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Abstract The n-step mixed integer rounding (MIR) inequalities of Kianfar and
Fathi (Math Program 120(2):313–346, 2009) are valid inequalities for the mixed-
integer knapsack set that are derived by using periodic n-step MIR functions and
define facets for group problems. The mingling and 2-step mingling inequalities of
Atamtürk and Günlük (Math Program 123(2):315–338, 2010) are also derived based
on MIR and they incorporate upper bounds on the integer variables. It has been shown
that these inequalities are facet-defining for the mixed integer knapsack set under cer-
tain conditions and generalize several well-known valid inequalities. In this paper, we
introduce new classes of valid inequalities for the mixed-integer knapsack set with
bounded integer variables, which we call n-step mingling inequalities (for positive
integer n). These inequalities incorporate upper bounds on integer variables into n-
step MIR and, therefore, unify the concepts of n-step MIR and mingling in a single class
of inequalities. Furthermore, we show that for each n, the n-step mingling inequal-
ity defines a facet for the mixed integer knapsack set under certain conditions. For
n = 2, we extend the results of Atamtürk and Günlük on facet-defining properties of
2-step mingling inequalities. For n ≥ 3, we present new facets for the mixed integer
knapsack set. As a special case we also derive conditions under which the n-step MIR
inequalities define facets for the mixed integer knapsack set. In addition, we show that
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n-step mingling can be used to generate new valid inequalities and facets based on
covers and packs defined for mixed integer knapsack sets.

Keywords Mixed integer rounding · Mixed integer programming · Mingling ·
Valid inequality · Facet

Mathematics Subject Classification (2000) 90C11

1 Introduction

Mixed-integer rounding (MIR) is a simple yet powerful procedure for generating
valid inequalities for mixed-integer programs (MIP) [14–16]. When used as cuts MIR
inequalities are very effective for solving MIP with unbounded integer variables. How-
ever, for problems with bounded variables lifting techniques tend to be more effective
as they explicitly use the variable bound information, whereas the MIR procedure
does not. In order to incorporate bound information on the integer variables into MIR
Atamtürk and Günlük [4] introduce a simple procedure, called mingling. Mingling
updates the coefficients of a base inequality after arranging terms suitably by using
upper bounds of the variables. They also define 2-step mingling inequalities, which
subsume MIR inequalities properly and the 2-step MIR of Dash and Günlük [5] under
certain conditions. Mingling and 2-step mingling lead to strong valid inequalities
for mixed-integer sets with bounded variables and to facets of mixed-integer knap-
sack sets derived earlier by superadditive lifting techniques. In particular, mingling
inequalities subsume continuous cover and inequalities of Marchand and Wolsey [12]
for the mixed 0–1 knapsack problems; 2-step mingling inequalities subsume continu-
ous integer knapsack cover and pack inequalities of Atamtürk [1,3] for mixed integer
knapsack problems.

In another direction, for a base mixed-integer constraint Kianfar and Fathi [10]
introduce a different generalization of MIR called the n-step MIR inequalities. These
inequalities are obtained by applying periodic n-step MIR functions [10] on the coeffi-
cients of a base inequality. Kianfar and Fathi [10,11] show that they are facet-defining
for the infinite and finite group problems [6–9] and also for certain single-constraint
mixed integer polyhedra. n-step MIR inequalities generalize the 2-step MIR inequal-
ities of Dash and Günlük [5].

In this paper, we unify the concepts of mingling and n-step MIR to define a sin-
gle class of valid inequalities, which we call the n-step mingling inequalities, for
the mixed-integer knapsack set. These new inequalities incorporate upper bounds
on integer variables into (n − 1)-step MIR with the mingling procedure. While the
2-step mingling inequality does not subsume the 2-step MIR inequality properly, the
3-step mingling inequality does. In general, n-step mingling inequalities subsume
(n − 1)-step MIR inequalities.

It is important to note that although the (n−1)-step MIR function is used to describe
the coefficients of an n-step mingling inequality, the n-step mingling inequality is dif-
ferent from inequality one obtains by simply applying the (n −1)-step MIR procedure
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n-step mingling inequalities 81

on a mingling inequality. Indeed, as we show later in the paper, the n-step mingling
inequality dominates the latter inequality.

We show that for each positive integer n, the n-step mingling inequality defines a
facet for the mixed-integer knapsack set under certain conditions. In the case of n = 2,
our results extend the results of [4] on facet-defining properties of 2-step mingling.
For n ≥ 3, our results present new facets for the mixed integer knapsack set. We also
derive conditions under which the n-step MIR inequalities of [10] define facets for
the mixed-integer knapsack set as a special case. In addition, we show that n-step
mingling can be used to generate new valid inequalities and facets based on covers
and packs defined for a mixed-integer knapsack set.

We begin with a brief review of mingling in Sect. 2. In Sect. 3 we introduce the basic
ideas of n-step mingling by presenting 3-step mingling inequality. We then present the
general case of the n-step mingling inequality. In Sect. 4 we show that n-step mingling
inequalities define new facets for the mixed-integer knapsack set under certain con-
ditions, and also derive sufficient conditions under which the n-step MIR inequalities
are facet-defining for this set. We present symmetric n-step mingling in Sect. 5 and
n-step mingling cover and pack inequalities in Sect. 6. We conclude with a few final
remarks in Sect. 7.

2 Mingling inequalities: a brief review

In this section we briefly review the mingling and 2-step mingling inequalities of
Atamtürk and Günlük [4]. This review establishes the notation that will be used in the
rest of the paper. First, recall that for the mixed-integer set defined as

∑

i∈N

ai xi + s ≥ b, x ∈ Z
N+ , s ∈ R+

the MIR inequality [14–16] with parameter α > 0 (also known as the α-MIR inequal-
ity) is

∑

i∈N

μα,b(ai )xi + s ≥ μα,b(b), (1)

where μα,b is the MIR function

μα,b(t) := b(1) �t/α� + min{b(1), t (1)},

where for any r ∈ R, r (1) is defined as

r (1) := r − α�r/α�.

We note that the nonnegativity of xi , i ∈ N , is necessary for the validity of the MIR
inequality unless ai is an integer multiple of α, i.e. ai/α ∈ Z; see [4,5,10,13,16].

Now consider the mixed-integer knapsack set with a single continuous variable and
upper bounds on the integer variables
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82 A. Atamtürk, K. Kianfar

K≥ :=
⎧
⎨

⎩(x, s) ∈ Z
|N |
+ × R+ :

∑

i∈I

ai xi +
∑

j∈J

a j x j + s ≥ b, x ≤ u

⎫
⎬

⎭ ,

where (I, J ) is a partitioning of N with ai > 0 for i ∈ I a j < 0 for j ∈ J . The upper
bound on each integer variable can be either a positive integer or infinity. We assume
in this section that b ≥ 0. In Sect. 5 we will consider the case b ≤ 0. It is clear that
the MIR inequality (1) for K≥ does not utilize the upper bounds u.

