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1. Introduction

In 1965 Popoviciu [18] proved that if I ⊂ R is an interval then a continuous
function f : I → R is convex if and only if f satisfies the following inequality
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Inequality (1) is known as the Popoviciu inequality (cf. e.g. [17]). In [18] it has
been also proved that the only continuous solutions f : R → R of the equation
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satisfied for all x, y, z ∈ R, are the affine functions. This result has been gener-
alized by Trif [21], who has proved that if X and Y are real linear spaces, then
a function f : X → Y satisfies Eq. (2) for all x, y, z ∈ X if and only if there
exist an additive function A : X → Y and a B ∈ Y such that f(x) = A(x)+B
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for x ∈ X. Stability of Eq. (2) has been investigated in [3]. Solutions and sta-
bility problem for the following generalizations of Eq. (2) have been studied,
among others, by:

• Lee [15], Smajdor [20], Trif [22]:
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• Lee [16]:
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• Lee and Lee [14], Smajdor [19]:
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Popoviciu type functional equations on groups have been investigated in
[4] and [5]. In this paper we consider Eq. (2) on cylinders. More precisely, given
two groups (G,+) and (H,+) and nonempty subsets A and B of G, we deal
with the equation
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for (x, y, z) ∈ G × A × B. (6)

The paper is organized as follows. In the next section we show that there is
a natural correspondence between the solutions of (6) and the solution of the
Fréchet equation on cylinders, that is equation of the form

f(x + y + z) + f(x) + f(y) + f(z)
= f(x + y) + f(y + z) + f(z + x) for (x, y, z) ∈ G × A × B. (7)

In Sects. 3 and 4 we deal with the solution of (7) and (6), respectively. In the
last section we present some comments and remarks concerning the solutions
of (7).

Our results are motivated by the recent papers [1] and [2], where the solu-
tions of the d’Alembert functional equation on cylinders have been considered.
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A similar problem for the Cauchy equation has been earlier studied in [6] and
[7].

2. Correspondence Between Popoviciu Type Equations
and Fréchet Equation

A crucial role in our considerations will play the following result describing
a correspondence between the Popoviciu type functional equations and the
Fréchet equation. In order to formulate the result let us recall that, given a
positive integer k, a semigroup (G,+) is said to be (uniquely) divisible by k
provided for every y ∈ G there exists a (unique) x ∈ G such that kx = y.

Theorem 2.1. Let m,n,M and N be positive integers. Assume that (G,+) is a
commutative semigroup with 0, uniquely divisible by m and n and (H,+) is a
commutative group. Let A and B be subsets of G containing 0. Then a function
F : G → H satisfies Eq. (6) if and only if there exist a function f : G → H
satisfying (7), a function a : G → H and a b ∈ H such that

(M − 3N + 3)b = 0, (8)
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a(x + y) = a(x) + a(y) for (x, y) ∈ G × (A ∪ B), (11)

and
F (x) = f(x) + b for x ∈ G. (12)

Proof. Assume that F : G → H satisfies (6). Let b := F (0). Then, applying
(6) with x = y = z = 0, we get (8). Furthermore, setting in (6) y = z = 0, we
obtain
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for (x, y, z) ∈ G × A × B.



336 M. Chudziak Results. Math.

Putting in the last equality y = 0 and then z = 0, we obtain
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Let a : G → H be given by
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Then from (14) and (15) we derive (11). Moreover, in view of (13) and (16),
we obtain
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and so (6) becomes
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for (x, y, z) ∈ G × A × B.

Therefore, making use of (17), we get
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= a(x + y) + F (x + y) + (N − 1)b + a(y + z) + F (y + z) + (N − 1)b

+a(z + x) + F (z + x) + (N − 1)b for (x, y, z) ∈ G × A × B

which, together with (11), gives
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= F (x + y) + F (y + z) + F (z + x) + b for (x, y, z) ∈ G × A × B.

Consequently, taking f := F − b, we obtain (7) and (12). Moreover, in view of
(8), (12) and (18), we get
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Thus (9) holds. Note also that taking into account (8), (12) and (17), we obtain
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The converse is easy to check. �

3. Fréchet Equation on Cylinders

According to Theorem 2.1, the Popoviciu type functional equations are closely
related to Eq. (7), being the Fréchet equation on a cylinder. It is remarkable
that the Fréchet equation

f(x + y + z) + f(x) + f(y) + f(z) = f(x + y) + f(y + z) + f(z + x), (19)

known also as the Deeba equation (cf. [8,11]), is strictly related to the problem
of characterization of inner product spaces. It is well known that a normed
space (X, ‖‖) is an inner product space if and only if the function f : X →
[0,∞) given by f(x) = ‖x‖2 for x ∈ X, satisfies Eq. (19) for all x, y, z ∈ X.
The solutions of (19) in a more general setting have been considered in [11]
(see also [12]). Various aspects of stability problem for (19) have been studied
in [8–10].

