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Abstract Considering both single andmultiple time delays, partial pole assignment for stabilising asymmetric
systems is exemplified by friction-induced vibration and aerodynamic flutter. The control strategy is a single-
input state feedback including constant time delays in the feedback loop. An unobservability condition is
considered to assign some poles while keeping others unchanged. The receptance method is applied to avoid
modelling errors from evaluating mass, damping and stiffness matrices by the finite element method. The
solution is formulated in linear equations which allow determination of control gains. The stability of the
closed-loop system is analysed by evaluating the first few dominant poles and determining a critical time
delay. The numerical study shows that the proposed method is capable of making partial pole assignment with
time delays. Sincemany structures and systemswith non-conservative forces can be represented by asymmetric
systems, this approach is widely applicable for vibration control of engineering structures.

1 Introduction

Undesirable vibration generated from machines and natural sources may lead to degradation of machine
performances, failure of structures and health deterioration of humans. It can be reduced in many ways. One of
them, pole assignment, is to shift natural frequencies away from the excitation frequencies to avoid resonances
and/or to add damping for preventing excessive vibration. Active pole assignment was first formulated in the
first-order differential equation [1,11,35], and recently it has been implemented in the second-order differential
equation [4,5,10]. Although the first-order differential equation is a general approach and mostly used in
general control theory, the second-order differential equation is the natural formulation for vibration problems
and maintains some good properties of the second-order equation of motion such as the symmetry of the
structural matrices.

The use of pole assignment to a structural system containing an infinite number of degrees of freedom
does not guarantee stability due to unassigned (residue) poles. They may get unintentionally shifted from the
left-hand side to the right-hand side of the complex plane leading to instability. To overcome this so-called
spillover problem, Datta et al. [6] proposed partial pole assignment by using single-input control which could
shift some poles and keep others unchanged. Ram [23] applied this algorithm to control vibration of a rod.
Datta and Sarkissian [8], and Ram and Elhay [24] extended the single-input control to the multi-input control.
Xu and Qian [37] studied robust partial pole assignment using state feedback control. It can not only assign
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partial poles, but also provide robustness (insensitivity to perturbations). Datta et al. [7] introduced partial
eigenstructure assignment which allowed both eigenvalues and eigenvectors to be assigned.

In practice, time delay always exists in active vibration control systems due to sensing and actuating in the
feedback loop. It may degrade the control performance and destabilise a system. To deal with this problem,
partial pole assignment with time delay using single-input and multiple-input control was developed by Pratt
et al. [22] and Bai et al. [2]. However, these works did not investigate the stability. Singh and Ouyang [29]
demonstrated various methods, i.e., Taylor series expansion, Newton’s eigenvalue iteration method [30] and a
graphical root-finding algorithm [34], to determine the first few dominant poles of the closed-loop system (the
closed-loop system with time delay has an infinite number of poles) and implemented a frequency-sweeping
method [9] to determine the critical time delay. Moreover, Singh et al. [28] used the traceDDE toolbox in
MATLAB [3] to evaluate the first twenty closed-loop poles and applied cluster treatment of characteristic
roots (CTCR) [18] to determine the critical time delay of a system with 3 degrees of freedom.

Active pole assignment in a model-based approach requires the knowledge of mass, damping and stiffness
matrices. The matrices can be evaluated from the finite element method (FEM). Mottershead and Ram [15]
pointed out that finite element models always have errors because several assumptions must be made when
thesemodels are constructed, for example, damping is neglected (or proportional damping assumed) andmodel
reduction methods are applied. To deal with this problem, the receptance method for a single-input control was
proposed [15]. The idea of this method is to measure receptance from experiment rather than evaluating mass,
damping and stiffness matrices from the FEM. So modelling errors from FEM can be avoided. The receptance
method was extended to pole-zero assignment [16], pole assignment with time delay [26,27], robust pole
assignment [17,32] and eigenstructure assignment [14]. It was also applied to partial pole assignment to shift
some poles and keep others unchanged by using the uncontrollability condition [31] and unobservability
condition [25]. Furthermore, Ram and Mottershead [25] extended partial pole assignment to a multi-input
receptance-based method.