The mingling inequality for K≥does use the upper bounds u, and is derived as fol-
lows. Let I +=:{1, . . . , n+} be a subset of {i ∈ I : ai > b} indexed in non-increasing
order of ai ’s, and

J̄ :=
⎧
⎨

⎩ j ∈ J : a j +
∑

i∈I +
ai ui < 0

⎫
⎬

⎭ .

For j ∈ J\ J̄ , we define a set I j , an integer k j , and the numbers ūi j such that 0 ≤
ūi j ≤ ui for i ∈ I j as follows:

I j := {1, . . . , p( j)}, where p( j) := min

{
p ∈ I + : a j +

p∑

i=1

ai ui ≥ 0

}
;

k j := min

⎧
⎨

⎩k ∈ Z+ : a j +
p( j)−1∑

i=1

ai ui + ap( j)k ≥ 0

⎫
⎬

⎭ ; and

ūi j :=
{

ui , if i < p( j),
k j , if i = p( j).

On the other hand for j ∈ J̄ , we simply let I j := I +, p( j) := n+, k j := un+ , and
ūi j := ui for i ∈ I j . Also we define

δ j := min

⎧
⎨

⎩b, a j +
∑

i∈I j

ai ūi j

⎫
⎬

⎭ for j ∈ J ,

and, therefore,we have 0 ≤ δ j ≤ b for j ∈ J\ J̄ , and δ j < 0 for j ∈ J̄ . Also for i ∈ I ,
let Ji := { j ∈ J : i ∈ I j }; therefore, Ji = ∅ for i ∈ I\I +. Atamtürk and Günlük [4]
prove that the mingling inequality

∑

i∈I +
b

⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦+
∑

i∈I\I +
ai xi +

∑

j∈J

δ j x j + s ≥ b (2)
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n-step mingling inequalities 83

is valid for K≥ and facet-defining for conv(K≥) provided that b−min
{
δ j : j ∈ J̄

} ≥
max

{
ai : ai > b, i ∈ I\I +}. For K≥ they also introduce the 2-step mingling inequal-

ity

∑

i∈I +
μα,b(b)

⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦+
∑

i∈I\I +
μα,b(ai )xi +

∑

j∈J

μα,b(δ j )x j + s ≥ μα,b(b),

(3)

which is valid for any α > 0 such that α�b/α	 ≤ α0 := min
{
ai : i ∈ I +}. They

show that if b > 0, J̄ = ∅, I + = {i ∈ I : ai ≥ α�b/α	}, and α = ak for some k ∈ I ,
then inequality (3) becomes the continuous integer cover inequality [1] obtained by
superadditive lifting [2], which has been shown to be facet-defining for conv(K≥) in
Atamtürk [1].

Observe that for I + = ∅, the two-step mingling inequality (3) reduces to the
α-MIR inequality (1); and if J̄ = ∅ and α = α0, then the two-step mingling inequal-

ity (3) reduces to the mingling inequality (2). Note that since
[
xi −∑

j∈Ji
ūi j x j

]
is

not necessarily nonnegative, the 2-step mingling inequality (3) cannot be obtained by
simply applying the MIR function μα,b on the mingling inequality (2) considering[
xi −∑

j∈Ji
ūi j x j

]
as a single integer variable.

3 n-step mingling inequalities

In this section we introduce the n-step mingling inequalities. inequalities. In order to
present the basic ideas on an easier prove the validity of the 3-step mingling based on
2-step mingling. After we establish this base case, we use induction on n to prove the
validity of n-step mingling for n ≥ 3. Let us define some new notation that will be
used throughout the paper. Let α = {α1, α2, . . .} be a fixed sequence in R>0. Then for
r ∈ R we define the following recursive remainders with respect to α

r (q) := r (q−1) − αq

⌊
r (q−1)/αq

⌋
,

where r (0) = r . Based on the definition above, for any integer q ≥ 1 and b ∈ R+ we
can define a partitioning of R as follows: for m = 0, . . . , q − 1

Iq
m :=

{
t ∈ R : t (k) < b(k), k = 1, . . . , m, t (m+1) ≥ b(m+1)

}
;

Iq
q := {t ∈ R : t (k) < b(k), k = 1, . . . , q}.

For instance, for q = 1

t ∈
⎧
⎨

⎩
I1

0 if t (1) ≥ b(1),

I1
1 if t (1) < b(1);
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84 A. Atamtürk, K. Kianfar

and for q = 2

t ∈

⎧
⎪⎨

⎪⎩

I2
0 if t (1) ≥ b(1),

I2
1 if t (1) < b(1) and t (2) ≥ b(2),

I2
2 if t (1) < b(1) and t (2) < b(2).

3.1 3-step mingling

Following the notation in Atamtürk and Günlük [4], for j ∈ J define ũi j := ūi j − 1
if δ j = b and i = p( j); and ũi j := ūi j otherwise. We also define

δ̃ j :=
{

0, if δ j = b,
δ j , otherwise.

In the process of proving validity of the 2-step mingling inequality in [4], it is proved
that the inequality

∑

i∈I +
α1

⌈
b

α1

⌉⎡

⎣xi −
∑

j∈Ji

ũi j x j

⎤

⎦+
∑

i∈I\I +
ai xi +

∑

j∈J

δ̃ j x j + s ≥ b (4)

is valid for the set K≥ if α1 �b/α1	 ≤ α0 := min
{
ai : i ∈ I +}. Inequality (4) can be

relaxed to

−α1

⌊
b

α1

⌋
+
∑

i∈I +
α1

⌈
b

α1

⌉⎡

⎣xi −
∑

j∈Ji

ũi j x j

⎤

⎦+
∑

i∈I\I +
ai ∈I1

0

α1

⌈
ai

α1

⌉
xi +

∑

i∈I\I +
ai ∈I1

1

α1

⌊
ai

α1

⌋
xi

+
∑

i∈I\I +
ai ∈I1

1

ai
(1)xi +

∑

j∈J
δ̃ j ∈I1

0

α1

⌈
δ̃ j

α1

⌉
x j +

∑

j∈J
δ̃ j ∈I1

1

α1

⌊
δ̃ j

α1

⌋
x j +

∑

j∈J
δ̃ j ∈I1

1

δ̃
(1)
j x j + s ≥ b(1),

which can also be written as follows because when δ j = b we have δ̃ j = 0 and
ũi j = ūi j − 1.

