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To attain economically viable and environmentally friendly tyre recycling, it is necessary to 

develop new applications and products, which will use tyre by-products (especially the steel cord) 

as raw materials. The authors demonstrate that the steel fibres recovered from used tyres can be 

used to reinforce concrete elements. This application has a great potential, as it is estimated that 

more than 500,000 tonnes of high quality steel fibres could be recovered annually from used tyres 

in the EU alone. This paper presents the work carried out as part of various ongoing projects on 

the use of steel fibres in concrete construction. The first part of the paper deals with waste 

management issues, the methods used to recover steel fibres from tyres, and existing applications 

of used tyres. The second part presents the mechanical behaviour of concrete elements reinforced 

with these steel fibres and discusses the relevant design and economic issues. It is concluded that 

the use of these steel fibres in concrete construction will not just benefit the construction industry, 

but will also benefit the producers and recyclers of used tyres.  

SYNOPSIS 

1. INTRODUCTION 

The waste management of used tyres is of major concern for many environmental bodies and 

agencies worldwide. This is especially true in the European Union (EU), where environmental 

legislation is the driving force behind the waste management of used tyres. Following the 

implementation of various European Union (EU) directives1,2, reuse of tyres and material 

recovery have become the most environmentally viable ways for disposing used tyres.    

Material recovery from used tyres is undertaken by utilising either mechanical or thermal 

degradation processes. The former reduces tyres to steel fibres and granulated rubber and, the 

latter process breaks down the tyres into steel, char, liquids, and gases. To comply with the 

various EU directives, EU member states need to develop markets and applications, which will 

utilise used tyres as a secondary raw material. This is especially challenging for the recovered 

steel fibres (RSF), which are currently either used as scrap feed in steel manufacturing or 

disposed of to landfills.   

RSF could be utilised as concrete reinforcement and recent research3,4,5,6,7,8 shows that the 

application of RSF in concrete leads to an increase in concrete strength, ductility, and toughness. 

The use of RSF in concrete (like any other type of steel fibres) can eliminate the use of 

conventional reinforcement and can increase the speed of construction.  
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This paper presents the work performed on concrete elements reinforced with RSF (RSFRC). 

This work forms part of an EU Marie-Curie research fellowship9, a PhD Thesis10 funded by the 

University of Sheffield, and the completed project11 “Demonstrating Steel Fibres from Waste 

Tyres as Reinforcement in Concrete”, which was funded under the Partners in Innovation scheme 

by the UK Department of Trade and Industry.  

The first part of the paper provides a general introduction on the waste management of used tyres 

in both the UK and EU. The most recent statistics for the arisings and waste management of used 

tyres are presented and the factors influencing these statistics are discussed. Then, the methods 

currently used to recover RSF from used tyres are presented. To highlight the need for developing 

new markets for RSF, the last section of this part presents existing engineering and industrial 

applications of whole tyres and their by-products. The second part describes the research carried 

out on the engineering and economic aspects related to the use of RSF in concrete.   

2. WASTE MANAGEMENT OF USED TYRES 

PART A 

It is estimated12 that, worldwide, more than one billion used tyres arise annually. Nearly a quarter 

of this amount arises in the EU alone, and approximately 50 million tyres reach the end of their 

lives in the UK per year.  

There are many ways that used tyres can be managed, such as energy recovery, material recovery, 

retreading, exports, and disposal to landfill. Fig. 1 shows that, during 2002, the majority of used 

tyres in the EU were recovered and only one third of them were sent to landfill. Similar values 

were published13 in the UK for 2001 (Fig. 2).  

The waste management of used tyres is greatly influenced by environmental legislation. Typical 

examples are the EU Landfill1 and Waste Incineration2 directives. The former has already 

prohibited the disposal of whole tyres to landfill (from July 2003), and it will prohibit the 

disposal of tyre by-products to landfill by 2006. The European Tyre Recycling Association 

reported12 that some of the EU member states (such as Sweden and Finland)13 stopped the 

disposal of tyres to landfills by 2002. The implementation of the latter directive in the UK 

resulted in the application of environmental controls on the use of tyres for energy recovery. The 

main outcome of these controls was the short-term reduction in the use of tyres for energy 

recovery13. The implementation of the EU End-of-Life-Vehicle14 directive is expected to increase 
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further the amount of used tyres that would have to be reused or recycled, as this directive aims at 

ambitiously high rates of vehicle recovery and recycling.  

