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and collecting duct) are disturbed in contrast to proximal 
tubular acidosis, in which the reabsorption of bicarbonate 
by the proximal tubule is impaired. the prevalence and 
incidence of dRtA in the population are not known. dRtA 
is associated with autoimmune diseases such as primary 
Sjögren syndrome and systemic lupus erythematosus [1–3]. 
Prevalence of dRtA in primary Sjögren syndrome is esti-
mated to be 5–25 % [4–7]. Recurrent nephrolithiasis and/or 
chronic metabolic acidosis with a randomly measured high 
urinary pH suggest the presence of dRtA. Of patients with 
dRtA, approximately 5 % develops nephrolithiasis (mainly 
calcium phosphate stones), while 56 % of dRtA patients 
has significant nephrocalcinosis [8, 9]. vice versa, in 41 % 
of the patients with calcium phosphate stones, dRtA is the 
underlying condition [10]. the availability of an effective 
treatment for dRtA should lower the threshold for test-
ing suspected patients [11, 12]. to confirm the diagno-
sis of dRtA, an urinary acidification test is recommended 
using either the well-known ammonium chloride test or a 
recently proposed combination of furosemide and fludro-
cortisone [13].

the aim of this review is to make physicians aware of a 
disorder in urinary acidification in patients presenting with 
a chronic metabolic acidosis and/or nephrolithiasis, espe-
cially in case of calcium phosphate stones. Both the physi-
ology of renal acid–base regulation and the clinical aspects 
of dRtA will be reviewed.

Acid–base homeostasis

Our basal metabolic reactions and daily food intake lead 
to acid excess. carbon dioxide (cO2) originating from the 
oxidation of carbohydrates, fats, amino acids and proteins 
is by far the largest potential source of acid (15.000 mmol/

Abstract Renal acid–base homeostasis is a complex 
process, effectuated by bicarbonate reabsorption and acid 
secretion. Impairment of urinary acidification is called 
renal tubular acidosis (RtA). Distal renal tubular acidosis 
(dRtA) is the most common form of the RtA syndromes. 
Multiple pathophysiologic mechanisms, each associ-
ated with various etiologies, can lead to dRtA. the most 
important consequence of dRtA is (recurrent) nephrolithi-
asis. the diagnosis is based on a urinary acidification test. 
Potassium citrate is the treatment of choice.
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Introduction

Distal renal tubular acidosis (dRtA) is characterized by an 
impairment of normal urinary acidification process in the 
distal part of the nephron in the presence of a normal glo-
merular filtration rate. the term “distal” implies that acidifi-
cation by the distal parts of the nephron (connecting tubule  
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day). cO2 is a volatile acid that is removed by pulmonary 
ventilation, preventing cO2 to react with H2O to form pro-
tons [14].

Human metabolism also produces nonvolatile acids 
(e.g., phosphate, sulfate) and nonvolatile bases (e.g., bicar-
bonate), which cannot be excreted by the lungs. together 
with acid from our diet and intestinal base loss, the body 
is exposed to approximately 70–100 mmol of nonvolatile 
acids per day [15]. the role of the kidney is to excrete this 
acid excess as well as to monitor arterial pH to maintain a 
normal acid–base balance.

the kidney can maintain the arterial pH between 7.35 and 
7.45 by preventing loss of filtered bicarbonate (4,320 mmol/
day HcO3

−) and by net secretion of H+ (70–100 mmol/
day). the kidney cannot simply secrete this amount of 
acid, because this would require urinary pH to decrease 
to approximately 1.3. Due to the energetic maximum of 
H+-AtPase, urinary pH can be maximally decreased to 
4.2, which is not sufficient to clear the acid excess [16]. In 
order to get rid of the acid excess, secreted protons will (1) 
be titrated by filtered bicarbonate, resulting in bicarbonate 
reabsorption, (2) excreted by titratable acids, (3) titrated and 
excreted by ammonium and (4) excretion of free protons.