−α1

⌊
b

α1

⌋
+
∑

i∈I +
α1

⌈
b

α1

⌉⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦+
∑

i∈I\I +
ai ∈I1

0

α1

⌈
ai

α1

⌉
xi +

∑

i∈I\I +
ai ∈I1

1

α1

⌊
ai

α1

⌋
xi

+
∑

i∈I\I +
ai ∈I1

1

ai
(1)xi +

∑

j∈J
δ j ∈I1

0

α1

⌈
δ j

α1

⌉
x j +

∑

j∈J
δ j ∈I1

1

α1

⌊
δ j

α1

⌋
x j +

∑

j∈J
δ j ∈I1

1

δ j
(1)x j + s ≥ b(1). (5)
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n-step mingling inequalities 85

On the other hand, the 2-step mingling inequality (3) in its open form can be written
as

− b(1)

⌊
b

α1

⌋
+
∑

i∈I +
b(1)

⌈
b

α1

⌉⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦

+
∑

i∈I\I +
ai ∈I1

0

b(1)

⌈
ai

α1

⌉
xi +

∑

i∈I\I +
ai ∈I1

1

b(1)

⌊
ai

α1

⌋
xi

+
∑

i∈I\I +
ai ∈I1

1

ai
(1)xi +

∑

j∈J
δ j ∈I1

0

b(1)

⌈
δ j

α1

⌉
x j +

∑

j∈J
δ j ∈I1

1

b(1)

⌊
δ j

α1

⌋
x j

+
∑

j∈J
δ j ∈I1

1

δ j
(1)x j + s ≥ b(1). (6)

The last two inequalities imply that the following inequality is valid for any b(1) ≤
γ ≤ α1.

−γ

⌊
b

α1

⌋
+
∑

i∈I +
γ

⌈
b

α1

⌉⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦+
∑

i∈I\I +
ai ∈I1

0

γ

⌈
ai

α1

⌉
xi +

∑

i∈I\I +
ai ∈I1

1

γ

⌊
ai

α1

⌋
xi

+
∑

i∈I\I +
ai ∈I1

1

b(2)

⌈
ai

(1)

α2

⌉
xi +

∑

j∈J
δ j ∈I1

0

γ

⌈
δ j

α1

⌉
x j +

∑

j∈J
δ j ∈I1

1

γ

⌊
δ j

α1

⌋
x j +

∑

j∈J
δ j ∈I1

1

δ j
(1)x j +s ≥b(1).

In particular, we can set γ = α2

⌈
b(1)

α2

⌉
as long as the condition α2

⌈
b(1)

α2

⌉
≤ α1 is

satisfied. Therefore, we will have

−α2

⌈
b(1)

α2

⌉⌊
b

α1

⌋
+
∑

i∈I +
α2

⌈
b(1)

α2

⌉⌈
b

α1

⌉⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦

+
∑

i∈I\I +
ai ∈I1

0

α2

⌈
b(1)

α2

⌉⌈
ai

α1

⌉
xi

+
∑

i∈I\I +
ai ∈I1

1

α2

⌈
b(1)

α2

⌉⌊
ai

α1

⌋
xi +

∑

i∈I\I +
ai ∈I1

1

ai
(1)xi +

∑

j∈J
δ j ∈I1

0

α2

⌈
b(1)

α2

⌉⌈
δ j

α1

⌉
x j

+
∑

j∈J
δ j ∈I1

1

α2

⌈
b(1)

α2

⌉⌊
δ j

α1

⌋
x j +

∑

j∈J
δ j ∈I1

1

δ j
(1)x j + s ≥ b(1). (7)
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86 A. Atamtürk, K. Kianfar

Now we apply the MIR function μα2,b(1) to (7) considering
[
xi −∑

j∈Ji
ūi j x j

]
as a

single integer variable. Note that this cannot be done in general since this expression
is not necessarily nonnegative, however here since its coefficient is an integer multiple
of the parameter α2, applying the MIR function gives a valid inequality as mentioned
in Sect. 2. Doing so we arrive at the 3-step mingling inequality:

∑

i∈I +
b(2)

⌈
b(1)

α2

⌉⌈
b

α1

⌉⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦+
∑

i∈I\I +
ai ∈I2

0

b(2)

⌈
b(1)

α2

⌉⌈
ai

α1

⌉
xi

+
∑

i∈I\I +
ai ∈I2

1

(
b(2)

⌈
b(1)

α2

⌉⌊
ai

α1

⌋
+ b(2)

⌈
ai

(1)

α2

⌉)
xi

+
∑

i∈I\I +
ai ∈I2

2

(
b(2)

⌈
b(1)

α2

⌉⌊
ai

α1

⌋
+ b(2)

⌊
ai

(1)

α2

⌋
+ ai

(2)

)
xi

+
∑

i∈J
δ j ∈I2

0

b(2)

⌈
b(1)

α2

⌉⌈
δ j

α1

⌉
x j +

∑

i∈J
δ j ∈I2

1

(
b(2)

⌈
b(1)

α2

⌉⌊
δ j

α1

⌋
+ b(2)

⌈
δ j

(1)

α2

⌉)
x j

+
∑

i∈J
δ j ∈I2

2

(
b(2)

⌈
b(1)

α2

⌉⌊
δ j

α1

⌋
+b(2)

⌊
δ j

(1)

α2

⌋
+δ j

(2)

)
x j + s ≥b(2)

⌈
b(1)

α2

⌉⌈
b

α1

⌉
.

(8)

For α = (α1, α2) and b, defining

μ2
α,b (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⌈
b(1)

α2

⌉⌈
t
α1

⌉
b(2) if t ∈ I2

0

⌈
b(1)

α2

⌉⌊
t
α1

⌋
b(2) +

⌈
t (1)

α2

⌉
b(2) if t ∈ I2

1

⌈
b(1)

α2

⌉⌊
t
α1

⌋
b(2) +

⌊
t (1)

α2

⌋
b(2) + t (2) if t ∈ I2

2 ,

the 3-step mingling inequality (8) can be written in a compact form as

∑

i∈I +
μ2

α,b (b)

⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦+
∑

i∈I\I +
μ2

α,b (ai ) xi

+
∑

j∈J

μ2
α,b

(
δ j
)

x j + s ≥ μ2
α,b (b) . (9)
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n-step mingling inequalities 87

Hence, we have derived the 3-step mingling inequality, which is valid for K≥ for
α = (α1, α2) satisfying αi�b(i−1)/αi	 ≤ αi−1 for i = 1, 2.