The aforementioned works studied pole assignment for symmetric systems. Nonetheless, some structures
and machines are asymmetric systems due to non-conservative forces such as friction and aerodynamic forces.
They are defined by asymmetric damping and/or stiffness matrices and prone to instability reflected by some
positive real parts of poles. Friction-induced vibration being an example of an asymmetric systemwas stabilised
by pole assignment using the receptance method [20,21]. Many researchers extended the previous works to
pole assignment with time delay [29], robust pole assignment [13], partial pole assignment by using the
uncontrollability condition [33] and unobservability condition [12]. Nonetheless, partial pole assignment with
time delay for asymmetric systems has not been done yet.

In this paper, partial pole assignmentwith time delays for asymmetric systems by using the single-input state
feedback control is proposed. The receptance method is implemented which requires no knowledge of mass,
damping and stiffness matrices. The unobservability condition is also applied to keep some poles unchanged.
The solution is determined by using Sherman–Morrison formula and formulated in linear equations which
can be solved directly. The stability is analysed by using the traceDDE toolbox in MATLAB [3] to compute
the first few dominant poles of the closed-loop system, and the frequency-sweeping test [9] is carried out
to determine the critical time delay. Two numerical examples of friction-induced vibration and aerodynamic
flutter show that the partial pole assignment with the time delays as proposed in this paper can assign the
required closed-loop poles precisely without changing the other poles. The dominant closed-loop poles and
the critical time delay are determined to ensure that the closed-loop system is stable.

2 Partial pole assignment with time delays

The dynamic equation of asymmetric systems including velocity and displacement feedback control with time
delays presented in [29] can be written as

Mẍ(t) + Cẋ(t) + Kx(t) = bu(t − τ) + p(t), (1)

C = Cs + Cas, (2)

K = Ks + Kas, (3)

u(t − τ) = −fTẋ(t − τf) − gTx(t − τg), (4)

whereM, Cs and Ks ∈ R
n×n are, respectively, real symmetric mass, damping and stiffness matrices; Cas and

Kas ∈ R
n×n are, respectively, real asymmetric damping and stiffness matrices generated by non-conservative
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forces such as friction and aerodynamic forces; x,p,b, f and g are displacement, excitation force, actuator
distribution, velocity gain and displacement gain vectors; u is a control force; τf and τg are time delays
associated with the velocity and displacement state feedback, respectively, which either occur naturally in
control equipment or are intentionally introduced; and the superscript T denotes matrix transposition.

Laplace transform of Eq. (1) gives

(
s2M + s(Cs + Cas) + Ks + Kas

)
x(s)est = −b(se−sτf fT + e−sτggT)x(s)est + p(s)est , (5)

(
s2M + s(Cs + Cas) + Ks + Kas + b(se−sτf fT + e−sτggT)

)
x(s) = p(s). (6)

Define

Has(s) = (
s2M + s(Cs + Cas) + Ks + Kas

)−1
, (7)

Ĥas(s) = (
H−1

as (s) + b(se−sτf fT + e−sτggT)
)−1

. (8)

Apparently, Has and Ĥas are (asymmetric) receptance matrices of the open-loop and closed-loop systems.
It should be pointed out [33] that Has is difficult to measure in practice, for example, measuring Has in a
disc brake requires a torque to rotate the disc while the brake is engaged. So, Has should be rearranged and
expressed in terms of the open-loop symmetric receptance matrix Hs, which is easier to measure:

Has(s) = (
I + Hs(s)(sCas + Kas)

)−1Hs(s), (9)

Hs(s) = (s2M + sCs + Ks)
−1. (10)