Proton secretion

the secretion of protons over the apical membrane is for 
90 % achieved by the so-called Na+-H+ exchanger isoform 
3 (NHe3) that exchanges sodium for protons over the api-
cal membrane. this transporter is present in the proximal 
tubule, thick ascending limb and distal convoluted tubule 
and is dependent on the basolateral Na+/K+ pump activ-
ity [16]. A second mechanism to secrete protons is carried 
out by the vacuolar H+-AtPase located in the distal tubule 
(10 %). the vacuolar H+-AtPase is limited to create a 
chemical gradient of 103 of H+ over the apical membrane. 
this limitation is caused by a lack of AtP to keep the trans-
porter functioning at a higher gradient. the maximally 
reached gradient over the apical membrane is reflected by a 
decrease in urinary pH from 7.5 to 4.5 [17].

titration of bicarbonate

the kidney filters about 4,320 mmol/day of bicarbonate, 
of which 99.9 % is reabsorbed [16]. the proximal convo-
luted tubule is responsible for the reabsorption of 80–85 % 
of filtered HcO3

− [18]. Remaining HcO3
− is reabsorbed 

further downstream in the nephron. All intraluminal bicar-
bonate can be protonated and subsequently reabsorbed. 
this means that the complete reabsorption of filtered 
HcO3

− requires 4320 mmol/day of secreted protons, which 
is considerably more than the 70–100 mmol/day of proton 
secretion required for neutralizing of nonvolatile acids. 

However, the process of HcO3
− reabsorption is not accom-

panied by net H+ excretion.

titratable acid excretion

Secreted protons will also interact with buffers other than 
HcO3

−. these buffers originate from metabolic reactions. 
the most significant buffers are phosphate (pKa = 6.8), 
urate (pKa = 5.8) and creatinine (pKa = 5.0) [16]. with a 
lower urinary pH, a higher percentage of the buffer will be 
protonated, regardless of the pKa of each buffer.

In the proximal convoluted tubule are the so-called 
sodium-phosphate cotransporters (NaPi) located that are 
responsible for phosphate reabsorption. early studies 
already showed that these transporters are down-regulated 
in periods of metabolic acidosis [19]. Recent studies indi-
cate that these transporters are directly inhibited by pro-
tons, resulting in hyperphosphaturia [20]. Because of its 
relative high pKa and the pH-dependent reabsorption of 
phosphate, phosphate is an important buffer.

the amount of buffer that is ultimately excreted in the 
urine is largely dependent on the GFR and the plasma 
concentration of the buffer. For example, an average indi-
vidual with a normal plasma phosphate concentration and 
normal GFR will excrete approximately 30 mmol/day of 
phosphate.

Regulation of ammonia secretion

Ammonia (NH3) is extremely important as urinary buffer, 
because of its high pKa of 9, which means that almost all 
the ammonia will be protonated to ammonium (NH4

+). 
NH4

+ is in equilibrium with NH3 and H+ in both the intra- 
and extracellular space of the nephron. Ammonia is pro-
duced in every segment of the nephron, but predominantly 
in the proximal tubule by the metabolism of mitochondrial 
glutamine (Fig. 1) [21]. Produced ammonium is secreted by 
the proximal tubule by NHe3-mediated Na+/H+ exchange 
and Ba2+-sensitive K+ channels (ROMK) [22, 23]. Addi-
tionally, NH3 is transported over the apical membrane by 
still undefined channels. Secreted ammonium will be reab-
sorbed in the thick ascending limb of Henle’s loop either 
via the K+/H+(NH4

+) exchanger, or by the Ba2+-sensitive 
K+ channels (ROMK) or by the Na+-K+-(2cl−) cotrans-
porter (NKcc2) [24]. electroneutral K+/NH4

+ exchange 
and diffusive NH3 transport across the apical plasma mem-
brane by undefined channels take also place, but are less 
important. cytosolic NH4

+ will mainly exit the tubulus cell 
via the basolateral NHe4 transporter [25]. A second mech-
anism of basolateral NH4

+ exit may involve dissociation of 
NH4

+ to NH3 and H+. transport of NH3 over the basolat-
eral membrane in the thick ascending limb is presumed to 
be via diffusion as evidence for a gas transporter for NH3 in 
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the thick ascending limb is lacking. However, the concept 
that gasses (NH3 and cO2) and water diffuse over the mem-
branes has been questioned over the last years. Instead of 
diffusion, gasses and water are carried over the membrane 
by transporters, such as aquaporins and the recently discov-
ered rhesus glycoproteins [26].

the thick ascending limb buffers intracellular produced 
protons via basolateral bicarbonate transport. this is medi-
ated by the sodium-bicarbonate cotransporter (NBcn1) lead-
ing to the formation of H2cO3 [27]. H2cO3 will be dissoci-
ated into H2O and cO2, after which cO2 will be transported 
over the basolateral membrane into the peritubular lumen.