3.2 n-step mingling

The MIR function μα,b and the 2-step MIR function μ2
α,b used above are special cases

of the n-step MIR function for n = 1 and n = 2, respectively. The n-step MIR function
was introduced in [10] as a tool for producing n-step MIR inequalities for a set that is

slightly different from K≥, i.e., Y =
{

x ∈ Z
N+ : ∑N

i=1 ai xi + α1z = b, z ∈ Z

}
. With

a small modification, for K≥ we define the n-step MIR function for α = (α1, . . . , αn)

as follows:

μn
α,b (t)=

⎧
⎪⎨

⎪⎩

∑m
k=1

∏n
l=k+1

⌈
b(l−1)

αl

⌉⌊
t (k−1)

αk

⌋
b(n) +∏n

l=m+2

⌈
b(l−1)

αl

⌉⌈
t (m)

αm+1

⌉
b(n) if t ∈ In

m ;
m = 0, 1, . . . , n−1∑n

k=1
∏n

l=k+1

⌈
b(l−1)

αl

⌉⌊
t (k−1)

αk

⌋
b(n) + t (n) if t ∈ In

n

Accordingly,the n-step MIR inequality for K≥ is

∑

i∈N

μn
α,b (ai ) xi + s ≥ μn

α,b (b) . (10)

Clearly, inequality (10) does not use the the information on upper bounds u.
The argument for the validity of the 3-step mingling inequality can be generalized

to prove the validity of what we will refer to as the n-step mingling inequality for

K≥ (Theorem 1 below). For α = (α1, . . . , αn−1) satisfying αk

⌈
b(k−1)

αk

⌉
≤ αk−1 for

k = 1, . . . , n − 1, the n-step mingling inequality is

∑

i∈I +
μn−1

α,b (b)

⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦+
∑

i∈I\I +
μn−1

α,b (ai ) xi

+
∑

j∈J

μn−1
α,b

(
δ j
)

x j + s ≥ μn−1
α,b (b) . (11)

We see that the n-step mingling inequality makes explicit use of the upper bound
information. Observe that for I + = ∅, n-step mingling inequality (11) reduces to the
(n−1)-step MIR inequality (10). As in 2-step mingling, the n-step mingling inequality
(for any n) cannot be obtained by simply applying (n − 1)-step MIR function μn−1

α,b

on (2) by considering
[
xi −∑

j∈Ji
ūi j x j

]
as a single variable because this expression

is not necessarily nonnegative.

Remark 1 Note that (n−1)-step MIR function is used to express the coefficients of the
n-step mingling inequality. However, we should emphasize, that the n-step mingling
inequality is different from inequality one obtains by simply applying the (n − 1)-
step MIR procedure on a mingling inequality. Indeed, the n-step mingling inequality
dominates the latter as shown below.
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88 A. Atamtürk, K. Kianfar

By collecting terms, let us rewrite the mingling inequality (2) in its unmingled form

∑

i∈I +
bxi +

∑

i∈I\I +
ai xi +

∑

j∈J

⎛

⎝δ j −
∑

i∈I j

būi j

⎞

⎠ x j + s ≥ b

so that each term has a nonnegative variable. Then, the (n − 1)-step MIR inequality
for the mingling inequality is

∑

i∈I +
μn−1

α,b (b) xi +
∑

i∈I\I +
μn−1

α,b (ai ) xi +
∑

j∈J

μn−1
α,b

⎛

⎝δ j −
∑

i∈I j

būi j

⎞

⎠ x j + s ≥ μn−1
α,b (b) .

(12)

Inequality (12) differs from the n-step mingling inequality (11) only in the coefficients
of x j , j ∈ J . Comparing these coefficients, by subadditivity of the (n − 1)-step MIR
function [10], we see that

μn−1
α,b

(
δ j
) ≤ μn−1

α,b

⎛

⎝δ j −
∑

i∈I j

būi j

⎞

⎠+ μn−1
α,b

⎛

⎝
∑

i∈I j

būi j

⎞

⎠

≤ μn−1
α,b

⎛

⎝δ j −
∑

i∈I j

būi j

⎞

⎠+ μn−1
α,b (b)

∑

i∈I j

ūi j .

Therefore, the (n − 1)-step MIR inequality for the mingling inequality is dominated
by the n-step mingling inequality (11). Example 1 shows that the domination is strict.

Theorem 1 For n ≥ 2, the n-step mingling inequality (11) is valid for K≥ for a

sequence αk

⌈
b(k−1)

αk

⌉
≤ αk−1 for k = 1, . . . , n − 1.

Proof The case for n = 2 was proved in [4]. For n ≥ 3 consider the inequality

−αn−1

n−1∏

l=1

⌈
b(l−1)

αl

⌉
+ αn−1

⌈
b(n−2)

αn−1

⌉
+
∑

i∈I +
αn−1

n−1∏

l=1

⌈
b(l−1)

αl

⌉⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦

+
n−3∑

m=0

∑

i∈I\I +
ai ∈In−2

m

αn−1

⎛

⎝
m∑

k=1

n−1∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
ai

(k−1)

αk

⌋
+

n−1∏

l=m+2

⌈
b(l−1)

αl

⌉⌈
ai

(m)

αm+1

⌉⎞

⎠ xi

+
∑

i∈I\I +
ai ∈In−2

n−2

⎛

⎝αn−1

n−2∑

k=1

n−1∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
ai

(k−1)

αk

⌋
+ ai

(n−2)

⎞

⎠ xi
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+
n−3∑

m=0

∑

j∈J
δ j ∈In−2

m

αn−1

⎛

⎝
m∑

k=1

n−1∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
δ j

(k−1)

αk

⌋
+

n−1∏

l=m+2

⌈
b(l−1)

αl

⌉⌈
δ j

(m)

αm+1

⌉⎞

⎠ x j

+
∑

j∈J
δ j ∈In−2

n−2

⎛

⎝αn−1

n−2∑

k=1

n−1∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
δ j

(k−1)

αk

⌋
+ δ j

(n−2)

⎞

⎠ x j + s ≥ b(n−2). (13)

We have already shown in Sect. 3.1 that (13) and the n-step mingling inequality (11)
are valid for n = 3 (inequality (13) for n = 3 reduces to inequality (7). Now we use
induction on n. As the induction hypothesis we assume inequality (13) and the n-step
mingling inequality are valid. We prove that inequality (13) is valid if n is replaced
with n + 1 and then by applying a 1-step MIR function we prove that the (n + 1)-step
mingling inequality is valid. Inequality (13) can be relaxed to the following inequality
much like the way (4) is relaxed in Sect. 3.1:

−αn−1

n−1∏

l=1

⌈
b(l−1)