Using the Sherman–Morrison formula, Eq. (8) can be expressed as

Ĥas(s) = Has(s) − Has(s)b(se−sτf fT + e−sτggT)Has(s)

1 + (se−sτf fT + e−sτggT)Has(s)b
. (11)

It can be seen that the poles of the closed-loop system (that are different from the poles of the open-loop
system) satisfy the following characteristic equation:

(μie
−μi τf fT + e−μi τggT)Has(μi )b = −1, (12)

where μi is a required closed-loop pole.
According to Eq. (11), a particular pole λi can make the closed-loop receptance matrix equal to the open-

loop receptance matrix (Ĥas = Has) when

(λie
−λi τf fT + e−λi τggT)Has(λi ) = 0, (13)

where λi is an unchanged pole. Post-multiplying Eq. (13) by b, it implies that

(λie
−λi τf fT + e−λi τggT)Has(λi )b = 0. (14)

Combining Eqs. (12) and (14), the velocity gain and displacement gain vectors for the partial pole assign-
ment with the time delays by using the unobservability condition are derived as

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

e−μ1τgrT1 μ1e−μ1τf rT1
...

...

e−μpτgrTp μpe−μpτf rTp
e−λp+1τgrTp+1 λp+1e−λp+1τf rTp+1

...
...

e−λ2nτgrT2n λ2ne−λ2nτf rT2n

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(
g
f

)
=

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

−1
...

−1
0
...

0

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

, (15)

r = Hasb. (16)
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To validate the result, the required closed-loop poles, the unchanged poles, the control gain vectors, the
actuator distribution vector and the time delays are substituted back into Eq. (17). If |D| is close to zero, the
partial poles are successfully assigned by using the unobservability condition:

D = det
(
s2M + s(C + e−sτfbfT) + K + e−sτgbgT

)
. (17)

It should be noted that time delay can vary with time or state. When it varies with time, an analytical
mathematical expression of Laplace transform of u(t − τ), such as in Eq. (5), cannot be obtained. This means
that pole assignment as a frequency-domain method cannot be used. When time delay varies with state, Eq. (1)
becomes a nonlinear dynamic problem. Again pole assignment cannot be used. Therefore, in this paper, time
delay is assumed to be a constant.

3 Stability analysis

3.1 Root-finding method

The stability must be investigated after applying the feedback control. The time delays in the feedback loop
may destabilize the system. Without the time delay τ = 0, the characteristic equation of the closed-loop
system,

P(s) = s2M + s(C + bfT) + K + bgT, (18)

is generally formulated in a polynomial which has 2n poles for the n-dimensional system. The stability is
defined by pole locations. All negative real parts of the poles indicate a stable system, and any positive real part
of the pole indicates an unstable system. Nonetheless, the characteristic equation of the closed-loop system
with time delays,

Q(s) = s2M + s(C + e−sτfbfT) + K + e−sτgbgT, (19)

has an infinite number of poles. Various methods were proposed, i.e., Taylor series expansion, Newton’s
eigenvalue iteration method [30] and a graphical method [34], to approximate the first few dominant poles
(closest to the imaginary axis of the complex plane) of the closed-loop system. In this paper, the traceDDE
toolbox in MATLAB [3] is applied to evaluate the dominant closed-loop poles.

3.2 Frequency-sweeping test

Although root-finding methods can determine the first few dominant closed-loop poles, they cannot guarantee
stability because the remaining poles may have positive real parts. To ensure stability, the frequency-sweeping
test [9] is implemented. The closed-loop system with time delays is classified by delay-independent stability,
delay-dependent stability and instability. Delay-independent stability means the system is stable for any time
delay: τ = [0,∞]. Delay-dependent stability indicates the system is stable within a limited range of time
delay: τ = [0, τ ], where τ is the critical time delay. Instability means an unstable system for any time delay.