Ammonium in the peritubular space will be transported 
in the collecting duct via Na+-K+-AtPase and Rhesus gly-
coproteins Rhbg and Rhcg [26, 28]. Intracellular ammonia 
will be secreted over the apical membrane via the Rhcg 
glycoprotein and becomes available to buffer secreted 
protons [26]. Formed ammonium in the collecting tubular 
lumen is trapped and will be excreted.

the complex system of ammonia transport through the 
nephron provides the collecting tubule a chemical and con-
centration gradient over the apical membrane. By altering 
these gradients, ammonia secretion over the apical mem-
brane in the collecting tubule can be regulated to buffer the 
secreted protons.

Proximal acidification

As described before, reabsorption of bicarbonate is 
mainly achieved by proximal convoluted tubule cells 
(Fig. 2). Secreted H+ binds to HcO3

− to form carbonic 

acid (H2cO3) in the tubular lumen. Subsequently, formed 
H2cO3 will become H2O and cO2, a reaction catalyzed by 
the membrane-bound enzyme carbonic anhydrase type 4.

luminal cO2 and H2O are transported over the apical 
membrane via aquaporin 1 (AQP1) in the proximal tubule, 

Fig. 1  Overview of ammonium transport through the nephron. 
Ammoniagenesis takes place in the proximal convoluted tubule cells 
and ammonium is subsequently secreted. the thick ascending limb 
reabsorbs intraluminal ammonia in order to create a chemical gra-
dient. the collecting duct utilizes this gradient to secrete ammonia 
over the apical membrane to buffer the simultaneously secreted pro-

tons. Pct, proximal convoluted tubule; tAl, thick ascending limb; 
cD, collecting duct; NBce-1, Na+-HcO3

− cotransporter; NHe-3, 
Na+-H+ exchanger isoform 3; ROMK, Ba2+-sensitive K+ channel; 
NKcc2, Na+-K+-(2cl−) cotransporter; NBcn-1, sodium-bicarbonate 
cotransporter; Rhbg, Rhesus glycoprotein type B; Rhcg, Rhesus gly-
coprotein type c; Ae-1, chloride-bicarbonate cotransporter

Fig. 2  Process of bicarbonate reabsorption in the proximal tubule 
cell. Filtered bicarbonate is catalyzed by carbonic anhydrase type 
4 into carbon dioxide and hydroxide. carbon dioxide is transported 
over the apical membrane via aquaporin 1 (AQP1) in the proximal 
tubule, after which it hydrates into H2cO3. this reaction is catalyzed 
by intracellular carbonic anhydrase type 2. Intracellular formed bicar-
bonate will leave the cell via the NBce-1 transporter localized on the 
basolateral membrane. Pct, proximal convoluted tubule cell; cA, 
carbonic anhydrase; NHe-3, Na+-H+ exchanger isoform 3; NBce-1, 
Na+-HcO3

− cotransporter
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after which they hydrate into H2cO3. this reaction is cata-
lyzed by intracellular carbonic anhydrase type 2 (cAII). 
Intracellular H2cO3 ionizes to H+ and HcO3

−, after which 
HcO3

− will be transported over the basolateral membrane 
via the Na+-HcO3

− cotransporter (NBce-1) [29]. Protons 
remain in the cytoplasmatic compartment to be secreted 
again in the tubular lumen. At the end, this process results 
in the reabsorption of one molecule HcO3

− and zero net 
secretion of one molecule of H+.

Distal acidification

the α-intercalated and principal cells, located in the col-
lecting tubule, are responsible for the secretion of protons 
(Fig. 3). the principal cell’s main function is to reabsorb 
sodium via the epithelium Na+ channel (eNac) located in the 
apical membrane [30]. this causes an electronegative tubular 
lumen, favoring the secretion of potassium or protons.

Proton secretion is achieved by the vacuolar H+-AtPase, 
stored in vacuoles in the cytoplasm of α-intercalated cells. 
the expression of this pump is largely dependent on the 
electrical gradient over the luminal membrane. the elec-
tronegative luminal potential, driven by eNac activity, 

results in expression of H+-AtPase on the apical mem-
brane of the α-intercalated cells and excretion of protons 
into the lumen [28]. the protons are generated by intra-
cellular activity of the cAII enzyme, which also forms 
HcO3

− ions. HcO3
− will be exchanged with cl− over the 

basolateral membrane via the chloride-bicarbonate cotrans-
porter (Ae-1) [28]. Still another AtPase expressed in the 
apical membrane of the α-intercalated cell is the H+/K+ 
exchanger. this exchanger contributes to proton secretion, 
but is less important than the vacuolar H+-AtPase and is 
considered to be more relevant for potassium reabsorption.