αl

⌉
+ αn−1 +

∑

i∈I +
αn−1

n−1∏

l=1

⌈
b(l−1)

αl

⌉⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦

+
n−2∑

m=0

∑

i∈I\I +
ai ∈In−1

m

αn−1

(
m∑

k=1

n−1∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
ai

(k−1)

αk

⌋
+

n−1∏

l=m+2

⌈
b(l−1)

αl

⌉⌈
ai

(m)

αm+1

⌉)
xi

+
∑

i∈I\I +
ai ∈In−1

n−1

(
αn−1

n−1∑

k=1

n−1∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
ai

(k−1)

αk

⌋
+ ai

(n−1)

)
xi

+
n−2∑

m=0

∑

j∈J
δ j ∈In−1

m

αn−1

(
m∑

k=1

n−1∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
δ j

(k−1)

αk

⌋
+

n−1∏

l=m+2

⌈
b(l−1)

αl

⌉⌈
δ j

(m)

αm+1

⌉)
x j

+
∑

j∈J
δ j ∈In−1

n−1

(
αn−1

n−1∑

k=1

n−1∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
δ j

(k−1)

αk

⌋
+ δ j

(n−1)

)
x j + s ≥ b(n−1). (14)

On the other hand the n-step mingling inequality in its open form can be written as

−b(n−1)
n−1∏

l=1

⌈
b(l−1)

αl

⌉
+ b(n−1) +

∑

i∈I +
b(n−1)

n−1∏

l=1

⌈
b(l−1)

αl

⌉⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦

+
n−2∑

m=0

∑

i∈I\I +
ai ∈In−1

m

b(n−1)

(
m∑

k=1

n−1∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
ai

(k−1)

αk

⌋
+

n−1∏

l=m+2

⌈
b(l−1)

αl

⌉⌈
ai

(m)

αm+1

⌉)
xi

123



90 A. Atamtürk, K. Kianfar

+
∑

i∈I\I +
ai ∈In−1

n−1

(
b(n−1)

n−1∑

k=1

n−1∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
ai

(k−1)

αk

⌋
+ ai

(n−1)

)
xi

+
n−2∑

m=0

∑

j∈J
δ j ∈In−1

m

b(n−1)

(
m∑

k=1

n−1∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
δ j

(k−1)

αk

⌋
+

n−1∏

l=m+2

⌈
b(l−1)

αl

⌉⌈
δ j

(m)

αm+1

⌉)
x j

+
∑

j∈J
δ j ∈In−1

n−1

(
b(n−1)

n−1∑

k=1

n−1∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
δ j

(k−1)

αk

⌋
+ δ j

(n−1)

)
x j + s ≥ b(n−1). (15)

The only difference between (14) and (15) is that the multiplier αn−1 in front of the
terms in (14) is replaced with b(n−1) in (15). Therefore the same valid inequality is valid
if the multiplier αn−1 in (14) is replaced with any γ satisfying b(n−1) ≤ γ ≤ αn−1. In

particular, since b(n−1) ≤ αn

⌈
b(n−1)

αn

⌉
≤ αn−1 we can replace the multiplier αn−1 in

(14) with αn

⌈
b(n−1)

αn

⌉
to arrive at the valid inequality

−αn

n∏

l=1

⌈
b(l−1)

αl

⌉
+ αn

⌈
b(n−1)

αn

⌉
+
∑

i∈I +
αn

n∏

l=1

⌈
b(l−1)

αl

⌉⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦

+
n−2∑

m=0

∑

i∈I\I +
ai∈In−1

m

αn

(
m∑

k=1

n∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
ai

(k−1)

αk

⌋
+

n∏

l=m+2

⌈
b(l−1)

αl

⌉⌈
ai

(m)

αm+1

⌉)
xi

+
∑

i∈I\I +
ai ∈In−1

n−1

(
αn

n−1∑

k=1

n∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
ai

(k−1)

αk

⌋
+ ai

(n−1)

)
xi

+
n−2∑

m=0

∑

j∈J
δ j∈In−1

m

αn

(
m∑

k=1

n∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
δ j

(k−1)

αk

⌋
+

n∏

l=m+2

⌈
b(l−1)

αl

⌉⌈
δ j

(m)

αm+1

⌉)
x j

+
∑

j∈J
δ j ∈In−1

n−1

(
αn

n−1∑

k=1

n∏

l=k+1

⌈
b(l−1)

αl

⌉⌊
δ j

(k−1)

αk

⌋
+ δ j

(n−1)

)
x j + s ≥ b(n−1). (16)

We see that inequality (16) is the same as inequality (13) where n is replaced with
n + 1. Now we apply μαn ,b(n−1) on inequality (16) considering [xi − ∑

j∈Ji
ūi j x j ]

as a single integer variable. Although [xi −∑
j∈Ji

ūi j x j ] is not necessarily nonneg-
ative, application of μαn ,b(n−1) will give us a valid inequality because the coefficient
of [xi −∑

j∈Ji
ūi j x j ] is an integer multiple of αn . Doing so we get the (n + 1)-step
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mingling inequality

∑

i∈I +
μn

α,b (b)

⎡

⎣xi −
∑

j∈Ji

ūi j x j

⎤

⎦+
∑

i∈I\I +
μn

α,b (ai ) xi +
∑

j∈J

μn
α,b

(
δ j
)

x j + s ≥ μn
α,b (b),

which concludes the proof. 
�
Remark 2 (A recursive formula for the n-step MIR function) If we generalize the nota-
tion introduced at the beginning of Sect. 3, we can write the n-step MIR function in
a recursive form. Having the sequence of parameters {α1, α2, . . .}, we can generalize
the notation r (q) to r (αp,...,αq ) for 1 ≤ p ≤ q as follows

r (αp,...,αq ) :=
{

r (αp,...,αq−1) − αq
⌊
r (αp,...,αq−1)/αq

⌋
if p ≤ q,

r − αq
⌊
r/αq

⌋
if p = q.

Therefore r (q) = r (α1,...,αq ). Using this notation it is easy to show that the n-step MIR
function defined explicitly in Sect. 3.2 can be written recursively as follows

μn
(α1,...,αn),b(t) = μn−1

(α2,...,αn),b(α1)

(
b(α1)

)⌊ t

α1

⌋

+ min
{
μn−1

(α2,...,αn),b(α1)

(
b(α1)

)
, μn−1

(α2,...,αn),b(α1)

(
t (α1)

)}
,

where μ1
α1,b

(t) = b(α1)
⌊

t
α1

⌋
+ min

{
b(α1), t (α1)

}
as defined in (1).