In this paper, only commensurate delays are considered. The closed-loop system

Mẍ(t) + Cẋ(t) + Kx(t) = −bfTẋ(t − τf) − bgTx(t − τg) (20)

can be studied in cases of two specific delays:

ż(t) = A0z(t) + A1z(t − τ), for τf = τg = τ ≥ 0,

z =
(
x
ẋ

)
, A0 =

[
0 I

−M−1K −M−1C

]
, A1 =

[
0 0

−M−1bgT −M−1bfT

]
, (21)

or

ż(t) = A0z(t) + A1z(t − τ) + +A2z(t − 2τ), for τf = τ and τg = 2τ ≥ 0,

z =
(
x
ẋ

)
, A0 =

[
0 I

−M−1K −M−1C

]
, A1 =

[
0 0
0 −M−1bfT

]
, A2 =

[
0 0

−M−1bgT 0

]
. (22)
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For a single time delay τf = τg = τ , Gu et al. [9] stated that the closed-loop system is delay-independent
stable if and only if

�(
λi (A0)

)
< 0 (A0 is stable), (23)

�(
λi (A0 + A1)

)
< 0 (A0 + A1 is stable), (24)

ρ
(
iωI − A0)

−1A1
)

< 1, ∀ω > 0, (25)

where ρ is spectral radius: ρ(A) = max1≤i≤2n |λi (A)|, λi (A) denotes eigenvalues of matrix A. If one of them
is not satisfied, the closed-loop system is not delay-independent stable (may be either delay-dependent stable
or unstable). For the delay-dependent stable system, if the closed-loop system without time delay is stable
(Eq. (24) is satisfied), the critical time delay is determined by

τ := min
1≤i≤q

τ i , for q = rank(A1), (26)

τ i = min
1≤k≤2n

θ ik

ωi
k

if λi
(
(iωi

kI − A0),A1
) = e−iθ ik , for some ωi

k ∈ (0,∞), θ ik ∈ [0, 2π]. (27)

For multiple commensurate time delays (for example, τf = τ and τg = 2τ ), Gu et al. [9] stated that the
closed-loop system is delay-independent stable if and only if

�(
λi (A0)

)
< 0 (A0 is stable), (28)

�(
λi (A0 + A1 + A2)

)
< 0 (A0 + A1 + A2 is stable), (29)

ρ

([
(sI − A0)

−1A1 (sI − A0)
−1A2

I 0

] )
< 1, ∀ω > 0. (30)

If one of them is not satisfied, the closed-loop system is not delay-independent stable (may be either delay-
dependent stable or unstable). For the delay-dependent stable system, if the closed-loop system without time
delay is stable (Eq. (29) is satisfied), the critical time delay is determined by

τ := min
1≤i≤q+2n

τ i , for q = rank(A2), (31)

τ i = min
1≤k≤2n

θ ik

ωi
k

if λi

([
0 I

−(sI − A0) A1

]
,

[
I 0
0 −A2

])
= e−iθ ik , for some ωi

k ∈ (0,∞), θ ik ∈ [0, 2π].
(32)

Consequently, the closed-loop system with time delays is stable if τ < τ , but it becomes unstable if τ > τ .

4 Numerical examples

4.1 Friction-induced vibration

A friction-induced vibration problem modelled by a mass-spring-damper system on a conveyor belt as illus-
trated in Fig. 1 is the asymmetric system under the present study. It is the same model studied in [19] (which
made structural modifications). The system consists of four masses with m1 having a degree-of-freedom in
the horizontal direction,m4 having a degree-of-freedom in the vertical direction,m2 andm3 having degrees of
freedom in both directions. When the belt is moving, friction forces are generated to produce an asymmetric
stiffness matrix. To simplify the problem, Coulomb friction is considered and stick-slip phenomena is avoided.
M, Cs, Ks and Kas corresponding to the displacement vector, x = {x1, y4, x2, x3, y2, y3}T, are given by
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Fig. 1 Asymmetric system of friction-induced vibration

