnKF is simple to implement and can be used for non-
linear models but requires a considerable amount of compu-
tational time. For illustration, with 100 ensemble members on
our operational machines (a CPU with 12 cores), a 2-week
simulation time costs about 2 weeks of actual time.

It should be noted here that in our work, the model state
vector x’ consists of water levels and flow velocities in all
model grid cells. Moreover, the observational error is assumed
to be independent in time and space. The observational error
covariance matrix R(#) is therefore diagonal.

2.1.2 Steady-state Kalman filter

It is known that for a stable and time-invariant system, that is,
a system with constant model parameters and error statistics
and fixed observing network, the Kalman gain K(#;) will con-
verge to a limiting value K (Anderson and Moore 1979)

lim K (1) = K 9)

In this situation, it is not necessary anymore to propagate
the forecast covariance nor to recompute the Kalman gain.
The forecast step is identical with the original Kalman filter,
which is actually the state propagation by the original deter-
ministic model. The analysis step now simply reads

X)) =x" (1) + K(y”(tk)—fo(tk)) (10)

Once the steady-state Kalman gain is obtained, one only
needs to implement the analysis in Eq. (10). A steady-state
Kalman filter (SSKF) adds, therefore, only a little extra com-
putational cost to the cost of the state propagation by the
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original deterministic model. Hence, it is computationally at-
tractive for operational purposes. SSKF has also been proven
efficient in many applications (e.g. Heemink 1990; Canizares
etal. 2001; Verlaan et al. 2005; Serensen et al. 2006; El Serafy
and Mynett 2008; Karri et al. 2014). Successful application of
SSKF requires (i) a stationary observational network, (ii) a
nearly linear process model and (iii) a stationary system error
covariance.

Various techniques have been proposed for computing a
steady-state Kalman gain (Mehra 1970; Mehra 1972; Kailath
1973; Rogers 1988; Sumihar et al. 2008). In this study, we use
the one introduced by El Serafy and Mynett (2008), which
computes a steady-state Kalman gain by averaging a series
of Kalman gains computed using an EnKF (EnSSKF).

In short, the procedure for computing the steady-state
Kalman gain is as follows:

a) Run an EnKF over a certain period, complete with the
forecast-analysis cycles, where all observations are assim-
ilated sequentially in time.

b) Store the Kalman gains with a certain time interval.

c) Average the Kalman gains over time. In principle, for
stable time-invariant systems, the Kalman gain will be-
come constant if the ensemble is infinitely large.
However, in practice, the ensemble size is always limited
and the estimate of the error covariance, hence the
Kalman gain, suffers from sampling error. Averaging the
Kalman gain over time is necessary to reduce the sam-
pling error.

d) Use the averaged gain as a steady-state Kalman gain.

Note that in our case, it is necessary to use covariance
localization in running the EnKF. Without localization, the
filter became divergent and so the model became unstable.

2.2 OpenDA data assimilation toolbox

Data assimilation experiments in this study are performed
using the open source data assimilation toolbox OpenDA.
OpenDA is a generic framework for parameter calibration
and data assimilation applications (El Serafy et al. 2007; van
Velzen and Segers 2010). It makes use of the fact that it is
possible, and convenient, to separate the code of data assimi-
lation methods from that of the forecast models. Within this
framework, it is possible to try out various algorithms for a
given model, without any extensive programming. Various
data assimilation methods have been available in OpenDA.
It has been successfully applied, for example, for data assim-
ilation of currents and salinity profiles (El Serafy et al. 2007),
flood forecasting (Weerts et al. 2010), and forecasting of non-
tidal water level and residual currents (Babovic et al. 2011;
Wang et al. 2011; Karri et al. 2014; Zijl et al. 2013). Both
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steady-state KF and EnKF, with localizations, are available in
OpenDA and used in this study.

To use the data assimilation methods available in OpenDA,
one only needs to program a coupling between OpenDA and
the process model. Various types of coupling are possible
ranging from in-memory coupling to a black box wrapper
where communication is achieved through model input and
output files. In this study, the in-memory coupling with the
fast native routines of OpenDA is used in combination with
parallel computing to speed up the computation.

3 Experiment set-up
3.1 The Dutch Continental Shelf Model (version 6)

The tide-surge model we use in our data assimilation experi-
ments is the Dutch Continental Shelf Model version 6, which
was developed by Zijl et al. (2013) as part of a comprehensive
study to improve water level forecasting in Dutch coastal wa-
ters. This hydrodynamic model covers the northwest
European continental shelf, specifically the area between 15°
W to 13° E and 43° N to 64° N (Fig. 1). The spherical grid,
specified in geographical coordinates (WGS84), has a uni-
form cell size of 1°/40° in east—west direction and 1°/60° in
north—south direction, which corresponds to a grid cell size of
about 1 x 1 nautical miles and yields ~10° computational cells.

At the northern, western and southern sides of the model
domain, open water level boundaries are defined. The tidal
water levels at the open boundaries are specified in the fre-
quency domain; i.e. the amplitudes and phases of 22 harmonic
constituents are specified.

While wind set-up at the open boundary can safely be
neglected because of the deep water locally (except near the
shoreline), the (non-tidal) effect of local pressure will be sig-
nificant. The impact of this is approximated with an inverse
barometer correction (IBC; Wunsch and Stammer 1997),
which is added to the tidal water levels prescribed at the open
boundaries.

For meteorological surface forcing of the model, the KNMI
provided time- and space-varying wind speed (at 10 m in
height) and air pressure at Mean Sea Level (MSL) from the
numerical weather prediction (NWP) high-resolution limited
area model (HIRLAM). The wind stress at the surface, asso-
ciated with the air-sea momentum flux, depends on the square
of the local U10 wind speed and the wind drag coefficient,
which is a measure of the surface roughness.

To translate wind speed to surface stresses, the local wind
speed-dependent wind drag coefficient is calculated using the
Charnock formulation (Charnock 1955). The empirically de-
rived dimensionless Charnock coefficient has been set to a
constant value of 0.025, which corresponds to the value used
in the HIRLAM meteorological model.

3.1.1 Software framework

The non-linear forecast model is developed as an application
of the WAQUA software package, which solves the depth-
integrated shallow water equations for hydrodynamic model-
ling of free-surface flows (Leendertse 1967; Stelling 1984).
As required to model non-linear surge-tide interaction,
WAQUA includes the non-linear bottom friction and advec-
tion terms as well as a robust drying and flooding algorithm.
With approximately 10® computational cells and a numerical
time step of 120 s, it takes about 2 min to compute 1 day on
five Intel Core 17 (quad core) 3.4 MHz CPUs. This computa-
tional efficiency makes the model well applicable to opera-
tional forecasting, where timely delivery of forecasts is vital.