4 n-step mingling facets for mixed-integer knapsack sets

As our next main result, in this section we prove that, for any n, the n-step mingling
inequalities are facet-defining for the mixed integer knapsack set under certain con-
ditions. This makes n-step mingling a new way to generate facets for this set. Facets
generated by n-step mingling for n ≥ 3 (and also n = 2 where J̄ �= ∅) were not
introduced in the literature before.

Theorem 2 For n ≥ 2, the n-step mingling inequality (11) is facet-defining for
conv(K≥) if the following conditions are satisfied:

(i) b(n−1) > 0 and αk = aik where ik ∈ I\I + for k = 1, . . . , n − 1;

(ii) I + = {i ∈ I : ai ≥ α1 �b/α1	} and αk−1 ≥ αk

⌈
b(k−1)

αk

⌉
for k = 2, . . . , n − 1;

(iii) ui1 ≥
⌈

b
α1

⌉
−
⌈

min{δ j : j∈ J̄ }
α1

⌉
and uik ≥

⌈
b(k−1)

αk

⌉
for k = 2, . . . , n − 1.

Proof The validity of n-step mingling was proved in Theorem 1. Regarding condition
(i), define Iα as the subset of I that its corresponding coefficients are the param-
eters α1, . . . , αn−1, i.e. Iα := {i1, . . . , in−1}. Below we list |I | + |J | + 1 affinely
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independent points in K≥ on the face defined by (11). For each point we only describe
the nonzero x components.

• The point P0 = (x, s) such that

s = b(n−1); xik =
⌊

b(k−1)

αk

⌋
for k = 1, . . . , n − 1;

• For each im ∈ Iα where m ∈ {1, . . . , n − 1}, the point Pi = (x, s) such that

s = 0; xik =
⌊

b(k−1)

αk

⌋
for k = 1, . . . , m − 1; xim =

⌈
b(m−1)

αm

⌉
;

• For each i ∈ I +, the point Pi = (x, s) such that
s = 0; xi = 1;

• For each i ∈ I\(I + ∪ Iα) where ai ∈ In−1
m and m ∈ {0, . . . , n − 2}, the point

Pi = (x, s) such that

s = 0; xi = 1; xik =
⌈

b(k−1)

αk

⌉
−
⌈

ai
(k−1)

αk

⌉
for k = 1, . . . , m + 1;

• For each i ∈ I\(I + ∪ Iα) where ai ∈ In−1
n−1 , the point Pi = (x, s) such that

s = b(n−1) − ai
(n−1); xi = 1; xik =

⌈
b(k−1)

αk

⌉
−
⌈

ai
(k−1)

αk

⌉
for k = 1, . . . , n − 1;

• For each j ∈ J where δ j < b and δ j ∈ In−1
m and m ∈ {0, . . . , n − 2}, the point

Pj = (x, s) such that

s = 0; x j = 1; xi = ūi j for i ∈ I j ; xik =
⌈

b(k−1)

αk

⌉
−
⌈

δ j
(k−1)

αk

⌉
for k =

1, . . . , m + 1;
• For each j ∈ J where δ j < b and δ j ∈ In−1

n−1 , the point Pj = (x, s) such that

s = b(n−1) − δ j
(n−1); x j = 1; xi = ūi j for i ∈ I j ; xik =

⌈
b(k−1)

αk

⌉
−
⌈

δ j
(k−1)

αk

⌉
for

k = 1, . . . , n − 1;
• For each j ∈ J where δ j = b, the point Pj = (x, s) such that

s = 0; x j = 1; xi = ūi j for i ∈ I j ;

It is not difficult to verify that given the conditions (i) to (iii) all these points belong to
conv(K≥) and satisfy (11) at equality. Furthermore these points are affinely indepen-
dent because if we write them as rows of a square matrix, the rows and columns
of the matrix can be rearranged to obtain a nonsingular lower triangular matrix.
This can be done as follows: The columns of the matrix correspond to the vari-
ables in the vector (x, s). We arrange these columns from left to right in the order
xi : i ∈ I +, xi : i ∈ Iα, s, xi ∈ i ∈ I\(I + ∪ Iα), and x j : j ∈ J , where indices within
each of the sets I +, Iα, I\(I + ∪ Iα), and J are in increasing order. Now if we arrange
the rows from top to bottom as Pi : i ∈ I +, Pi : i ∈ Iα, P0, Pi ∈ i ∈ I\(I + ∪ Iα),
and Pj : j ∈ J , where the order of indices within each set is increasing, we arrive at
a lower triangular matrix. Moreover, the elements on the diagonal are nonzero. This
concludes the proof. 
�

Note that condition (i) ensures that αk < α0 for k = 1, . . . , n − 1. This is a natural
choice, because as by condition (ii) we have α1 ≥ α2 ≥ · · · ≥ αn−1 and I + =
{i ∈ I : ai ≥ α1 �b/α1	}, if i p ∈ I +, we must have i1, . . . , i p ∈ I + and b ≤ ai1 =
ai2 = · · · = ai p (or b ≤ α0 = α1 = α2 = · · · = αp). It is easy to verify that if this
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is true and J̄ = ∅, the n-step mingling inequality with α = (α1, . . . , αn−1) reduces
to (n − p)-step mingling inequality with α = (αp+1, . . . , αn−1). However, if J̄ �= ∅,
inequalities are not comparable.

We also note that 2-step mingling inequalities are observed to be facet-defining in
[4] when J̄ = ∅, in which case they are equivalent to the continuous cover inequalities
for K≥, which have been shown to be facet-defining by superadditive lifting of a simple
MIR inequality in [1]. Therefore, for the particular case of 2-step mingling, Theorem 2
extends the facet-defining property to the case where J̄ �= ∅ with an alternative direct
proof.

Below we present a numerical example illustrating the facets obtained by mingling,
2-step, and 3-step mingling and compare them with a direct application of 1-step and
2-step MIR on the mingling inequality. Higher step mingling inequalities can also be
generated similarly.