Distal renal tubular acidosis

the characteristic features of dRtA are the presence of 
systemic acidosis together with the inability to acidify the 
urine to a pH <5.3 dRtA is associated with many diseases 
each with their own pathophysiology. to provide a clear 
overview of the causes of dRtA, we divided dRtA into four 
groups based on their pathophysiologic defect: (1) voltage 
defect, (2) H+ secretion defect, (3) H+ gradient defect and 
(4) ammonium generation defect (table 1).

voltage defect

As outlined before, an electronegative luminal potential in 
the collecting tubule contributes to proton secretion. the 
eNac is responsible for this driving force by reabsorbing 
Na+. eNac’s activity is predominantly regulated by aldos-
terone. Apart from regulation of eNac activity aldosterone 
can enhance distal urinary acidification by increasing the 
activity of H+-AtPase in the cortical collecting tubule [30, 
31].

Both genetic and acquired forms of decreased eNac 
activity exist. Genetic causes are related to mutations in 
genes encoding for the alpha, beta or gamma subunit of 
the channel (respectively, ScNN1A, ScNN1B, ScNN1G 
genes), resulting in autosomal recessive pseudohypoaldo-
steronism type 1. An autosomal dominant form in which 
the genetic defect (NR3c2) affects the mineralocorticoid 
receptor is also known [32].

Acquired forms of decreased eNac activity are more 
common. they are common due to hypoaldosteronism. the 
most common cause of hypoaldosteronism is hyporenine-
mia as can occur in diabetes mellitus, renal insufficiency or 
use of nonsteroidal anti-inflammatory drugs or calcineurin 
inhibitors [33]. Furthermore, aldosterone is diminished in 
Addison’s disease. Additionally, medication can directly or 
indirectly decrease eNac activity (e.g., amiloride, cyclo-
sporine, tacrolimus, lithium, Ace-inhibitors, angiotensin II 
receptor blocker, aldosterone receptor blockers and hepa-
rin) [32, 33].

Fig. 3  Process of proton secretion in the collecting duct. the prin-
cipal cell reabsorbs intraluminal sodium creating an electronegative 
gradient. the alpha-intercalated cells contain vacuoles which stores 
H+ AtPases. these proton pumps are built in the apical membrane 
for proton secretion. the secretion of protons is enhanced by sodium 
reabsorption and an electrical gradient. Pc, principal cell; αIc, alpha-
intercalated cell; cA, carbonic anhydrase; ROMK, renal outer medul-
lary potassium channel; eNac, epithelium Na+ channel; Ae-1, chlo-
ride-bicarbonate cotransporter
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H+ secretion defect

Alpha-intercalated cells are responsible for both genera-
tion and secretion of protons. the intracellular enzyme 
cAII catalyzes the reaction leading to the formation of 
protons and bicarbonate ions. the main proton trans-
porter is the vacuolar H+ AtPase, built in the apical 
membrane. the bicarbonate ion is transported over the 
basolateral membrane by the Ae1. A defect in one of 
those subparts of the H+ secreting machinery can lead to 
dRtA.

Primary causes for a defect in one of the compartments 
are due to mutations in genes encoding subunits of the vac-
uolar H+ AtPase (AtP6v1B1 and AtPv6v0A4), resulting 
in impaired transporter function. these mutations lead to 
autosomal recessive forms of dRtA that can coexist with 
and without deafness. Also an autosomal dominant form of 
dRtA is known, caused by a mutation of a gene coding for 
the Ae1 (Slc4A1), leading to a decreased number of this 
transporter in the basolateral membrane. carbonic anhy-
drase enzyme type 2 deficiency by genetic mutations leads 
to both proximal and distal RtA [34]. Medullary sponge 
kidney is also a primary cause of dRtA, related to the mal-
formation of the distal tubules. the presence of dRtA in 
these patients depends on the number of nephrons affected 
[35].

Acquired impaired transporter function of the H+ secret-
ing machinery is often associated with autoimmune dis-
eases like Sjögren syndrome and Sle. In patients with pri-
mary Sjögren syndrome, inhibitory autoantibodies against 
the cAII enzyme have been reported [36]. Also certain 
medications, such as topiramate and acetazolamide, can 
inhibit the function of the cAII enzyme [37].