The following result will play an important role in the considerations of
this section.
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Proposition 3.1. Let (G,+) be a commutative semigroup, (H,+) be a commu-
tative group. Assume that A and B are nonempty subsets of G and a function
f : G → H satisfies Eq. (7). Then the following two sets

P1(B) := {y ∈ G : f(x + y + z) + f(x) + f(y) + f(z)
= f(x + y) + f(y + z) + f(z + x) for (x, z) ∈ G × B}

and

P2(A) := {z ∈ G : f(x + y + z) + f(x) + f(y) + f(z)
= f(x + y) + f(y + z) + f(z + x) for (x, y) ∈ G × A}

are subsemigroups of (G,+) containing A and B, respectively. Moreover, if
(G,+) is a group then the sets P1(B) and P2(A) are subgroups of (G,+).

Proof. From (7) it follows that A ⊂ P1(B) and B ⊂ P2(A), so P1(B) and
P2(A) are nonempty. Let y1, y2 ∈ P1(B). Then, applying (7), we get

f(x + (y1 + y2) + z) + f(x) + f(y1 + y2) + f(z)
= f((x + y1) + y2 + z) + f(x) + f(y1 + y2) + f(z)
= f(x + y1 + y2) + f(y2 + z) + f(z + x + y1) − f(x + y1)

−f(y2) − f(z) + f(x) + f(y1 + y2) + f(z)
= f(x + y1 + y2) + f(y2 + z) + f(x + y1) + f(y1 + z) + f(z + x)

−f(x) − f(y1) − f(z) − f(x + y1) − f(y2) + f(x) + f(y1 + y2)
= f(x + y1 + y2) + f(y2 + z) + f(z + y1) + f(y1 + y2) − f(z)

−f(y1) − f(y2) + f(z + x)
= f(x + y1 + y2) + f(y1 + y2 + z) + f(z + x) for (x, z) ∈ G × B

whence y1 + y2 ∈ P1(B). Thus P1(B) is a subsemigroup of (G,+). The same
arguments show that P2(B) is a subsemigroup of (G,+).

Now, assume that (G,+) is a group. As previously, we present the proof
only for P1(B). Since we have already proved that P1(B) is a subsemigroup of
(G,+), it is enough to show that −y ∈ P1(B) for every y ∈ P1(B). To this end
fix a y ∈ P1(B). Note that taking in (7) x = 0, we get f(0) = 0. Therefore,
setting in (7) x = −y, we obtain

f(z) + f(−y) + f(y) + f(z) = f(y + z) + f(z − y) for z ∈ B,

that is

f(y + z) = 2f(z) + f(−y) + f(y) − f(−y + z) for z ∈ B. (20)

On the other hand, in view of (7), for every (x, z) ∈ G × B, we have

f(x + z) = f((x − y) + y + z)
= f((x − y) + y) + f(y + z) + f(z + x − y)

− f(x − y) − f(y) − f(z)
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and so

f(x − y + z) = f(x + z) + f(x − y) + f(y) + f(z) − f(x) − f(y + z).

Thus, making use of (20), for every (x, z) ∈ G × B, we get

f(x − y + z) + f(x) + f(−y) + f(z) = f(x − y) + f(−y + z) + f(z + x).

This means that −y ∈ P1(B). �
Corollary 3.2. Let (G,+) be a commutative (semi)group and (H,+) be a com-
mutative group. Assume that A and B are nonempty subsets of G and a func-
tion f : G → H satisfies Eq. (7). Then

f(x + y + z) + f(x) + f(y) + f(z)
= f(x + y) + f(y + z) + f(z + x) for (x, y, z) ∈ G × G(A) × G(B),

(21)

where G(A) and G(B) are sub(semi)groups of (G,+) generated by A and B,
respectively.

Proof. According to Proposition 3.1, P1(B) is a sub(semi)group of the (semi)
group (G,+) containing A. Hence G(A) ⊂ P1(B) and so

f(x + y + z) + f(x) + f(y) + f(z)
= f(x + y) + f(y + z) + f(z + x) for (x, y, z) ∈ G × G(A) × B.

(22)

Applying again Proposition 3.1, we obtain that P2(G(A)) is a sub(semi)group
of the (semi)group (G,+) containing B. Thus G(B) ⊂ P2(G(A)), which to-
gether with (22) gives (21). �

From Corollary 3.2 we derive the following result.

Theorem 3.3. Let (G,+) be a commutative (semi)group and (H,+) be a com-
mutative group. Assume that A and B are subsets of G such that G(A) =
G(B) = G, where G(A) and G(B) are sub(semi)groups of (G,+) generated
by A and B, respectively. Then every function f : G → H satisfying Eq. (7)
satisfies equation
f(x+y+z)+f(x)+f(y)+f(z) = f(x+y)+f(y+z)+f(z+x) for x, y, z ∈ G.