Example 1 Consider the set K≥ defined by the inequality

37x1 + 33x2 + 31x3 + 15x4 + 13x5 + 6x6 − 63x7 − 82x8 − 107x9 + s ≥ 25

and let u be the vector of upper bounds and u1 = u2 = u3 = 1. We have I =
{1, 2, 3, 4, 5, 6} and J = {7, 8, 9}. For I + = {i ∈ I : ai > b} = {1, 2, 3}, we have
J̄ = {9}, I7 = {1, 2}, I8 = I9 = {1, 2, 3}, and so J1 = J2 = {7, 8, 9} and J3 =
{8, 9}. Also δ7 = 7, δ8 = 19, δ9 = −6. Then the corresponding mingling inequality
(2) is

25x1 + 25x2 + 25x3 + 15x4 + 13x5 + 6x6 − 43x7 − 56x8 − 81x9 + s ≥ 25,

(17)

which is facet-defining based on the choice of I + and Proposition 2 of [4]. In order to
write a 2-step mingling inequality, we maychoose α1 = a4 = 15. So that we have a
facet-defining inequality, based on Theorem 2, we choose I + ={i∈I :ai ≥α1�b/α1	}=
{1, 2, 3} . Then the sets J̄ , I j , and Ji and the values of δ j ’s are the same as above and
conditions (i) and (ii) of Theorem 2 are satisfied. For condition (iii) to hold, we need

u4 ≥
⌈

b
α1

⌉
−
⌈

min{δ j : j∈ J̄ }
α1

⌉
= 2. In this case, b, a5 ∈ I1

0 and a4, a6, δ7, δ8, δ9 ∈ I1
1 .

So the corresponding 2-step mingling inequality (3) is

20x1 + 20x2 + 20x3 + 10x4 + 10x5 + 6x6 − 33x7 − 46x8 − 61x9 + s ≥ 20,

(18)

which defines a facet if u4 ≥ 2. Based on Theorem 2 the list of 10 affinely independent
feasible points that lie on this facet is as follows. They are arranged in a form that
shows the lower triangular structure, and hence affine independence.
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 s x5 x6 x7 x8 x9
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0
0 0 0 1 10 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 1 4 0 1 0 0 0
1 1 0 1 3 0 0 1 0 0
1 1 1 0 6 0 0 0 1 0
1 1 1 2 1 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

On the other hand, the MIR inequality for the mingling inequality (17) is

20x1 + 20x2 + 20x3 + 10x4 + 10x5 + 6x6 − 28x7 − 36x8 − 51x9 + s ≥ 20,

which is strictly dominated by the 2-step mingling inequality (18) as shown in
Remark 1.

The 3-step mingling inequality can be constructed by choosing α1 = a4 = 15
and α2 = a6 = 6. For it to be facet-defining, the choice of I + will be the same as
above. All other sets will remain the same as well. In order to satisfy condition (iii)

of Theorem 2, we need u4 ≥ 2 and u6 ≥
⌈

b(1)

α2

⌉
= 2. In this case, b ∈ I2

0 and

a4, a5, a6, δ7, δ8, δ9 ∈ I2
2 . Then the corresponding 3-step mingling inequality (9) is

16x1 + 16x2 + 16x3 + 8x4 + 8x5 + 4x6 − 27x7 − 36x8 − 49x9 + s ≥ 16, (19)

and it defines a facet if u4, u6 ≥ 2. The list of 10 affinely independent feasible points
that lie on this facet according to Theorem 2 is as follows:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x6 s x5 x7 x8 x9
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0
0 0 0 1 2 0 0 0 0 0
0 0 0 1 1 4 0 0 0 0
0 0 0 1 0 0 1 0 0 0
1 1 0 1 0 3 0 1 0 0
1 1 1 0 1 0 0 0 1 0
1 1 1 2 0 1 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

On the other hand, the 2-step MIR inequality for the mingling inequality (17) is

16x1 + 16x2 + 16x3 + 8x4 + 8x5 + 4x6 − 22x7 − 28x8 − 41x9 + s ≥ 16,
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which is strictly dominated by the 3-step mingling inequality (19) as shown in
Remark 1. 
�

Theorem 2 also makes it possible to derive sufficient facet-defining conditions for
the n-step MIR inequalities of [10]. In the (n + 1)-step mingling inequality, if we
choose I + = ∅, we obtain the n-step MIR inequality. Using this fact and based on
Theorem 2, we can state the following result about facet-defining property of n-step
MIR inequalities for K≥:

Corollary 1 The n-step MIR inequality (10) defines a facet for conv(K≥) if the fol-
lowing conditions are satisfied:

(i) b(n) > 0, αk = aik where ik ∈ I for k = 1, . . . , n;

(ii) ai ≤ α1 �b/α1	 for all i ∈ I , and αk−1 ≥ αk

⌈
b(k−1)

αk

⌉
for k = 2, . . . , n;

(iii) ui1 ≥
⌈

b
α1

⌉
−
⌈

min{a j : j∈J }
α1

⌉
and uik ≥

⌈
b(k−1)

αk

⌉
for k = 2, . . . , n.

5 Symmetric n-step mingling inequalities

In this section we give a symmetric form of the n-step mingling inequalities for K≥
for the case b ≤ 0. The approach is similar to the one used in [4] and is based on the
correspondence between valid inequalities and facets for K≥ and

K≤ =
{
(x, t) ∈ Z

N+ × R+ : ax ≤ b + t, x ≤ u
}

·

Lemma 1 [4] The inequality πx + s ≥ π0 is valid for K≥ if and only if inequality
(a − π)x ≤ b − π0 + t is valid for K≤. Moreover, πx + s ≥ π0 is facet-defining for
conv(K≥) if and only if (a − π)x ≤ b − π0 + t is facet-defining for conv(K≤).

To write the symmetric n-step mingling inequality we update the coefficients of
xi , i ∈ I , in the base inequality of K≥ using the upper bounds of x j , j ∈ J . Let
J−=: {1, . . . , n−} be a subset of

{
j ∈ J : a j < b

}
indexed in nondecreasing order of

a j ’s, and Ī := {
i ∈ I : ai +∑

i∈J− a j u j > 0
}
. For any i ∈ I\ Ī , we define a set Ji ,

an integer ki , and the numbers 0 ≤ ū j i ≤ u j for j ∈ Ji as follows:

Ji := {1, . . . , p(i)}, where p(i) := min

⎧
⎨

⎩p ∈ J− : ai +
p∑

j=1

a j u j ≤ 0

⎫
⎬

⎭ ;

ki := min

⎧
⎨

⎩k ∈ Z+ : ai +
p(i)−1∑

j=1

a j u j + ap(i)k ≤ 0

⎫
⎬

⎭ ; and

ū j i :=
{

ui , if j < p(i),
ki , if j = p(i).