M =

⎡

⎢
⎢⎢
⎢⎢
⎣

m1 0 0 0 0 0
0 m4 0 0 0 0
0 0 m2 0 0 0
0 0 0 m3 0 0
0 0 0 0 m2 0
0 0 0 0 0 m3

⎤

⎥
⎥⎥
⎥⎥
⎦

, Cs =

⎡

⎢
⎢⎢
⎢⎢
⎣

c1 0 −c1 0 0 0
0 0 0 0 0 0

−c1 0 c1 + c2 −c2 0 0
0 0 −c2 c2 0 0
0 0 0 0 c0 0
0 0 0 0 0 c3

⎤

⎥
⎥⎥
⎥⎥
⎦

,

Ks =

⎡

⎢
⎢⎢
⎢⎢
⎣

k11 0 k13 0 0 0
0 k22 0 0 k25 0
k31 0 k33 k34 k35 0
0 0 k43 k44 0 k46
0 k52 k53 0 k55 0
0 0 0 k64 0 k66

⎤

⎥
⎥⎥
⎥⎥
⎦

, Kas =

⎡

⎢
⎢⎢
⎢⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 μckc 0
0 0 0 0 0 μckc
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥⎥
⎥⎥
⎦

,

where k11 = k1 + k2, k13 = k31 = −k2, k22 = k6 + k8, k25 = k52 = −k6, k33 = k2 + k3 + 0.5(k5 + k7),
k34 = k43 = −k3, k35 = k53 = 0.5(k7 − k5), k44 = k3 + k4 + 0.5k10, k46 = k64 = −0.5k10, k55 =
kc + k6 + 0.5(k5 + k7), k66 = kc + k9 + 0.5k10.

Assuming mass, mi = 1 kg (i = 1, 2, 3, 4); damping, ci = 0.5 Ns/m (i = 0, 1, 2, 3); stiffness, ki = 100
N/m (i = 1, 2, 3, 4, 5, 6, 8, 9, 10), k7 = 50 N/m; contact stiffness, kc = 110 N/m; and friction coefficient,
μc = 0.5, the open-loop poles are determined by using the polyeig function inMATLAB (Table 1). Obviously,
the open-loop poles indicate that the system is unstable because the first pair of poles is located on the right-hand
side of the complex plane. To stabilise the system, they must be shifted to the left-hand side of the complex
plane.

Three cases of required closed-loop poles are shown in Table 1. Partial pole assignment with different time
delays (including single and multiple time delays) is demonstrated by using the unobservability condition.
The actuator distribution vector b = {0, 0, 1, 1, 1, 1}T is assumed. Velocity and displacement gain vectors
for assigning the required closed-loop poles including the time delays are determined by solving the linear
equations expressed in Eq. (15). The results are shown in Table 2. They are then substituted back into Eq. (17).
It is found that |D| is close to zero for all cases. Hence, the algorithm of partial pole assignment with time
delays by using the unobservability condition is successful.

The stability can be investigated by examining the poles of the closed-loop system. By using the traceDDE
toolbox in MATLAB [3], the first twenty poles of the closed-loop system are determined (Table 3). As can
be seen, for all cases, the required closed-loop poles are placed precisely and the other poles have negative
real parts. Although the closed-loop poles have negative real parts, they do not guarantee the stability due to
unidentified residue poles.