(23)
The following example shows that the assumption G(A) = G(B) = G is

essential in Theorem 3.3.

Example 3.4. Let (G,+) = (H,+) = (Z,+), B = 2Z and let f : Z → Z be of
the form f(x) = x (mod 2) for x ∈ Z. Then f(x+y) = f(x) for (x, y) ∈ Z×2Z,
which means that f satisfies (7) with an arbitrary nonempty set A ⊂ Z. On
the other hand, we have

f(1 + 1 + 1) + f(1) + f(1) + f(1) = 4 	= 0 = f(1 + 1) + f(1 + 1) + f(1 + 1),

so f does not satisfy (23).
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4. Popoviciu Type Equations on Cylinders

Applying the results of the previous sections, we obtain the following two
theorems concerning the solutions of the Popoviciu type equations on cylinders.

Theorem 4.1. Let m,n,M and N be positive integers. Assume that (G,+) is
a commutative semigroup with 0 (a commutative group) uniquely divisible by
m and n, and (H,+) is a commutative group. Let A and B be subsets of G
containing 0. If a function F : G → H satisfies Eq. (6) then
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for (x, y, z) ∈ G × G(A) × G(B) (24)

where, as previously, G(A) and G(B) are subsemigroups (subgroups) of (G,+)
generated by A and B, respectively.

Proof. Assume that F satisfies (6). Then, according to Theorem 2.1, there
exist functions a, f : G → H and a b ∈ H such that f satisfies (7), (8)-(11)
hold and F is of the form (12). Applying Corollary 3.2, we get (21). Moreover
(cf. [13, Lemma 18.5.1, p. 552]) from (11) it follows that

a(x + y) = a(x) + a(y) for (x, y) ∈ G × G(A ∪ B),

where G(A ∪ B) denotes the subsemigroup (subgroup) of (G,+) generated by
A ∪ B. Since G(A) ∪ G(B) ⊂ G(A ∪ B), from the last equality we derive that

a(x + y) = a(x) + a(y) for (x, y) ∈ G × [G(A) ∪ G(B)].

Hence, making use of (8)–(10) and (21), according to Theorem 2.1, we obtain
(24). �

From Theorem 4.1 we derive the following result.

Theorem 4.2. Let m,n,M and N be positive integers, (G,+) be a commuta-
tive semigroup with 0 (a commutative group) uniquely divisible by m and n,
and (H,+) be a commutative group. Assume that A and B are subsets of G
containing 0 such that G(A) = G(B) = G, where G(A) and G(B) are subsemi-
groups (subgroups) of (G,+) generated by A and B, respectively. If a function
F : G → H satisfies (6) then
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for x, y, z ∈ G.
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5. Final Remarks

The problem of determining the general solution of (6) as well as (7) is open.
Nevertheless, we are going to present some remarks concerning the solutions
of (7). In the whole section, given a group (G,+) and a nonempty set D ⊂ G,
by G(D) we denote a subgroup of (G,+) generated by D.

Remark 5.1. Let (G,+) and (H,+) be commutative groups such that (H,+)
contains at least two elements. Assume that A and B are nonempty subsets
of G such that at least one of the groups G/G(A) and G/G(B), say G/G(A),
contains an element of order greater than 3. Then there is an x0 ∈ G such that
[−x0] 	= [2x0], where [x] denotes the equivalence class of x. Let φ : G/G(A) →
H be such that φ([0]) = φ([x0]) = 0 and φ([−x0]) 	= φ([2x0]). Furthermore,
let f : G → H be given by f(x) = φ([x]) for x ∈ G. Then, for every (x, y, z) ∈
G×A×B, we get f(x+y+z) = f(x+z), f(x+y) = f(x) and f(y+z) = f(z)
whence f satisfies (7). On the other hand, we have

f(x0 + x0 − x0) + f(x0) + f(x0) + f(−x0) = 3φ([x0]) + φ([−x0]) = φ([−x0])

and

f(x0 + x0) + f(x0 − x0) + f(−x0 + x0) = φ([2x0]) + 2φ([0]) = φ([2x0]).

Since φ([−x0]) 	= φ([2x0]), this means that f does not satisfy (23).