For i ∈ Ī , we let Ji := J−, p(i) := n−, ki := un− , and ū j i := u j for j ∈ Ji . As a
result, if we define

123



96 A. Atamtürk, K. Kianfar

λi := min

⎧
⎨

⎩−b,−ai −
∑

j∈Ji

a j ū j i

⎫
⎬

⎭ for i ∈ I ,

then we have 0 ≤ λi ≤ −b for i ∈ I\ Ī , and λi < 0 for i ∈ Ī . Also for j ∈ J ,
let I j := {i ∈ I : j ∈ Ji }; therefore, I j = ∅ for j ∈ J\J−. The symmetric n-step
mingling inequality is defined as

∑

j∈J−

(
a j + μn−1

α,−b (−b)
)
⎡

⎣x j −
∑

i∈I j

ū j i xi

⎤

⎦+
∑

j∈J\J−

(
a j + μn−1

α,−b

(−a j
))

x j

+
∑

i∈I

⎛

⎝ai +
∑

j∈Ji

a j ū j i + μn−1
α,−b

(
λ j
)
⎞

⎠ xi + s ≥ b + μn−1
α,−b (−b) . (20)

Theorem 3 For n ≥ 2, the symmetric n-step mingling inequality (20) is valid for K≥
(with b ≤ 0) for a sequence α satisfying αk

⌈
(−b)(k−1)

αk

⌉
≤ αk−1 for k = 1, . . . , n − 1,

where α0 := max{a j : j ∈ J−}. It is facet-defining for conv(K≥) if the following
conditions are satisfied:

(i) (−b)(n−1) > 0 and αk = −a jk where jk ∈ J\J− for k = 1, . . . , n − 1;

(ii) J− = {
j ∈ J : a j ≤ α1 �b/α1�

}
and αk−1 ≥ αk

⌈
(−b)(k−1)

αk

⌉
for k = 2, . . . ,

n − 1;

(iii) u j1 ≥
⌈−b

α1

⌉
−
⌈

min{λi :i∈ Ī }
α1

⌉
and u jk ≥

⌈
(−b)(k−1)

αk

⌉
for k = 2, . . . , n − 1.

Proof The base inequality of K≥ when b ≤ 0 can be written as
∑

j∈J −a j x j +∑
i∈I −ai xi ≤ −b + s in the K≤ form. The corresponding K≥ form for this accord-

ing to the Lemma 1 is
∑

j∈J −a j x j +∑
i∈I −ai xi + s ≥ −b. The n-step mingling

inequality for this inequality is

∑

j∈J−
μn−1

α,−b (−b)

⎡

⎣x j −
∑

i∈I j

ū j i xi

⎤

⎦+
∑

j∈J\J−
μn−1

α,−b

(−a j
)

x j

+
∑

i∈I

μn−1
α,−b

(
λ j
)

xi + s ≥ μn−1
α,−b (−b) . (21)

Translating this inequality to the original K≤ form using Lemma 1 gives the symmet-
ric n-step mingling inequality. The facet-defining conditions are the direct result of
Theorem 2 and Lemma 1. 
�
As a special case, for J− = ∅ the symmetric n-step mingling inequality (20) reduces

∑

i∈N

(
ai + μn−1

α,−b (−ai )
)

xi + s ≥ b + μn−1
α,−b (−b) , (22)

which is equivalent to the negative (n − 1)-step MIR inequality in [10].
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6 n-step mingling cover and pack inequalities

Inequalities described in the previous sections can be used in connection with comple-
menting bounded variables to derive n-step mingling generalizations of cover and pack
inequalities [3] for mixed-integer knapsack sets. Consider the mixed-integer knapsack
set with bounded integer variables

K u≤ :=
{

(x, s) ∈ Z
N+ × R+ :

∑

i∈N

ai xi ≤ b + s, x ≤ u

}
,

where ai > 0 for all i ∈ N . A subset C of N is a cover if β := ∑
i∈C ai ui − b > 0.

After substitution x̄i = ui − xi , i ∈ C , the defining inequality of K u≤ can be written as
∑

i∈C

ai x̄i +
∑

j∈N\C

−a j x j + s ≥ β. (23)

Now for α = (α1, . . . , αn−1) where αk−1 ≥ αk

⌈
b(k−1)

αk

⌉
for k = 2, . . . , n − 1, by

letting I + ⊆ {i ∈ C : ai ≥ α1 �β/α1	}, and J = N\C , the n-step mingling inequality
for the base inequality (23) can be written as

∑

i∈I +
μn−1

α,β (β)

⎡

⎣x̄i −
∑

j∈Ji

ūi j x j

⎤

⎦+
∑

i∈C\I +
μn−1

α,β (ai ) x̄i

+
∑

j∈J

μn−1
α,β

⎛

⎝min{β,−a j +
∑

i∈I j

ai ūi j }
⎞

⎠ x j + s ≥ μn−1
α,β (β) . (24)

We call inequality (24) the n-step mingling cover inequality. For n = 2 inequality
(24) reduces to the continuous integer cover inequality [1,3].

Alternatively, a subset P of N is called a pack if θ := b −∑
i∈P ai ui > 0. After

substitution x̄i = ui − xi , i ∈ P , the defining inequality of K u≤ can be written as
∑

i∈P

ai x̄i +
∑

j∈N\P

−a j x j + s ≥ −θ.

For α = (α1, . . . , αn−1) where αk−1 ≥ αk

⌈
b(k−1)

αk

⌉
for k = 2, . . . , n − 1, by letting

J− ⊆ { j ∈ N\P : a j ≥ α1 �θ/α1	}, and I = P , the symmetric n-step mingling
inequality for the base inequality above can be written as

∑

j∈J−

(
−a j + μn−1

α,θ (θ)
)
⎡

⎣x j −
∑

i∈I j

ū j i x̄i

⎤

⎦+
∑

j∈J\J−

(
−a j + μn−1

α,θ

(
a j
))

x j

∑

i∈P

⎛

⎝ai −
∑

j∈Ji

a j ū j i +μn−1
α,θ

⎛

⎝min

⎧
⎨

⎩θ, −ai +
∑

j∈Ji

a j ū j i

⎫
⎬

⎭

⎞

⎠

⎞

⎠ xi +s ≥−θ + μn−1
α,θ (θ) .

(25)
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We call inequality (25) the n-step mingling pack inequality. For n = 2 inequality (25)
reduces to the continuous integer pack inequality [1,3]. Facet-defining conditions for
inequalities (24) and (25) can be easily derived using Theorem 2.

7 Concluding remarks

n-step mingling not only unifies two recent directions of research based on MIR
(n-step MIR and mingling) but also generates new valid inequalities and facets for
the mixed-integer knapsack set utilizing the bounds on the variables and period MIR
functions. The facet-defining property of n-step mingling inequalities for mixed inte-
ger knapsack sets suggests that these inequalities can be effective as cutting planes
for solving MIPs. A particularly appealing feature of the n-step mingling inequalities
is that, while their derivation is involved, they can be described in a simple compact
form and be implemented using the combination of existing mingling and n-step MIR
routines and constraint aggregation [13] routines to generate base inequalities.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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