3.1.2 Parameter optimization

Even though Zijl et al. (2013) show excellent agreement be-
tween predicted water levels and shelf-wide in situ and space-
borne measurements, the version of the model used here has
undergone additional parameter optimization to reduce uncer-
tainty in model parameters governing (tidal) wave propaga-
tion and dissipation (bottom friction coefficient and bathyme-
try). The experiment set-up was similar to that of Zijl et al.
(2013), but now covering the entire calendar year 2007, in-
stead of 4 months within this period. The additional length is
significant as tidal amplitudes and phases cannot be assumed
stationary in shallow waters due to non-linear interactions
between the tide and surge.

With the tide representation optimized, our strategy is to
subsequently focus on improving the surge representation by
reducing errors in the wind forcing through a real-time data
assimilation approach.

3.2 Observation network

The improvement in water level forecasting skill that can be
obtained with a Kalman filter is, to a large extent, dependent
on the observational network applied. A careful selection of
observation locations is important as in past applications
(Verlaan et al. 2005), and not all observations contributed to
an improved forecast quality. For this application, the first
consideration in the selection of observation stations was the
continued, real-time availability of tide gauge measurements.
In the past, this significantly restricted the choice of stations
(Verlaan et al. 2005), but nowadays, many more tide gauge
observations have become available for real-time use.

A second consideration had to do with an understanding of
the North Sea system behaviour as, in general, the dynamics
of the wave propagation within a basin determine the potential
benefit of data assimilation for a certain location. It is well
known that as the main M, tide from the deep Atlantic
Ocean enters the northwest European shelf, it propagates
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Fig. 1 DCSM version 6 model : '
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around the north of Scotland, entering the semi-enclosed
North Sea proper. From there, it travels in anti-clockwise di-
rection down the eastern British coast, towards the
Netherlands and further (Otto et al. 1990; Huthnance 1991).

While storm surges are not freely propagating waves, since
they react to local wind stress and atmospheric pressure gra-
dients, at least part of the storm surge can be considered a
Kelvin wave, travelling in roughly the same direction as the
tide (Huthnance 1991). By having a good real-time observa-
tional coverage of the progressing surge wave in the upstream
part of its trajectory, data assimilation can improve storm
surge forecasting with sufficient lead time.

Similar to other applications for the Dutch coast (Verlaan
et al. 2005), this led to a selection of tide gauge stations along
the Dutch coast, Belgian and eastern UK coast (cf. Fig. 2,
Table 1).

The time it takes a surge wave to travel from an assim-
ilation location to a forecast location (i.e. dependent on
distance and propagation speed) would then define the
lead time an observation location could provide. The fur-
ther away a station, the more potential is the lead time to
increase but also the more the surge is generated between
the observation location and the area of interest. Along
the same lines, while stations close to the areas of interest
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have great potential to improve the surge representation,
the short travel time would reduce the lead time within
which the beneficial impact of these stations would be
felt. At some point, the lead time becomes shorter than
the processing time required to produce and disseminate a
forecast, or shorter than the time between successive runs.
For these reasons, stations inside estuaries have been ex-
cluded from the observational network. Furthermore, to
prevent a negative impact on forecasting skill, stations
in areas dominated by local processes not well resolved
on the grid have also been excluded. Examples of these
are tide gauge stations such as Immingham, Sheerness and
Delfzijl, which are located in or close to shallow areas
with a relatively variable bathymetry and geometry in re-
lation to the model resolution. In the deterministic model,
this results in the difficulty of reproducing higher har-
monics properly, which have large amplitudes there, and
consequently affects the representation of the non-linear
interaction with the surge (Zijl et al. 2013).

Based on the above considerations, a total of 32 assimila-
tion stations have eventually been selected. This is much more
than the eight stations that were used in the previous genera-
tion Kalman filter for Dutch storm surge forecasting (Verlaan
et al. 2005) and creates enhanced redundancy. Consequently,



Ocean Dynamics (2015) 65:1699-1716

1705

625

Northing [°]
Northing [°]

47.5

-0 75 5 25 0 25 5 75 10 1

Easting [°]

2 25 3 35 4 45 5 55 6 65 7 15
Easting [°]

Fig.2 Spatial distribution of the tide gauge stations included in the Kalman filter observational network. The numbers refer to the station names listed in

Table 1

the dependency on specific assimilation stations is reduced,
especially since the new Kalman filter is less sensitive to gaps
in the observational data.

3.2.1 Ensemble-based observation sensitivity

In principle, it is possible to optimize the observational net-
work with data denial experiments. In these experiments, the
impact of an observation location on forecast quality can be
obtained by comparing the forecast skill of two assimilation
computations, one including and the other excluding this sta-
tion. The drawback of this is that it requires a lot of time, since
with the potential availability of many tide gauge observations,
many time-consuming experiments have to be performed.
Another possibility is to use an ensemble-based observation
sensitivity (Liu and Kalnay 2008; Li et al. 2010), a technique
to estimate the impact of assimilated observations to the fore-
cast accuracy. In this study, a variant of this technique is used
for estimating the observation impact. This technique requires
time series of observations and, crucially, only unassimilated
hindcast model residuals (Sumihar and Verlaan 2010). In this
technique, forecast accuracy J is defined as a quadratic func-
tion of the observation minus the model differences

J(te) = (v (te)—Hx! (1)) R (0" (1) —HX (1))

The technique estimates observation impact AJ that is de-
fined as the difference between model accuracy with and with-
out assimilating individual or group of stations. Hence, nega-
tive AJ means that data assimilation is expected to improve
the model accuracy. In this work, since the main goal is to
have accurate water level forecasts along the Dutch coasts, the
observation impact is evaluated over ten validation stations
that cover approximately the entire Dutch coasts.

In Fig. 3, an example of the impact of observations on the
accuracy at a selection of stations along the Dutch coast is
presented. As expected from the Kelvin wave behaviour of
the surge wave discussed above, results show that assimilating
nearby stations gives immediate impact on the forecast accu-
racy while assimilating stations further upstream improves the
accuracy at larger forecast lead times. This analysis
strengthens the assumption that the Kelvin wave behaviour
of the surge and the time it takes to travel towards a forecast
location determine the lead time with which the impact of the
assimilation can be expected to occur.