Alternatively, the stability is analysed by using the frequency-sweeping test [9] described in Sect. 3.2. It
is clear that the closed-loop systems for all cases are not delay-independent stable because of positive real
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Table 1 Open-loop poles and required closed-loop poles

Open-loop poles Closed-loop poles

Case I Case II Case III

0.0069 ± 10.3843i − 1.0000 ± 10.5000i − 1.0000 ± 10.5000i − 1.0000 ± 10.5000i
− 0.0903 ± 11.4497i − 0.0903 ± 11.4497i − 1.0000 ± 11.5000i − 1.0000 ± 11.5000i
− 0.2517 ± 15.2078i − 0.2517 ± 15.2078i − 1.0000 ± 15.0000i − 1.0000 ± 15.0000i
− 0.2465 ± 15.9791i − 0.2465 ± 15.9791i − 0.2465 ± 15.9791i − 1.0000 ± 16.0000i
− 0.0838 ± 18.8646i − 0.0838 ± 18.8646i − 0.0838 ± 18.8646i − 1.0000 ± 18.5000i
− 0.8346 ± 19.6958i − 0.8346 ± 19.6958i − 0.8346 ± 19.6958i − 0.8346 ± 19.6958i

Table 2 Control gains obtained by using the unobservability condition

Case τf = τg = 0.05 τf = τg = 0.10 τf = 0.05, τg = 0.10

g f g f g f

I − 5.5461 1.5305 − 12.6243 0.9381 − 6.5012 1.2013
1.9129 − 0.6826 5.1805 − 0.4476 2.3218 − 0.5650

− 5.1010 1.4081 − 11.6325 0.8582 − 5.7976 1.1113
− 4.0290 0.9744 − 8.3916 0.5852 − 4.8354 − 0.7341
1.4587 − 0.6289 4.5753 − 0.4118 1.5600 − 0.5436
0.0973 − 0.0324 0.2529 − 0.2010 0.1035 − 0.0268

II − 15.4097 − 1.4658 2.2849 − 1.7048 − 14.1786 − 2.1774
19.1193 4.8153 − 19.3657 4.3470 18.1490 5.5873

− 22.2576 0.0028 − 16.2764 − 1.1700 − 25.1700 − 1.2760
− 24.0482 0.5830 − 23.4735 − 0.9000 − 29.8556 − 0.9018
18.3706 3.1316 − 7.8771 3.0537 20.1041 4.0326
2.1532 − 0.1466 3.0501 0.0231 2.9517 0.0005

III 8.8756 − 5.1007 61.2222 − 2.4915 35.0940 − 3.0658
13.6525 4.0540 − 15.7040 3.6150 14.1803 4.2553

− 21.9749 2.0511 − 45.0928 − 0.1745 − 32.2067 0.1430
− 41.4140 3.4034 − 68.3566 − 0.1186 − 65.6609 − 0.2696
− 12.0039 3.7648 − 38.9014 1.8174 − 34.8242 1.7928
14.9200 − 4.8223 67.4949 − 1.9479 39.1440 − 2.5662

parts of the open-loop poles (A0 is unstable). For delay-dependent stability, the critical time delay can be
determined if the closed-loop system without time delay is stable (A0 + ∑m

i=1Ai is stable). It is obtained by
using Eqs. (26) and (31) for the single time delay and the multiple time delays, respectively. The results are
shown in Table 4. Obviously, for case III with the single time delay, τf = τg = 0.10, and multiple time delays,
τf = 0.05, τg = 0.10, the critical time delay cannot be determined because A0 + ∑m

i=1 Ai is unstable. For
other cases, the closed-loop systems are stable because the time delays are smaller than the critical ones.

In order to validate the critical time delays as shown in Table 4, displacement responses are plotted by
using dde23 function in MATLAB. The initial conditions used to test this are taken to be zero displacement
and zero velocity for all degrees-of-freedom except x3 = 0.01. For example, case II with τf = τg = 0.05,
the critical time delay at τ = 0.1406 is validated by applying time delays τ1 = 0.13 (τ1 < τ) and τ2 = 0.15
(τ1 > τ). It is clear from Fig. 2 that the closed-loop system is stable for τ1, but it is unstable for τ2. By using
the same method, the closed-loop systems for case III with τf = τg = 0.1 and τf = 0.05, τg = 0.1 are stable.