H+ gradient defect

Proton secretion is dependent on the H+ gradient over 
the apical membrane, which is achieved by vacuolar H+ 
AtPase. Notwithstanding an appropriately working vacu-
olar H+-AtPase, creating of such gradient is not always 
successful. this is the case in leaky membrane, sometimes 
seen in patients using amphotericin B [38, 39]. In experi-
mental models, amphotericin B increases the permeability 
for protons of the apical membrane in the collecting duct, 
causing back diffusion of the secreted protons [40, 41].

Ammonium secretion defects (hyperkalemia)

Ammonium plays a major role in renal urinary acidification. 
In case of low availability of ammonium in urine, urinary 
acid excretion is impaired to a certain pH. the most impor-
tant cause of decreased urinary ammonium is hyperkalemia 

Table 1  Overview of the aetiology of renal tubular acidosis

Voltage defect Proton secretion defect

Proton gradient 

defect

Ammonium secretion 

defect

Inherited Acquired Inherited Acquired Acquired Acquired

• ENaC subunit 

mutations

- SCNN1A

- SCNN1B

- SCNN1G

• Mineralocorticoid 

receptor mutation

- NR3C2

• Hypoaldosteronism

- Hyporeninemia

- Addison’s disease

- Diabetes

- Chronic urinary 

tract obstruction

- Renal 

insufficiency

• Medication

- NSAID

- Amiloride

- Cyclosporine

- Lithium

- ACE-inhibitor

- Angiotensin 

inhibitor

(Low molecular 

weight) heparin

• Vacuolar H+ ATPase 

mutation 

- ATP6V1B1

- ATPV6V0A4

• Anion exchanger 1 

transporter mutation 

- SLC4A1

• Carbonic anhydrase 

type 2 mutation

• Medullary sponge 

kidney

• Autoimmune disease 

- Sjögren

- SLE

- PBC

- AIH

- AIT

• Medication

- Topiramate

- Carbonic 

anhydrase 

inhibitor

• Medication

- Amphoterocin B

• Hyperkalemia
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[42]. Hyperkalemia reduces the expression of ammonia-
genic enzymes and acid transport proteins [43]. Addition-
ally, hyperkalemia decreases the secretion of ammonia in 
the loop of Henle and the collecting duct. this probably is 
due to competition between NH4

+ and potassium. NH4
+ 

and potassium use the same binding spot on the transporters 
in the thick ascending limb (respectively, NKcc2 and Na+-
K+-AtPase) [44]. Hyperkalemia will also drive protons 
from intracellular to extracellular, leading to a decreased 
concentration of protons in the distal tubule cells.

Clinical presentation

the most common symptom of dRtA is nephrolithiasis and 
metabolic acidosis. Fatigue is a frequent complaint, possi-
bly related to the metabolic acidosis-induced hyperventila-
tion. Patients with chronic metabolic acidosis are prone to 
develop osteoporosis. Metabolic acidosis affects bone by 
exchanging protons for sodium, potassium, calcium, car-
bonate and phosphate [45]. the continuous sequestration 
of protons in bone stimulates both osteoclast development 
and osteoclast activity. As a consequence bone resorption 
increases, enhancing release from the bone surface of cal-
cium and mineral buffers like bicarbonate and phosphate 
[45, 46]. eventually, this mechanism leads to net bone loss 
and hypercalciuria.

Metabolic acidosis also leads to enhanced proximal 
tubular reabsorption of citrate, resulting in hypocitratu-
ria. Alkaline urine in combination with hypocitraturia and 
hyperphosphaturia promotes calcium phosphate precipita-
tion leading to nephrocalcinosis and/or kidney stones [47].

Additionally, patients with dRtA often develop abnor-
malities in the potassium balance. In general, meta-
bolic acidosis will lead to hyperkalemia as a result of the 
exchange of protons for intracellular potassium. However, 
patients with dRtA due to a proton secretion defect tend 
to waste potassium in urine in order to maintain electro-
neutrality over the apical membrane. Despite potassium 
wasting, these patients usually have normal levels of serum 
potassium, because of potassium movement from intracel-
lular to extracellular. Nevertheless, case-reports have been 
described of patients with dRtA who present to the emer-
gency department with hypokalemic paralysis, including 
respiratory arrest [1, 48].