3.2.2 Pre-processing of Kalman filter observations

The aim of the Kalman filter is primarily to improve surge
forecasts. The assumption is that the errors in the modelled
surge are meanly caused by errors in the wind stress and pres-
sure gradients applied to the numerical model. However, the
modelled water levels that are assimilated also contain tide
errors, which in most applications for the northwest
European shelf are much larger than the surge error.
Therefore, in conventional operational systems, the surge
component from numerical model simulations is used while
the harmonically predicted tide, accurately known from har-
monic analysis of tide gauge measurements, is then added to
predict the full water level signal at the tide gauge locations
(Flather 2000). To prevent the Kalman filter mainly correcting
errors in the modelled astronomical tide, which due to the
astronomical correction is not used anyway, before feeding
the observations to the Kalman filter, the tide can be adjusted
by subtracting the harmonically analyzed tide and adding the
astronomical tide as calculated by the model without meteo-
rological forcing. This pre-processing step is applied to the
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Table 1 Names of the

tide gauge stations # Station name
included in the Kalman
filter observational 1 North Cormorant
network 2 Wick
3 Aberdeen
4 Leith
5 North Shields
6 Whitby
7 Cromer
8 Lowestoft
9 Dover
10 Westhinder
11 Oostende
12 Zeebrugge
13 Cadzand
14 Vlissingen
15 Westkapelle
16 Roompot Buiten
17 Europlatform
18 Brouwershavense Gat 08
19 Lichteiland Goeree
20 Hoek van Holland
21 Scheveningen
22 IJmuiden Buitenhaven
23 K13a platform
24 Den Helder
25 Oudeschild
26 Vlielandhaven
27 Terschelling Noordzee
28 Wierumergronden
29 Huibertgat
30 Eemshaven
31 Newlyn
32 Newhaven

The station numbers correspond to the lo-
cations indicated in Fig. 2

observations fed to the Kalman filter of the previous genera-
tion DCSM version 5 Kalman filter (Gerritsen et al. 1995).

Zijl et al. (2013) claim that the deterministic model used
here is the first application on this scale in which the tidal
representation is such that astronomical correction no lon-
ger improves the accuracy of the total water level represen-
tation and where, consequently, the straightforward direct
forecasting and assimilation of total water levels (instead
of surge elevation) is better. For the Kalman filter applica-
tion presented here that implies that the use of ‘harmoni-
cally adjusted observations’ as described above is no lon-
ger necessary. This reduces the complexity of the opera-
tional process, removes the need for a tide only simulation
and eases the interpretation of results.

@ Springer

The only correction that is still made to the assimilated
observations is a bias correction. Since baroclinic pressure
gradients inside the model domain as well as steric effects
affecting the open boundary are not taken into account, the
model cannot be expected to accurately represent the long-
term mean water level. To prevent the Kalman filter from
correcting for this, the bias between measured and computed
water levels determined over a multi-year period is first re-
moved by adjusting the Kalman filter observations and, after
the assimilation step, by adjusting the model predictions.

3.3 Kalman filter settings

Here, we have taken a pragmatic approach in setting up the
Kalman filter by adopting as much as possible the Kalman
filter setting of the existing operational DCSM version 5 mod-
el (Heemink and Kloosterhuis 1990). The idea is to start with
this setting and recalibrate it if necessary. Like with DCSM
version 5, here, the uncertainty of DCSM version 6 is assumed
to come from the wind input forcing. The wind error is
modelled by an additive error term on the water flow veloci-
ties. The error is represented as an autoregressive model of
order 1 (AR1) with decorrelation time of 95 min to represent a
temporally correlated noise process. The error term is aug-
mented in the state vector and, hence, also being updated in
the analysis step. This term ensures a smooth transition to the
predictive mode and avoids inconsistency between wind forc-
ing and initial condition at the start of forecast. Also, it con-
tributes to the persistence of the update as the model propa-
gates. The error is assumed to be spatially uniform, isotropic,
and normally distributed with a spatial correlation length of
165 km. To reduce computational cost, the error is defined on
a coarser grid with a grid size of 240 km.

In the EnKF, a characteristic distance of 300 km is used for
the localization of the Kalman gain. This length is obtained by
trial and error. The idea is that the length should be as large as
possible to let the Kalman gain structure be determined mostly
by the forecast ensemble. However, it should not be too large
to let the EnKF run without any divergence problem. With this
characteristic length, the Kalman gain structure of the previ-
ous generation model DCSM version 5 can be reproduced.

For the observations, we assume uncorrelated errors with a
standard deviation of 0.05 m.

3.3.1 Deriving the steady-state Kalman gain

The SSKF uses a constant Kalman gain generated by running
an offline ensemble Kalman filter computation with 100 en-
semble members. The EnKF assimilates the observations se-
quentially in time from all assimilation stations, i.e. every
10 min. After allowing for 1 week of spin-up, the Kalman
gains were averaged over an additional period of about 1 week,
from 20 June 2007 at 0400 hours to 25 June 2007 at 2200
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Fig. 3 Assimilation station impact (as a function of lead time) on the
model accuracy at a selection of ten validation stations along the Dutch
coast. The cost is computed over locations Cadzand, Hoek van Holland,

hours, with an output interval of 3 h. This is a sufficiently long
period as, according to Canizares et al. (2001), tests for
barotropic, depth-averaged North Sea models have shown that
the error covariance matrix becomes nearly invariant after 1—
2 days of simulation. This period was chosen because it covers
the longest period among the data available for our work,
where observations from all the 32 assimilation stations are
complete. Note that we have performed also some experi-
ments where the Kalman gain is averaged over a period longer
than 1 week. However, the results are similar (not shown).

For illustration, Fig. 4 shows the Kalman gain component
of water level for assimilation stations Wick and
Scheveningen.

4 Results
4.1 Quantitative evaluation measures
4.1.1 Time series

To assess the effectiveness of the data assimilation scheme, the
root-mean-square error (RMSE) is computed based on total
water levels obtained from the assimilated model predictions
as well as the reference simulation with no assimilation ap-
plied. In addition to assessing the quality of the full water level
signal, it can be insightful to make a distinction between the
tide and surge component of the signal by means of harmonic
analysis. For this, the program T TIDE (Pawlowicz et al.
2002) was used. Analyses were undertaken on series of an
entire calendar year, with a set of 118 tidal constituents includ-
ing many user-specified shallow water constituents. The
(practical) surge, or non-tidal residual, is then computed by
subtracting the predicted tide from the total water level signal.

Since, operationally, the simulated water levels are
corrected to reflect the fact that they cannot be expected to

AJ
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&l ——SCHEVNGN |
——1JMDBTHVN

—K13APFM
0 3 6 9 12 15 18 21 24
Forecast lead times [h]
Scheveningen, Ijmuiden Buitenhaven, Terschelling Noordzee,
Huibertgat, Vlissingen, Roompot Buiten, Den Helder and Eemshaven

accurately represent the long-term mean (cf. Section 3.2), the
bias between measured and computed water levels determined
over a full year will be disregarded in all evaluation criteria
used here.

4.1.2 High waters

For water level predictions, the quality of the prediction dur-
ing peak water levels is especially important. Minor differ-
ences in timing between the computed and measured high
waters are less critical. Therefore, the quality of the represen-
tation of high waters (approximately twice a day) is deter-
mined by computing the root-mean-square (RMS) of differ-
ences between measured and observed high waters.