The definition of waste is another obstacle that affects the recycling and reuse of used tyres in the 

UK. A used tyre and its constituents are waste materials and must be managed according to 

regulatory controls, until they are physically reused13,15. This naturally increases the cost of tyre 

recycling and prohibits the entry of new players into the industry. It is noted that the European 

Council has recently decided16 to legally clarify the definition of waste and, hence, this action 

may have a favourable effect for the waste management of tyres.   

The waste management of used tyres is also affected by economics factors and the public 

perception about recycled or reused products. A typical example is retread tyres, whose demand 

has constantly declined over the years following the reduction in the price of new tyres and the 

negative public perception about the quality of retread tyres17.  

3. RECOVERY OF STEEL FIBRES FROM TYRES 

Tyre shredding and the cryogenic process can be used to mechanically recover RSF from used 

tyres. In addition, steel fibres can be recovered by utilising anaerobic thermal degradation, such 

as conventional pyrolysis and microwave-induced18 pyrolysis of tyres. The amount of extracted 

steel fibres depends mainly on the type of tyre. Tyres of light vehicles contain up to 15% steel, 

whereas truck tyres contain up to 25% steel15.   

3.1 Shredding Process   

The shredding process reduces tyres into rubber granules and steel fibres through a number of 

cutting and granulating stages. In the first stage of processing, a complete tyre is chopped or 

shredded until it is reduced to pieces ranging in size from about 50 to 150 mm. The rubber pieces, 

which still contain steel, are then fed into a second shredder that reduces them to smaller pieces 

(Fig. 3a). At the end of this stage, magnets are used to separate the steel from the rubber (Fig. 3-

b). The rubber is then fed into a knife or hammer mill, where it is granulated to approximately 1 

to 10 mm in size. The number of grinding cycles depends on the desired size of the rubber 

granules. During the granulating process, magnets are used to remove any remaining steel.    

The steel extracted after the second stage of shredding and the final stage of grinding differs in 

quality. The former contains large pieces of rubber as well as much of the textile wire in long 

lengths. The cord is sometimes undamaged, but much of it is deteriorated into individual wires. 
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The latter is much finer, comprising mostly of thin individual steel wires, but still containing 

around 10% rubber and fluff. 

Mechanical shredding is considered as a commercially mature and technologically reliable 

process. However, it can be quite costly, as the cutting blades require constant maintenance. The 

rate of deterioration of the blades is high because the tyre contains high strength steel and the 

steel in the bead is normally of a large diameter. It is noted that tyre shredding has increased over 

the years, as it is more economical to transport shredded tyres rather than whole tyres13.  

3.2 Cryogenic Process 

The cryogenic process19,20 involves the cooling of tyres, and their subsequent brittle fracturing 

and reduction to rubber, steel, and textile. In a typical cryogenic process, the used tyres are 

initially shredded at ambient temperature, and then transferred to a deep-freezing tunnel system. 

Inside the first tunnel section, the fragmented tyres are pre-cooled by a counter-current of gaseous 

nitrogen at approximately -120°C. The tyre pieces are then transferred into the main cooling 

tunnel, where they are cooled down below their embrittling temperature and, as a result, they 

become nearly brittle. At the next stage, the fragmented tyres are granulated through a series of 

mills, and are reduced to rubber, steel fibres, and textile. The steel and textile are separated, 

whereas the rubber granules are dried, passed through a steel extraction unit, and finally sieved.  

The extracted steel is fairly clean, but it may loose its ductility, if it is cooled down below its 

embrittling temperature21. The cryogenic process is considered to be energy efficient because it 

requires less energy to separate the rubber from the steel rather than ambient-temperature 

processes19. However, the high cost of liquid nitrogen is the main drawback of this process.  

3.3 Pyrolysis Process 

Pyrolysis22, 23 of tyres is the process where tyres are thermally decomposed, in the absence of 

oxygen, to their organic and inorganic components. The process generates gases (hydrogen, 

methane and other hydrocarbons), oil, and solid residuals of steel and char, which is a low grade 

carbon black. The balance between the end-products of the process can be altered by changing 

the imposed conditions, such as the heating temperature and duration. In a typical pyrolysis plant, 

used tyres are fed into a pyrolysis reactor, where they are heated to the desired temperature. The 

gases and the liquids are separated from the extracted vapours through a system of gas-liquid 

separators. At the end of the process, the steel is separated from the char and the char is ground.  
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The steel comes out of the process still containing some char on its surface. In most pyrolysis 

plants, the tyres are shredded before being fed to the reactor and, hence, the RSF are already 

damaged to a certain degree, as in the case of the shredding process. 