Remark 5.2. Let (G,+) and (H,+) be commutative groups such that (H,+)
contains at least one non-zero element a of order different from 3. Assume that
A and B are nonempty subsets of G such that G(A) 	= G and every non-zero
element of the quotient group G/G(A) has the order 3. Fix an x0 ∈ G\G(A).
Let φ : G/G(A) → H be such that φ([0]) = 0 and φ([x0]) = a. Furthermore,
let f : G → H be given by f(x) = φ([x]) for x ∈ G. Then, arguing as in
Remark 5.1, one can easily check that f satisfies (7). On the other hand, as
[−x0] = [2x0], we have

f(x0 + x0 − x0) + f(x0) + f(x0) + f(−x0)
= 3φ([x0]) + φ([−x0]) = 3a + φ([2x0])

and

f(x0 + x0) + f(x0 − x0) + f(−x0 + x0) = φ([2x0]) + 2φ([0]) = φ([2x0]).

Since the order of a is different from 3, this means f does not satisfy (23).
The same arguments work also in the case where G(B) 	= G and every

non-zero element of the quotient group G/G(B) has the order 3.

Remark 5.3. Let (G,+) and (H,+) be commutative groups such that (H,+)
contains at least one non-zero element a of order different from 2 and 4. Assume
that A and B are nonempty subsets of G such that G(A) 	= G and every non-
zero element of the quotient group G/G(A) has the order 2. Let f : G → H
be of the form
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f(x) =
{

0 for x ∈ G(A),
a for x ∈ G\G(A). (25)

Then, as previously, f satisfies (7). On the other hand, taking x = y = z ∈
G\G(A), we have x + y, y + z, z + x ∈ G(A) and x + y + z 	∈ G(A), so

f(x + y + z) + f(x) + f(y) + f(z) = 4a 	= 0 = f(x + y) + f(y + z) + f(z + x).

Thus f does not satisfy (23).
The same arguments show that if G(B) 	= G and every non-zero element

of the quotient group G/G(B) has the order 2, then the function f given by
(25) satisfies (7), but it does not satisfy (23).

If (G,+) and (H,+) are commutative groups such that (H,+) contains
at least two elements and A, B are nonempty subsets of G such that every
solution f : G → H of (7) satisfies (23) then, according to Remarks 5.1–5.3,
one of the following two conditions holds:

(i) every non-zero element of the groups G/G(A), G/G(B) and (H,+) has
the order 3;

(ii) every non-zero element of the groups G/G(A) and G/G(B) has the order
2 and every non-zero element of (H,+) has either the order 2 or 4.

The next two examples show that, in general, neither (i) nor (ii) implies that
every solution f : G → H of (7) satisfies (23).

Example 5.4. Let (G,+) = (Z9,+), (H,+) = (Z3,+) and A = B = {3}. Then
G(A) = G(B) = {0, 3, 6} and so (i) is valid. Let f : G → H be of the form

f(x) =

⎧⎨
⎩

0 for x = 0,
2 for x = 6,
1 otherwise.

Then a straightforward calculation shows that f satisfies (7). However, we
have

f(1 + 1 + 1) + f(1) + f(1) + f(1) = 1 	= 0 = f(1 + 1) + f(1 + 1) + f(1 + 1).

Therefore, f does not satisfy (23).

Example 5.5. Let (G,+) = (H,+) = (Z4,+) and A = B = {2}. Then G(A) =
G(B) = {0, 2} whence (ii) holds. Let f : G → H be given by

f(x) =
{

0 for x = 0,
2 otherwise.

Then f satisfies (7). On the other hand, we have

f(1 + 3 + 3) + f(1) + f(3) + f(3) = 0 	= 2 = f(1 + 3) + f(3 + 3) + f(3 + 1),

which means that f does not satisfy (23).

We conclude the paper with a one more example.
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Example 5.6. Let (G,+) = (Z6,+), (H,+) = (Z3,+) and A = B = {3}. Then
G(A) = G(B) = {0, 3}, so the order of every non-zero element of the groups
G/G(A), G/G(B) and (H,+) is equal to 3. Suppose that f : Z6 → Z3 satisfies
Eq. (7), that is

f(x+3+3)+f(x)+f(3)+f(3) = f(x+3)+f(3+3)+f(x+3) for x ∈ Z6. (26)

Applying (26) with x = 0 and then with x = 3, we obtain f(0) = f(3) = 0.
Therefore (26) becomes 2f(x) = 2f(x + 3) for x ∈ Z6 whence f(x) = f(x + 3)
for x ∈ Z6. We show that f satisfies (23). To this end, fix x, y, z ∈ Z6. The
case where {x, y, z}∩{0, 3} 	= ∅ is obvious. Furthermore, if x, y, z ∈ {1, 2, 4, 5},
then both sides of (23) are equal 0 whenever x+ y + z ∈ {0, 3}; f(2) whenever
x + y + z ∈ {1, 4} and f(1) whenever x + y + z ∈ {2, 5}. Therefore f satisfies
(23). So, every solution of (26) satisfies (23).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution, and reproduction in any
medium, provided the original author(s) and the source are credited.
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