4.2 Hindcast effectiveness of SSKF

The evaluation of the effectiveness of the Kalman filter in
hindcast mode is based on the entire calendar year 2007.
The solutions were generated from initial conditions of zero
elevation and motion, with an additional period of 7 days
allowed for spin-up. The most significant North Sea storm
surge event within this period occurred on 8 and 9
November. To enable the assessment of the effectiveness of
the Kalman filter, the hindcast model simulation is performed
both with and without data assimilation.

4.2.1 Shelf-wide effectiveness

In Table 2, a summary of the shelf-wide water level represen-
tation quality for the year 2007 is shown. This is done for the
results with and without Kalman filtering. Considering all the
stations, the results show an excellent agreement between the
simulated and observed water levels. Moreover, the applica-
tion of the Kalman filter has a positive impact on the overall
goodness-of-fit measures presented here, with e.g. the RMSE
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Fig. 4 Kalman gain component of water level for assimilation stations Wick and Scheveningen. The assimilation stations are indicated with red dots

of total water levels decreasing from 9.5 to 8.5 cm. However,
the reduction of GoF values considering all the stations un-
derstates the impact in specific regions. In the North Sea prop-
er, a larger reduction, from 9.4 to 7.3 cm, is obtained. The
limited impact of assimilation in e.g. the Skaggerak and
Kattegat area and the English Channel area is most likely
caused by the lack of assimilated observations in the
neighbourhood.

The only regions where results, in terms of total water
levels, deteriorate are the Irish and Celtic seas. Although no
assimilation stations from these regions have been included in
the Kalman filter set-up, the deterioration there is still note-
worthy. Apparently, some of the mainly tidal errors originat-
ing elsewhere in the model are compensated in the local pa-
rameter settings. Decreasing these errors with help the Kalman
filter leads the model to overcompensate locally.

4.2.2 Effectiveness at assimilation stations

As the observational network of assimilation stations was spe-
cifically designed to improve forecasting skill in Dutch coastal

waters, further evaluation of the Kalman filter impact will fo-
cus on this area. The improvements obtained at the Dutch
assimilation stations using SSKF are shown in Table 3. It can
be seen that the errors in the assimilated model are significantly
smaller than those in the deterministic model, by around 50 %.
An already excellent total water level RMSE of 7.2 cm in the
deterministic results is reduced to only 3.5 cm in the analysis
by adding the assimilation of measurements. The improvement
is apparent in both the tide and surge component of the water
level signal as well as in all stations, with the relative total
water level improvement ranging from 29 to 69 %.

4.3 Spatial distribution of skill improvement
4.3.1 Dutch non-assimilated stations

While it is good to see that improvements are obtained at the
assimilation stations, it is especially important to study the
spatial extent of the skill improvement. This is first done by
assessing the impact at non-assimilated, independent, tide
gauge locations (cf. Table 4). Like at the assimilation

Table 2 Summary of the water

level representation quality, in RMSE (cm)

terms of RMSE of tide, surge,

total water level, high waters and Tide Surge Total High waters Low waters

low waters over the entire

calendar year of 2007 North Sea 7.6 6.9 6.5 3.7 94 7.3 9.1 7.3 8.7 6.0
English Channel 6.8 7.3 50 42 7.9 7.8 7.3 8.0 8.3 9.3
Irish Sea and Celtic Sea ~ 10.3 108 6.5 6.6 11.5 11.9 10.9 12.4 13.4 13.4
Skagerrak and Kattegat 7.0 6.4 6.8 6.5 6.8 6.1
All stations 8.2 80 64 49 9.5 8.5 9.1 8.6 9.9 8.8

The values shown represent the RMS over the stations available in selected sub-regions of the model
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Table 3 Comparison of water

level representation (RMSE) for Station RMSE tide (cm) RMSE surge (cm) RMSE total (cm)

the entire calendar year of 2007 at

the Dutch assimilation locations det. ass. (%) det. ass. (%) det. ass. (%)

between the deterministic (det.)

and assimilated model (ass.), for Cadzand 43 1.6 —63 5.8 22 —62 7.2 2.7 —63

tide, surge total water level signal,  Westkapelle 42 3.0 -29 54 1.9 —65 6.9 3.5 —49

high waters and low waters Europlatform 38 26 32 53 22 -58 65 33  —49
Roompot buiten 38 2.1 —45 5.5 2.1 —62 6.7 3.0 =55
Brouwershav. G. 08 4.1 2.3 —44 59 3.1 —47 72 39 —46
Lichteiland Goeree 34 1.8 —47 5.0 1.7 —66 6.1 24 —61
Hoek van Holland 38 32 -16 59 3.0 —49 7.0 43 -39
Scheveningen 37 1.7 —54 6.1 2.8 —54 7.1 3.2 =55
IJmuiden Buitenh. 4.1 2.4 —41 6.4 3.1 =52 7.6 4.0 —47
K13a platform 3.1 1.6 —48 45 2.0 —56 5.5 2.5 =55
Terschelling N. 42 22 —48 6.2 32 —48 7.5 3.9 —48
Wierumergronden 4.8 1.7 —65 6.0 2.1 —65 7.6 2.7 —64
Huibertgat 5.0 1.5 =70 6.4 2.0 —69 8.1 2.5 —69
Vlissingen 5.4 34 =37 6.0 24 -60 8.1 4.1 -49
Den Helder 42 22 —48 5.3 23 =57 6.8 32 =53
Oudeschild 38 22 —42 54 24 =56 6.6 33 =50
Vlielandhaven 4.6 3.8 -17 52 3.1 —40 6.9 49 -29
Eemshaven 5.6 2.6 —54 7.3 39 —47 9.2 4.6 =50
Average 4.2 23 —45 5.8 2.5 =57 7.1 35 =51
RMS 43 2.4 —44 5.8 2.6 =55 7.2 3.5 =51

locations, improvements are evident at all locations, regard-
less the evaluation criterion considered. Although still sub-
stantial, the relative magnitude of the improvement is less,
on average 18 % compared to 51 % at the assimilated stations,
while the range over the stations considered is much larger,
from just 5 % at Schiermonnikoog to 52 % at Haringvliet 10.

In addition, it is striking that improvement is larger in the
surge than in the tide, unlike in the assimilation stations. Note
that the noise model we use in the Kalman filter was designed
for wind errors, which implies that the surge errors are more
consistent with the assumptions in the Kalman filter.