Since the pyrolysis process is contained, the release of combustion gases is minimised22. 

Pyrolysis is energy efficient because the derived gases and oil have high calorific value and can 

be used for the energy requirements of the process. It is noted that it can be difficult to market 

some of the pyrolysis end-products due to their low quality (especially the char), and 

consequently, many pyrolysis plants are not economically viable24.  

3.4 Microwave Induced Pyrolysis Process 

The microwave-induced pyrolysis process18, called “Advanced Molecular Agitation 

Technology”, optimises microwave power at the molecular level to thermally decompose tyres to 

their constituents. According to the developers of this process18, the microwaves excite the 

molecular bonds of the long-chain rubber hydrocarbons enough to break them into shorter 

hydrocarbons, which are released as volatile gases at a temperature around 350○C. The process 

operates at relatively low temperatures and hence, the derived steel cord and textile wire remain 

intact, while the rubber is converted to oil, gases, and char. Similarly to the conventional 

pyrolysis process, the gases can be used for the energy requirements of the process. The derived 

steel cord, shown in Fig. 4, can be cut to any length.  

4. GENERAL ENGINEERING & INDUSTRIAL APPLICATIONS 

Used tyres are being utilised in a variety of engineering and industrial applications and numerous 

examples are published in the literature. These applications can be divided into two main 

categories: a) the ones that use either whole or fragmented tyres, and b) the ones that use the tyre 

constituents, such as rubber, char and steel.  

4.1 Whole and fragmented tyres 

Whole tyres are used for the construction of retaining walls (such as in “green” housing)25, 

floating breakwaters12, boat fenders12, artificial reefs26,27 (Fig. 5), temporary roadways12, slope 

stabilisation and erosion control12. They are also utilised in landfill engineering12,15 for a number 

of applications, such as drainage systems to collect leachate and gas. Strips of tyres, extracted by 

cutting the sideways of whole tyres, can also be used to produce elements encapsulated with resin 

(such as roof tiles, floors, crash barriers, insulation and acoustic panels, and railway sleepers)28. 
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Fragmented tyres (such as those obtained from the first stage of the shredding process) are used 

to stabilise slopes, to fill surface and septic drainage systems, and embankments12,15. They are 

also used as fuel for power generation13.    

4.2 Tyre constituents  

Granulated rubber, extracted from the mechanical recycling of tyres, is utilised in the 

manufacturing of asphalt29. The use of rubber offers advantages such as improved durability of 

asphalt and reduction of the noise generated by traffic. The use of recycled rubber crumb as 

aggregate in concrete was also proposed30. However, this type of application is not currently 

viable because the cost of recycled rubber is much higher than that of natural aggregates.  

Granulated rubber is also utilised in many industrial products. It is used in the production of new 

tyres12, synthetic sport and playground surfaces31, and expansion joints12 for bridges and roads. 

Other products12 include roof and floor tiles, porous drain pipes, office furniture and camping 

equipment.  

Carbon black, extracted from the pyrolysis process, can be used in the manufacturing of tyres and 

industrial rubber products, as well as pigments (for printing inks, paints and plastics), as long as it 

is upgraded to high grade carbon black22. 

Whilst there is demand and established markets for the granulated rubber and carbon black, there 

are very few applications that utilise the RSF. Currently, the majority of RSF in the UK is either 

disposed of to landfills or used as scrap feed in steel manufacturing. One possible area of 

application is concrete construction, where industrially manufactured steel fibres are successfully 

replacing conventional reinforcement bar (re-bar) in a range of applications (such as sprayed 

concrete, slabs-on-grade, and precast elements).  

5. CONCRETE REINFORCED WITH RSF  

PART B 

To facilitate the introduction of RSF in concrete construction, the authors undertook research in 

the following engineering aspects: a) characterisation of various types of RSF, b) development of 

appropriate concrete mixes and examination of mechanical properties of concrete elements 

reinforced with RSF (RSFRC), d) development of demonstration products, and e) development of 

appropriate design guidelines. These aspects will be examined in detail in the following. 