4.2 Aerodynamic flutter

The aeroelastic equation of a binary bending-torsion rectangular cantilevered wing (Fig. 3) is given by [36]

Mq̈ + (ρVCas + Cs)q̇ + (ρV 2Kas + Ks)q = 0, (33)

M =
[

msc
5

ms
4 ( c

2

2 − cxf)
ms
4 ( c

2

2 − cxf)
ms
3 ( c

3

3 − c2xf + cx2f )

]

, Cas =
[

csaw
10 0

−c2seaw
8

−c3sMθ̇

24

]

,

Kas =
[
0 csaw

8

0 −c2seaw
6

]
, Ks =

[ 4E I
s3

0
0 GJ

s

]
, q =

(
qb
qt

)
,
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Table 3 First twenty poles of the closed-loop system (sorted by the real part)

Case τf = τg = 0.05 τf = τg = 0.10 τf = 0.05, τg = 0.10

I − 0.0838 ± 18.8646i − 0.0838 ± 18.8646i − 0.0838 ± 18.8646i
− 0.0903 ± 11.4497i − 0.0903 ± 11.4497i − 0.0903 ± 11.4497i
− 0.2465 ± 15.9791i − 0.2465 ± 15.9791i − 0.2465 ± 15.9791i
− 0.2517 ± 15.2078i − 0.2517 ± 15.2078i − 0.2517 ± 15.2078i
− 0.8346 ± 19.6958i − 0.8346 ± 19.6958i − 0.8346 ± 19.6958i
− 1.0000 ± 10.5000i − 1.0000 ± 10.5000i − 1.0000 ± 10.5000i
− 74.707 − 31.615 − 43.019 ± 385.400i
− 91.877 ± 146.197i − 43.467 ± 74.4832i − 43.183 ± 385.281i
− 102.72 ± 275.863i − 49.405 ± 138.832i − 54.184
− 105.63 ± 2288.83i − 52.554 ± 1144.42i − 56.805 ± 311.847i

II − 0.0838 ± 18.8646i − 0.0838 ± 18.8646i − 0.0838 ± 18.8646i
− 0.2465 ± 15.9791i − 0.2465 ± 15.9791i − 0.2465 ± 15.9791i
− 0.8346 ± 19.6958i − 0.8346 ± 19.6958i − 0.8346 ± 19.6958i
− 1.0000 ± 10.5000i − 1.0000 ± 10.5000i − 1.0000 ± 10.5000i
− 1.0000 ± 11.5000i − 1.0000 ± 11.5000i − 1.0000 ± 11.5000i
− 1.0000 ± 15.0000i − 1.0000 ± 15.0000i − 1.0000 ± 15.0000i
− 51.760 − 22.566 − 33.794
− 76.375 ± 148.296i − 41.664 ± 76.9644i − 42.963 ± 385.497i
− 87.790 ± 277.096i − 48.599 ± 140.603i − 43.183 ± 385.281i
− 95.013 ± 404.147i − 52.557 ± 1144.46i − 56.805 ± 311.847i

III −0.8346 ± 19.6958i −0.8346 ± 19.6958i −0.8346 ± 19.6958i
−1.0000 ± 10.5000i −1.0000 ± 10.5000i −1.0000 ± 10.5000i
−1.0000 ± 11.5000i −1.0000 ± 11.5000i −1.0000 ± 11.5000i
−1.0000 ± 15.0000i −1.0000 ± 15.0000i −1.0000 ± 15.0000i
−1.0000 ± 16.0000i −1.0000 ± 16.0000i −1.0000 ± 16.0000i
−1.0000 ± 18.5000i −1.0000 ± 18.5000i −1.0000 ± 18.5000i
−41.253 −22.519 −18.998
−71.699 ± 149.518i −49.087 ± 89.2780i −43.183 ± 385.281i
−83.433 ± 277.818i −54.454 ± 1144.60i −43.389 ± 385.432i
−90.746 ± 404.658i −55.351 ± 1144.93i −44.683 ± 84.2841i

Table 4 Critical time delay

Case τf = τg = 0.05 τf = τg = 0.10 τf = 0.05, τg = 0.10

I 0.1688 0.2205 0.1334
II 0.1406 0.2015 0.1047
III 0.1118 − −

where M, Cs and Ks are respectively the structural inertia, damping and stiffness (symmetric) matrices, Cas
and Kas are the aerodynamic damping and stiffness (asymmetric) matrices, and q is a generalised coordinate
vector for bending qb and torsion qt .