Furthermore, the stations with the least relative surge im-
provement are those with a relatively poor tide representation
in the non-assimilated simulation. At these locations, mainly
in the eastern Wadden Sea, the representation of higher har-
monics presumably suffers from lack of grid resolution and,
consequently, a poor representation of local bathymetric fea-
tures, such as narrow tidal channels, on the computational
grid. This also shows up in the (practical) surge representation,
since also the non-linear tide-surge interaction suffers from the
same lack of resolution. Both higher harmonics and non-linear
tide-surge interaction have smaller spatial scales than the
surge and are therefore less susceptible to improvement with
a nearby assimilation location.

Note that tide gauge stations with the best tide representa-
tion have been selected as assimilation locations, which leaves

the ones with a poorer representation as validation locations.
The exceptions are Haringvliet 10 and Petten Zuid, which
have a good tide representation and are less affected by nearby
shallow seas and estuaries. Indeed, the assimilation impact
there (52 and 46 %, respectively) is better than average for
the validation locations (18 %) and similar to the average
impact at the Dutch assimilation locations (50 %).

4.4 Skill improvement during storm surge events

From Table 1, it appears that the impact of the Kalman filter is
limited to the reduction of the RMSE by a few centimetres.
Note, however, that these skill statistics are determined over
the entire calendar year 2007. One can expect the impact of
the Kalman filter to be non-homogeneous in time. During
storm surge conditions, subsequent meteorological forecasts
can be expected to differ more from one another, and reality,
than under calm weather conditions. During the former con-
ditions, the impact of the Kalman filter is consequently ex-
pected to be much larger.

To test this, the RMSEs of high waters are presented in
Table 5, comparing the assimilated with the deterministic sim-
ulation results. This is done for all high waters of 2007 as well
as the high waters with the 1 % highest measured skew surges
in that period, which includes the extreme North Sea storm
surge event on 8 and 9 November 2007. As expected, the
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Table 4 Comparison of water

level representation (RMSE) for Station

RMSE tide (cm)

RMSE surge (cm) RMSE total (cm)

the entire calendar year of 2007 at
the Dutch non-assimilated loca- det.

ass. (%) det. ass. (%) det. ass. (%)

tions between the deterministic

(det.) and assimilated model Haringvliet 10 39
(ass.), for tide, surge and total Petten Zuid 4.4
water level signal Terneuzen 83
Roompot Binnen 6.6
Stavenisse 6.2
Bergse Diepsluis West 6.1
Den Oever Buiten 5.0
West Terschelling 4.0
Kornwerderzand Buit. 43
Harlingen 74
Nes 7.7
Lauwersoog 94
Schiermonnikoog 10.0
Delfzijl 13.3
average 6.9
RMS 74

2.0 —49 6.0 2.7 =55 7.1 34 —52
2.6 —41 6.2 3.1 =50 7.6 4.1 —46
7.1 —14 6.7 34 —49 10.6 79 -25
59 -11 52 2.6 =50 8.2 6.1 —26
5.7 —8 5.5 2.7 =51 8.1 6.0 —26
54 —-11 6.2 35 —44 8.5 6.0 -29
39 —22 7.1 5.2 —27 8.7 6.5 -25
33 -18 59 4.5 —24 7.1 5.6 -21
34 -21 6.9 44 —36 8.1 5.6 =31
6.9 =7 79 6.0 —24 10.8 9.1 —-16
7.6 -1 7.6 6.6 -13 10.8 10.1 —6
8.9 =5 8.2 7.5 -9 12.5 11.6 =7
9.9 -1 8.1 72 —-11 12.9 12.2 =5
12.0 -10 11.2 8.6 —23 17.4 14.8 —-15
6.0 -13 7.1 4.9 —31 9.9 7.8 -21
6.7 -9 7.2 5.2 —28 10.3 8.4 -18

results show that the high water error is significantly larger
during storm surges. Moreover, comparison of the determin-
istic and assimilated results shows that the absolute impact of
the Kalman filter is indeed larger during storm conditions
(with a RMSE reduction of 2.8 vs. 4.4 cm).

Figure 5 shows the impact of the Kalman filter for the tide
gauge station Hoek van Holland, which is one of the main
forecasting locations during storm surge conditions. The un-
der prediction of the first high water on 9 November is clearly
much smaller in the assimilated model (=12 cm against
—36 cm in the unassimilated model). Remaining errors, espe-
cially during the most extreme storm surges, can partially be
explained by higher frequency variability in measurements
that is not being picked up by both process model and
Kalman filter. As the frequency of some of these phenomena
is much smaller than the time scale of the surge event,
neglecting these processes in the model will, on average, lead
to an under prediction of the peak water levels, also in the
assimilated results. This is also evident in the under prediction
of the 9 November high water (with a measured skew surge
height of 1.9 m above MSL in Hoek van Holland).

To check whether errors in the high water predictions are
systematic or correlate with the skew surge, the high water
errors are plotted in Fig. 6, both for the unassimilated and
assimilated results. Further analysis of the results in this figure
shows that when the entire year is considered, the bias in both
model runs does not exceed 1 cm. Although it only concerns a
limited number of events, the results suggest that for the 1 %
highest skew surges, there is a systematic under prediction of
high waters of 7 cm in the unassimilated computation. With
assimilation, this reduces to just 3 cm.
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4.4.1 An example of spatial improvements in the Western
Scheldt

Another example shows the impact of the Kalman filter in the
Western Scheldt during the November 2007 storm. The only
assimilation station in the Western Scheldt is at the entrance
(tide gauge station Vlissingen), while further upstream inde-
pendent stations are assessed (Bath and Antwerp). Since the
Western Scheldt is poorly represented in DCSM version 6,
with the upstream part missing since its width is less than
the cell size of ~1 nmx 1 nm, for this example, a locally re-
fined model is used.

Figure 7 shows that during the November 2007 storm, an
under prediction occurs throughout the Western Scheldt. In
the assimilated model, this under prediction is absent at assim-
ilation station Vlissingen and, crucially, also further upstream.
This demonstrates the positive impact of the Kalman filter
away from the assimilation stations.

Table5 Comparison of high water representation (RMSE) at the Dutch
assimilation locations between the deterministic (det.) and assimilated
model (ass.)

RMSE hw (cm)
2007 1 % highest
skew surges
Deterministic 6.8 135
Assimilated 4.0 9.1
Difference (abs.) 2.8 —4.4
Difference (rel.) —41 % -33%
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Fig. 5 Water level elevation at
tide gauge station Hoek van
Holland for the deterministic

- RMSE:

- RMSE: 10.8 cm, bias: 1.7 cm, std: 10.7 cm (plotted period) ]
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(upper plot) and assimilated
model (lower plot) (black
simulation; red measurement;
blue residual)
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4.5 Assessment of forecasting skill

While good hindcast quality can be valuable for many studies,
e.g. through the provision of accurate boundary conditions for
local impact studies, for an operational storm surge forecast-
ing system, the critical importance of real-time data assimila-
tion lies in improved forecast accuracy with sufficient lead
time.