Economic and safety aspects were also examined.   
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5.1 Engineering aspects 

Two types of RSF were considered: a) shredded fibres (SRSF) and b) fibres obtained from the 

microwave-induced pyrolysis process (PRSF). The thickness of SRSF was around 0.23 mm, 

whereas the thickness of PRSF ranged from 0.8 to 1.5 mm. Steel fibres obtained from virgin tyre 

cord (VSF) and two types of industrially produced steel fibres (denoted ISF-1 and ISF-2) were 

also examined (see Fig. 6).  

Material characterisation of RSF was one of the main tasks of the above research. Single and 

double pull-out tests were performed to evaluate the optimal fibre length required by each type of 

RSF in order to develop sufficient bond with concrete. Experimental results5 showed that the type 

of bond failure depended on the anchorage length of the fibres. It was also determined10 that the 

strength of SRSF and PRSF was best utilised, when the fibre length was about 20 and 50 mm 

respectively. These lengths are similar to the lengths of equivalent industrial fibres. 

One of the main problems, encountered when mixing RSF in fresh concrete, is the tendency of 

the fibres to ball together, which spoils the concrete. RSF have irregular geometrical properties, 

and if they originate from the shredding process, they often contain rubber particles on their 

surface (Fig. 6).  

One of the main objectives of the research was the development of appropriate concrete mixes 

and the optimisation of fibre length distribution so as to maximise the amount of fibres in a given 

mix. This involved the examination of the properties of concrete at fresh and hardened states. The 

slump test, and the concrete compressive and flexural strengths were evaluated by using standard 

tests6,8. The results showed that the addition of moderate amounts of RSF improved both the 

concrete’s compressive and flexural strength. However, as the amount of fibres increases further, 

the compressive strength decreases due to an increase in air entrapped in concrete. The research 

findings suggested that the maximum RSF content (by weight), which could be effectively used 

in concrete, was 6% and 2% for the PRSF and SRSF respectively. Standard bending tests on 

prisms reinforced with PRSF, VSF or ISFs showed that a similar behaviour is exhibited by all 

fibres, despite their big differences (see Fig. 7)10.   

Two RSFRC demonstration products were also developed to illustrate the commercial potential 

of RSF. The first product was a precast RSFRC slab (Fig. 8) used for drainage cover. The design 

of the slab was based on that of a reinforced concrete slab of an existing drainage system32. This 

product was chosen because the design of the reinforced concrete slab was fairly complex due to 

the configuration of the drainage holes. The use of steel fibre reinforced concrete (SFRC) in such 
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geometrically complex elements simplifies their design and offers savings in the assembly and 

placing of the reinforcement. The mechanical behaviour of three slabs reinforced in different 

ways (RSFRC containing SRSF, RSFRC containing PRSF, and slurry infiltrated concrete 

reinforced with SRSF) was examined. Central-load bending tests were performed to determine 

whether the slab would satisfy the loading conditions adopted for pavements by BS-EN-12433. 

The first two types of slabs passed the B125 loading condition (125 kN point load), whereas the 

slurry infiltrated slab satisfied the C250 condition (250 kN point load). This demonstrated the 

commercial potential of suitably designed RSFRC slabs in drainage applications such as car 

parks, carriageways, and hard shoulders for all types of vehicles.  

SFRC has high energy-absorption capacity, which makes it ideal for high-impact and explosive 

loading and, hence, a high-impact resistant slab was the second product developed (Fig. 9). The 

slab was cast with slurry infiltrated concrete that contained a high volume of SRSF. The slab was 

successfully tested to impact loading, and preliminary analysis indicated that it could be 

successfully applied as wall panelling in security-sensitive buildings or as a crash barrier in 

carriageways.  

Another important task undertaken was the development of a general framework for design as 

well as simple guidelines for the effective use of RSF in concrete9. The framework of an existing 

design guideline, developed by RILEM34 for conventional SFRC, was considered. Following an 

examination of the relevant literature35,36, it was confirmed7 that this guideline overestimates the 

bending resistance of SFRC due to a number of issues not related  to the fibre type (such as the 

test adopted for the evaluation of flexural strength and the derivation of concrete’s tensile stress 

block). It was suggested that the RILEM guideline could be used for the design of RSFRC, and 

new tests have been proposed to improve the accuracy of predicting the bending resistance of 

SFRC.   