Parameters used are taken from [36]: mass per unit area of the wing m = 200 kg/m2, wing span s = 7.5
m, chord c = 2 m, elastic axis location xf = 0.48c, bending rigidity E I = 2 × 107 Nm2, torsional rigidity
GJ = 2 × 106 Nm2, lift curve slope aw = 2π , non-dimensional pitch damping derivative Mθ̇ = − 1.2,
eccentricity between flexural axis and aero-centre e = xf/c− 0.25, air density ρ = 1.225 kg/m3 and air speed
V = 150 m/s. The damping matrix Cs is ignored. The poles of the open-loop system are

{λ}41 =
{

2.8961 ± 18.7011i
− 5.2470 ± 12.2944i

}
.

Obviously, the open-loop system is unstable because the first pair of poles has positive real parts. To
stabilise the system, partial pole assignment with multiple time delays τf = 0.03 and τg = 0.06 is considered
to assign {μ}21 = − 1±20i and keep {μ}43 unchanged. The actuator distribution vector b = {1, 1}T is assumed.
By applying Eq. (15), velocity and displacement gain vectors are obtained as

g =
(

4.8126
−2.9705

)
× 103, f =

(
1.0364
1.9497

)
× 103.
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Fig. 2 Displacement responses of the closed-loop system for case II with τf = τg = 0.05: τ1 = 0.13 (solid line) and τ2 = 0.15
(dotted line)

Fig. 3 Rectangular wing showing bending and torsion modes

They are substituted back into Eq. (17). It is found that |D| is close to zero. Hence, the algorithm of partial
pole assignment with the given time delays by using unobservability condition is successful. By using Eq. (31),
the critical time delay, τ = 0.0460, is determined. This means that the closed-loop system with the given time
delays is stable. The critical time delay is validated by plotting responses with the given initial conditions:
q = {0, 0.01}T, q̇ = {0, 0}T. It is clear from Fig. 4 that the closed-loop system with τ1 = 0.04 is stable, but
the closed-loop system with τ2 = 0.05 is unstable.

In addition, robustness is an important and interesting topic. The third author has studied robust full pole
assignment (see [13]). The authors are studying robust partial pole assignment now, but this topic is beyond
the scope of this paper and thus it will not be reported here.

5 Conclusions

In this paper, active partial pole assignment with time delays to asymmetric systems using single-input state
feedback control is developed. The unobservability condition is applied to keep some poles unchanged. The
receptance method is used to avoid modelling errors from the finite element method, and the Sherman–
Morrison formula is used to formulate the partial pole assignment problem in linear equations which can be
solved directly. Both single time delay and multiple commensurate time delays are tested to ensure that the
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Fig. 4 Responses of the closed-loop system with τ1 = 0.04 (solid line) and τ2 = 0.05 (dotted line)

partial pole assignment as proposed in this paper can assign the required closed-loop poles precisely without
spillover.

Stability is investigated by using traceDDE toolbox in MATLAB to determine the dominant closed-loop
poles. It is clear that the number of closed-loop poles is higher than 2n poles due to time delays. Some closed-
loop poles calculated by traceDDE are exactly the same as the required ones, and others are located in the
left-hand side of the complex plane. However, they cannot guarantee the stability since the locations of the
remaining poles are not completely known yet. To ensure stability, the frequency-sweeping test is applied to
determine the critical time delay.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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