To assess the impact on the forecasting skill, we made a
sequence of historical forecasts for the entire calendar year

0.8

9 Nov

2007, a forecast horizon of 48 h and a forecast cycle every
6 h. The frequency of the forecast cycle coincides with the
operational availability of new meteorological forecasts
(which is related to the data assimilation cycle of the meteo-
rological model). Observations are made available to the
Kalman filter for 3 h after the start of the meteorological model
forecast (T0), which more or less reflects the situation under
actual operational conditions. The resulting ~1500 forecasts
enable us to compute the quantitative performance measures
as a function of the lead time interval.

Fig. 6 High water error for the
year 2007 as a function of
measured skew surge height, for
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Fig. 7 Surge elevation at tide gauge station Vlissingen (fop), Bath (middle) and Antwerp (bottom) for the deterministic (/eff) and assimilated model

(right) (black simulation; red measurement; blue residual)

In Fig. 8, the RMSE of water levels at the Dutch assimila-
tions stations is presented for the assimilated and deterministic
model results, as a function of the lead time interval. In Fig. 9,
this is done for a set of independent Dutch stations (cf.
Section 4.4). This shows that in the deterministic results, error
growth is generally small. One reason for this is that the surge is
determined by the wind stress and atmospheric pressure gradi-
ents integrated over a large area and a considerable time. Errors
in the meteorological forecasts can therefore average out.

A positive impact of the Kalman filter is evident for lead
time intervals up to 12 to 18 h after TO, which corresponds to
9-15 h after the last assimilated water level measurements.
While Gerritsen et al. (1995) report a significant decrease in
the performance of the Kalman filter for lead times larger than
18 h, here, the assimilated model has a quality that is similar to
the unassimilated results. This reduces the need to run the
deterministic model alongside the assimilated model.

4.5.1 Xaver storm surge

The capability of the forecasting system, including the perfor-
mance of its Kalman filter, was critically tested during the
Xaver storm and accompanying storm surge on 5 and 6
December 2013. This enables us to assess the added value
of the data assimilations scheme during a real-life event. A
difference with the previously presented results for the year
2007 is the meteorological forcing, which is now obtained
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from the more recent HIRLAM 7.2, with a higher spatial res-
olution and an hourly instead of 3-h output.

The deterministic results for tide gauge station Hoek van
Holland, from a hindcast simulation for the year 2013, show
an under prediction during the 5 and 6 December 2013 event
(Fig. 10a). While the results for the entire year in Fig. 10b
indicate that, in general, the surge error does not correlate with
the observed surge level (as results follows the diagonal), the
most extreme event is under predicted as indicated by a tilt
upward with respect to the diagonal. This under prediction is
absent in the assimilated results.

More importantly, with results available from the actual
operational system, in which the model with and without
Kalman filter was running pre-operationally, we can also as-
sess the lead time with which the positive impact of the
Kalman filter is evident. Again, tide gauge station Hoek van
Holland is taken as an example in Fig. 11, where the observed
and predicted water level of the first and most extreme water
level peak is shown as a function of the time at which a water
level forecast became operationally available (i.e. approxi-
mately 4 h later than TO of the meteorological model). These
results show that, with the Kalman filter, an under prediction
of 35 cm is reduced to just 10 cm in the hindcast. Crucially,
while a small positive impact is evident in the predictions
operationally available 12 h before the peak water level, also
the results available 6 h before the peak water level show a
large improvement, from 29 to 9 cm under prediction.
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Fig. 8 Water level RMSE of the 0.16 i
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deterministic (blue) water levels 0.12
at Dutch assimilation stations as a T 01
function of the lead time interval g 0.08 1
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5 Summary, discussion and conclusions
5.1 Summary

We have presented an application of real-time operational data
assimilation where measurements from a tide gauge observa-
tional network around the North Sea basin are integrated into a
hydrodynamic tide-surge forecast model. We have demon-
strated that even though we apply a state-of-the-art, highly
accurate deterministic model for the northwest European
shelf, substantial improvements in forecasting skill, aided by
a computationally efficient steady-state Kalman filter, are still
possible.

This is evident from a ~50 % improved hindcast accuracy
in a selection of 18 assimilation stations, reducing an already
excellent total water level RMSE of 7.2 cm in the determinis-
tic results to only 3.5 cm. The positive contribution away from
the assimilation stations is demonstrated by a ~20 % average
skill improvement in a selection of non-assimilated, indepen-
dent tide gauge locations. In addition, the positive impact of
the Kalman filter away from assimilation stations is demon-
strated by an example where during the extreme North Sea
storm surge event on 8 and 9 November 2007, the determin-
istic model under predicts throughout the Western Scheldt. In
the assimilated results, this under prediction is absent at as-
similation station Vlissingen and, crucially, also further up-
stream up to Antwerp, which is ~80 km further upstream.

Furthermore, the impact on skew surge is assessed, for the
year 2007 and during the 1 % highest skew surges. This shows
that during storm surge conditions, the absolute impact of the
Kalman filter is larger than average with a RMSE reduction of

6 12 18 24 30 36 42 48
lead time interval [hr]

2.8 vs. 4.4 cm throughout the year. We supplement these
hindcast assessments with an assessment of the impact on
forecasting skill as a function of lead time by producing a
sequence of ~1500 historical forecasts for the entire calendar
year 2007. By making use of the Kelvin wave nature of the
surge in the selection of assimilation stations, a positive im-
pact of the Kalman filter is evident for lead time up to 9—15 h
after the last assimilated water level measurements.
Thereafter, the forecast skill of the deterministic and assimi-
lated model converges.

Finally, the capability of the forecasting system, including
the performance of its Kalman filter, was critically tested dur-
ing the Xaver storm and accompanying storm surge on 5 and 6
December 2013. This enabled us to get a realistic picture of
the effectiveness and applicability of the data assimilation ap-
proach in a real-life situation. Crucially, at the important fore-
cast location Hoek van Holland, the results available 6 h be-
fore the peak water level show a large improvement, from 29
to just 9 cm under prediction.