5.2 Economic and other aspects 

The current demand for re-bars in concrete in the UK37 is about 1 million tonnes per year and 12 

million tonnes per year in the EU37. The cost for re-bar is currently increasing due to the high 

worldwide demand for steel (notably China) and it now stands at over £350 per tonne. Steel 

fibres are a niche within the reinforcement market and, in the UK, this niche is estimated38 at 

10,000 tonnes per annum. As steel fibres are replacing re-bars in a range of new applications 

(including suspended slabs), this amount is projected38 to increase to 20,000 tonnes by 2005 

(150,000 tonnes per year in the EU). The UK price of industrially produced steel fibres (ISF) 
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ranges from £450 to £10,000 per tonne. The value39 of RSF (as scrap material) ranges from £30 

to £80 per tonne. However, not all RSF are suitable as scrap feed and much ends up in landfills.  

Table 1 shows the amount of steel fibres that could be potentially recovered in both the UK and 

EU. It is evident that the potential supply of RSF would exceed the current demand for steel 

fibres. However, RSF will be offered to the market at a range of prices depending on their 

properties. It is likely that most RSF will be priced below the market value of conventional rebar. 

It is anticipated that demand for steel fibre reinforcement would increase, if prices decrease, new 

concrete applications are introduced, and practising engineers are more informed about the 

benefits of this type of construction.   

The extensive use of RSF in construction will benefit both producers and recyclers of used tyres. 

It is expected that this application would encourage the material recovery of large amounts of 

used tyres and, hence, the costs associated with material recovery would be reduced due to 

improved economics of scale15. In addition, this application would provide a more viable and 

sustainable waste management solution rather than the use of RSF as scrap feed in steel 

manufacturing.  

The reduced cost of reinforcement in concrete will benefit the manufacturers and customers of 

such products. In addition, environmental benefits will come from the reduction of tyre by-

products going to landfill and reduction in the need for producing virgin steel fibres. A good 

market for used tyres will also reduce the problem of fly tipping of tyres. 

By-products of used tyres, such as RSF, are not considered15 hazardous to human health and, in 

addition, steel fibres are considered to be safer to handle than re-bar because they are part of the 

concrete mix, which is pumped into place. However, health and safety risks may exist when 

physically handling concrete elements with RSF exposed on the surface. Hence, guidelines 

related to these issues need to be developed.  

The geometrical irregularity of RSF can be a potential market barrier and, hence, guidelines may 

be required for specification and testing prior to commercial use. Currently, the main obstacle to 

developing RSF as concrete reinforcement is the lack of a simple and cost-effective process for 

sorting and packaging the RSF. In addition, the legal uncertainty regarding the definition of waste 

may create problems to manufacturers wishing to process RSF. 
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6. DISCUSSION AND CONCLUSIONS  

The waste management of used tyres is influenced by environmental legislation and various 

techno-economic factors. Hence, to develop economically viable and environmentally friendly 

end-of-life tyre processing businesses, it is necessary to develop new markets, which will use the 

by-products of used tyres as secondary raw materials.  

Currently, there is a large variety of applications and products using rubber and carbon black 

recycled from tyres, but RSF are used as scrap feed in steel manufacturing or end up in landfills. 

The authors demonstrated that the use of RSF in concrete leads to an increase in concrete 

strength, ductility, and toughness. It is concluded that the behaviour of concrete reinforced with 

these fibres can be comparable to that of concrete reinforced with industrially produced steel 

fibres. The fibres could therefore be used in a range of applications, such as foundations, impact 

barriers, drainage cover slabs and slurry infiltrated concrete. RSF have the potential for offering 

an environmentally friendly way of dealing with tyre fibres, and provide a cheaper alternative for 

concrete reinforcement.  

To facilitate the use of these fibres in concrete construction, it is necessary to develop an 

inexpensive process for sorting and packaging these fibres.  
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Tables  

 

Table 1. Potential annual amount of steel fibres recycled from used tyres 

 United Kingdom13 (metric tonnes) European Union12 (metric tonnes) 

Tyres  Steel Fibres Tyres  Steel Fibres 

Total arising  481,500 72,225a  2,660,000 399,000a  

Material Recovery 107,000 16,050a  558,600 83,790a  

 a: based on a steel content of 15% by weight 
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