5.2 Discussion

The results indicate that the improvements using the Kalman
filter are larger for errors in the wind forcing than for errors in
the tides. This is, for instance, seen in the increased impact of
the filter during storms. Although the errors in the wind forc-
ing increase during storms, so does the impact of the filter.
One must keep in mind that the errors in the tidal reproduction
of the model were already reduced by the automated calibra-
tion of the model (Zijl et al. 2013). Although a theoretical
framework is still lacking, it seems that our strategy of first

Fig. 9 RMSE of the assimilated 0.16 !
(red) and unassimilated (blue) 014
water levels at independent Dutch 012
tide gauge stations for a range of T 01f
lead time intervals L(ll_)_]' 0.08
2 oo}
0.04
0.02+

6 12 18 24 30 36 42 48
lead time interval [hr]
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Fig. 10 Time series of simulated and observed surge elevation during the
5—-6 December 2013 storm surge event (black simulation; red
measurement; blue residual) and scatter plots of observed surge as a

improving the tidal representation offline and subsequently
reducing wind errors in real-time seems to work. However,
it should be noted that it is no longer useful to calibrate the
model against tidal predictions, as was common before. The
errors introduced in the harmonic analysis combined with the
effects of non-linear interaction between tide and surge now
introduce non-negligible differences during the calibration.
With today’s accuracies, the model needs to simulate the com-
bined effects of tides and wind when comparing with obser-
vations. The use of tidal analysis is now reduced to analysis of
the results and is no longer part of the forecasting system itself,
except for the model boundary conditions on deep water,
where we still neglect interaction effects and assume an in-
verse barometer response to meteorological forcing.

The results seem to indicate that sufficient resolution to
represent the local bathymetry around the tide gauge, which
is necessary to reproduce the tides accurately in the

function of simulated surge during the year 2013. The upper plots show
the deterministic model results, while the lower plots present the
assimilated results

hydrodynamic model, is also necessary to make the tide gauge
data useful for assimilation. In this study, we have selected
locations that were well represented at the 1 nautical mile
resolution for assimilation. One could make better use of more
tide gauges if the resolution was locally refined.

Moreover, in the present configuration, the selection of
tide gauges for data assimilation was mainly restricted by
several practical requirements. At the moment, the ex-
change within NOOS (www.noos.cc) makes a much
larger set of tide gauges available for assimilation. The
limited impact of assimilation in some areas of the model
is most likely caused by the lack of assimilated
observations in the neighbourhood. It is therefore likely
that extending the set of assimilated locations will further
improve the performance in those regions for the analysis.
This, in turn, may improve the accuracy of the forecast in
other regions as well as we have shown that the

Fig. 11 Predicted extreme water 3.2}
level of the first peak during the 5
and 6 December storm surge 3F

event at tide gauge station Hoek
van Holland, as a function of the
time at which the forecast became
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improvements due to assimilation are propagated by the
model into other regions during the forecast computations.

In addition, the observations that we received mostly used a
national vertical reference system or one based on LAT, which
is not convenient for use of the data at a larger scale. It would
be very helpful if the tide gauges would all be linked to an
ellipsoid vertical reference system. This, together with the
development of accurate geoid models and inclusion of den-
sity effects in the hydrodynamic model, would remove the
need for bias correction of the sea level observations (Slobbe
etal. 2013). Moreover, it would facilitate the combined use of
tide gauges and satellite altimeter for validation and assimila-
tion of the model.

5.3 Future work

Future work in improving the forecasting capabilities will
concentrate on (i) improving water level representation inside
the shallow seas and estuaries throughout the model domain,
aided by increased grid resolution, and (ii) reducing uncertain-
ty in the parameterization of the complex processes governing
the exchange of momentum between atmosphere and water.
While we have shown that the use of real-time data assimila-
tion in the form of SSKF is a successful and practicable ap-
proach to improving water level forecasts, preventing errors
from occurring in the deterministic model is essentially better.

Acknowledgments The authors gratefully acknowledge the funding
from the Dutch Rijkswaterstaat and wish to express their thanks for the
valuable comments from many ofits experts. Tide gauge data were kindly
provided by the Vlaamse Hydrografie. Agentschap voor Maritieme
Dienstverlening en Kust, Afdeling Kust, Belgium; Danish Coastal Au-
thority; Danish Meteorological Institute; Danish Maritime Safety Admin-
istration; Service Hydrographique et Oceanographique de la Marine,
France; Bundesamt fiir Seeschifffahrt und Hydrographie, Germany; Ma-
rine Institute, Ireland; Rijkswaterstaat, Netherlands; Norwegian Hydro-
graphic Service; Swedish Meteorological and Hydrological Institute; and
UK National Tidal and Sea Level Facility (NTSLF) hosted by POL.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Anderson BDO, Moore JB (1979) Optimal Filtering. Prentice Hall. 357
pp

Babovic V, Karri RR, Wang X, Ooi SK, Badwe A (2011) Efficient data
assimilation for accurate forecasting of sea-level anomalies and re-
sidual currents using the Singapore regional model. Geophys Res
Abstr 13

Butler T, Altaf MU, Dawson C, Hoteit I, Luo X, Mayo T (2012) Data
assimilation within the advanced circulation (ADCIRC) modeling

framework for hurricane storm surge forecasting. Mon Weather Rev
140(7):2215-2231

Canizares R, Madsen H, Jensen HR, Vested HJ (2001) Developments in
operational shelf sea modelling in Danish waters. Estuar Coast Shelf
Sci 53:595-605

Charnock H (1955) Wind stress on a water surface. Q J R Meteorol Soc
81(350):639-640

El Serafy GY, Mynett AE (2008) Improving the operational forecasting
system of the stratified flow in Osaka Bay using an ensemble
Kalman filter-based steady state Kalman filter. Water Resour Res
44(6)

El Serafy GY, Gerritsen H, Hummel S, Weerts AH, Mynett AE, Tanaka
M (2007) Application of data assimilation in portable operational
forecasting systems—the DATools assimilation environment. Ocean
Dyn 57(4-5):485-499

Evensen G (2003) The ensemble Kalman filter: theoretical formulation
and practical implementation. Ocean Dyn 53:343-367

Flather RA (2000) Existing operational oceanography. Coast Eng 41:13—
40

Gaspari G, Cohn S (1999) Construction of correlation functions in two
and three dimensions. Q J R Meteorol Soc 125:723-757

Gerritsen H, de Vries H, Philippart M (1995) The Dutch continental shelf
model. Quantitative skill assessment for coastal ocean models, 425—
467

Hamill TM, Withaker JS, Snyder C (2001) Distance-dependent filtering
of background error covariance estimates in an ensemble Kalman
filter. Mon Weather Rev 129:2776-2790

Heemink AW (1986) Storm surge prediction using Kalman filtering,
Ph.D. thesis. Twente University of Technology, The Netherlands

Heemink A (1990) Identification of wind stress on shallow water surfaces
by optimal smoothing. Stoch Hydrol Hydraul 4:105-119

Heemink AW, Kloosterhuis H (1990) Data assimilation for non-linear
tidal models. Int J] Numer Methods Fluids 11(2):1097-1112

Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman
filter for atmospheric data assimilation. Mon Weather Rev 129(1):
123-137

Huthnance JM (1991) Physical oceanography of the North Sea. Ocean
and Shoreline Management 16(3):199-231

Jazwinski AH (1970) Stochastic processes and filtering theory. Academic

Kailath T (1973) Some new algorithms for recursive estimation in con-
stant linear systems. IEEE Trans Inf Theory I1T-19:750-760

Kalman RE (1960) A new approach to linear filtering and prediction
problems. J Fluids Eng 82(1):35-45

Karri RR, Wang X, Gerritsen H (2014) Ensemble based prediction of
water levels and residual currents in Singapore regional waters for
operational forecasting. Environ Model Softw 54:24-38

Leendertse JJ (1967) Aspects of a computational model for long-period
water-wave propagation. Rand Corporation, Santa Monica, p 165

Li H, Liu J, Kalnay E (2010) Correction of ‘Estimating observation im-
pact without adjoint model in an ensemble Kalman filter’. Q J R
Meteorol Soc 136(651):1652—-1654

Lionello P, Sanna A, Elvini E, Mufato R (2006) A data assimilation
procedure for operational prediction of storm surge in the northern
Adriatic Sea. Cont Shelf Res 26(4):539-553

Liu J, Kalnay E (2008) Estimating observation impact without adjoint
model in an ensemble Kalman filter. Q J R Meteorol Soc 134:1327—
1335

Maybeck PS (1979) Stochastic models, estimation, and control.
Academic

Mehra RK (1970) On the identification of variances and adaptive Kalman
filtering. IEEE Trans Autom Control 15(2):175-184

Mehra RK (1972) Approaches to adaptive filtering. IEEE Transaction on
Automatic Control. pp. 693—698

Mouthaan EEA, Heemink AW, Robaczewska KB (1994) Assimilation of
ERS-1 altimeter data in a tidal model of the continental shelf.
Deutsche Hydrographische Zeitschrift 36(4):285-319

@ Springer



1716

Ocean Dynamics (2015) 65:1699-1716

Otto L, Zimmerman JTF, Furnes GK, Mork M, Saetre R, Becker G
(1990) Review of the physical oceanography of the North Sea.
Neth J Sea Res 26(2):161-238

Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic anal-
ysis including error estimates in MATLAB using T TIDE. Comput
Geosci 28(8):929-937

Peng SQ, Xie L (2006) Effect of determining initial conditions by four-
dimensional variational data assimilation on storm surge forecasting.
Ocean Model 14(1):1-18

Philippart ME, Gebraad AW, Scharroo R, Roest MRT, Vollebregt EAH,
Jacobs A, van den Boogaard HFP, Peters HC (1998) DATUM?2: data
assimilation with altimetry techniques used in a tidal model, 2nd
program. Tech. rep., Netherlands Remote Sensing Board

Rogers SR (1988) Efficient numerical algorithm for steady-state Kalman
covariance. IEEE Trans Aerosp Electron Syst 24(6):815-817

Slobbe DC, Verlaan M, Klees R, Gerritsen H (2013) Obtaining instanta-
neous water levels relative to a geoid with a 2D storm surge model.
Cont Shelf Res 52:172-189

Serensen JVT, Madsen H, Madsen H (2006) Parameter sensitivity of
three Kalman filter schemes for assimilation of water levels in shelf
sea models. Ocean Model 11:441-463

Stelling GS (1984) On the construction of computational methods for
shallow water ow problems, vol 35, Ph.D. thesis. Delft University
of Technology, Rijkswaterstaat Communications, Delft

Sumihar JH, Verlaan M (2010) Observation sensitivity analysis,
Developing tools to evaluate and improve monitoring networks.
Deltares report no. 1200087-000, 35 pages

Sumihar JH, Verlaan M, Heemink AW (2008) Two-sample Kalman filter for
steady-state data assimilation. Mon Weather Rev 136(11):4503-4516

Van Velzen N, Segers AJ (2010) A problem-solving environment for data
assimilation in air quality modelling. Environ Model Softw 25(3):
277-288

@ Springer

Verboom GK, de Ronde JG, van Dijk RP (1992) A fine grid tidal flow
and storm surge model of the North Sea. Cont Shelf Res 12:213-233

Verlaan M, Zijderveld A, de Vries H, Kroos J (2005) Operational storm
surge forecasting in the Netherlands: developments in the last de-
cade. Phil Trans R Soc A 363:1441-1453

Wang X, Karri RR, Ooi SK, Babovic V, Gerritsen H (2011)
Improving predictions of water levels and currents for
Singapore regional waters through data assimilation using
OpenDA. In Proceedings of the 34th World Congress of the
International Association for Hydro-Environment Research and
Engineering: 33rd Hydrology and Water Resources Symposium
and 10th Conference on Hydraulics in Water Engineering (p.
4521). Engineers Australia

Weerts AH, El Serafy GY, Hummel S, Dhondia J, Gerritsen H (2010)
Application of generic data assimilation tools (DATools) for flood
forecasting purposes. Comput Geosci 36(4):453-463

‘World Meteorological Organization (2011) Guide to storm surge forecast-
ing, WMO Report No. 1076. Geneva: World Meteorological
Organization. Available from http:/library.wmo.int/.

Wunsch C, Stammer D (1997) Atmospheric loading and the oceanic
“inverted barometer” effect. Rev Geophys 35(1):79-107

Yu P, Kurapov AL, Egbert GD, Allen JS, Kosro PM (2012) Variational
assimilation of HF radar surface currents in a coastal ocean model
off Oregon. Ocean Model 49:86-104

Zhang Y, Oliver D (2011) Evaluation and error analysis: Kalman gain
regularization versus covariance regularization. Comput Geosci
15(3):1-20

Zijl F, Verlaan M, Gerritsen H (2013) Improved water-level forecast-
ing for the Northwest European Shelf and North Sea through
direct modelling of tide, surge and non-linear interaction. Ocean
Dyn 63(7)


http://library.wmo.int/

	Application...
	Abstract
	Introduction
	Use of accurate, operational models
	Thorough assessment of effectiveness and applicability in a real-life situation
	Complete set-up

	Data assimilation schemes
	The data assimilation methods
	Ensemble Kalman filter
	Steady-state Kalman filter

	OpenDA data assimilation toolbox

	Experiment set-up
	The Dutch Continental Shelf Model (version 6)
	Software framework
	Parameter optimization

	Observation network
	Ensemble-based observation sensitivity
	Pre-processing of Kalman filter observations

	Kalman filter settings
	Deriving the steady-state Kalman gain


	Results
	Quantitative evaluation measures
	Time series
	High waters

	Hindcast effectiveness of SSKF
	Shelf-wide effectiveness
	Effectiveness at assimilation stations

	Spatial distribution of skill improvement
	Dutch non-assimilated stations

	Skill improvement during storm surge events
	An example of spatial improvements in the Western Scheldt

	Assessment of forecasting skill
	Xaver storm surge


	Summary, discussion and conclusions
	Summary
	Discussion
	Future work

	References