Incomplete dRtA

Of the RtA syndromes, also an incomplete form of dRtA 
is known, including patients with nephrocalcinosis or 
urolithiasis but without metabolic acidosis. Patients with 
incomplete dRtA cannot acidify their urine, but a higher 
amount of NH4

+ excretion compensates for the acid 

secretion defect. Donnelly et al. hypothesized that this 
increased NH4

+ excretion originates from an increased pro-
duction and secretion of ammonium in the proximal convo-
luted tubule. Additionally, hypocitraturia in these patients 
is often present. Diagnosis and treatment is the same as for 
complete dRtA [49].

Association of dRtA with autoimmune diseases

It is suggested that dRtA is more prevalent in autoimmune 
diseases. Shearn et al. [50] reported in 1965 the first case 
of dRtA revealing Sjögren syndrome. Both primary and 
secondary Sjögren syndrome is associated with dRtA [4, 
51–53]. Other autoimmune diseases such as Sle [54], pri-
mary biliary cirrhosis (PBc) [55], autoimmune hepatitis 
(AIH) [56] and autoimmune thyroiditis (AIt) [53] are less 
common associated with dRtA. the prevalence of dRtA 
in Sjögren syndrome is currently estimated to be 25 % [4]. 
the clinical presentation of dRtA in patients with an auto-
immune disease is similar to that of those patients without 
a systemic disease.

the pathophysiological mechanism of dRtA in relation 
to autoimmunity remains unclear. Several reports suggest 
that autoantibodies against the cAII enzyme [36, 57] or the 
acid–base transporters are involved in the pathogenesis of 
dRtA in autoimmune disease [58]. Recently, espinosa et al. 
[59] reported that anti-Ro52 autoantibodies from patients 
with Sjögren syndrome inhibit Ro52 e3 ligase activity. In 
vitro inhibition of the ubiquitination process may increase 
the transcription of pro-inflammatory genes leading to local 
inflammation and tissue damage [59]. Interstitial inflamma-
tion is often found in renal biopsies.

It is unknown whether treatment with corticosteroids 
in autoimmune disease has a positive effect on dRtA. we 
advise to treat dRtA in autoimmune diseases with potas-
sium citrate. Potassium citrate is an effective treatment for 
both the symptoms and complications of dRtA, by restor-
ing acid–base balance (see below). Studies about prognosis 
of dRtA in autoimmune diseases are lacking.

Diagnosis

Urinary acidification was assessed using the oral ammo-
nium chloride loading test (NH4cl test). the complete test 
takes eight hours and does not require blood testing. the 
test can be unpleasant, because it can induce gastric irri-
tation, nausea and vomiting. thus, there was room for the 
development of a quicker and more patient-friendly uri-
nary acidification test. walsh et al. [13] described in 2007 
a urinary acidification test using simultaneous furosemide 
(40 mg) and fludrocortisone (1 mg) administration. Simul-
taneous administration of furosemide and fludrocortisone 
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stimulates the kidney to secrete H+ ions. Furosemide inhib-
its the NKcc2 cotransporter, resulting in a higher Na+ 
delivery in the collecting tubule. Fludrocortisone binds and 
activates the mineralocorticoid receptor in the cytoplasm 
leading to an increased eNac activity, thereby enhancing 
sodium reabsorption and potassium secretion. Addition-
ally, fludrocortisone stimulates the expression of vacu-
olar H+ AtPase in the apical membrane. Increased sodium 
reabsorption leads to an electronegative luminal potential, 
which is the driving force for the secretion of protons by 
the vacuolar H+ AtPase in the distal tubule.

walsh et al. [13] compared this new test to the NH4cl 
loading test in 10 healthy controls. every control was capa-
ble to acidify their urine to a pH <5.3. the minimum pH 
value was 4.92 ± 0.10 after furosemide and fludrocortisone 
administration.

Both tests had the same result of (impaired) urinary 
acidification in dRtA patients. All patients failed to acid-
ify their urine to a pH <5.3. the lowest measured pH was 
6.59 ± 0.13 after furosemide/fludrocortisones administra-
tion. the furosemide/fludrocortisone test was better toler-
ated and lasts shorter it may prefer over the NH4cl test.

Treatment

the main goal of any treatment for dRtA is to reverse 
the acidosis, which reduces calciuria and simultaneously 
increases citrate excretion. this leads to a lower risk of 
nephrolithiasis and osteoporosis. currently, potassium cit-
rate (1–2 meq/kg/day) is the treatment of choice for the 
management of patients with dRtA. with potassium citrate, 
not only a bicarbonate donor is provided to treat acidosis, 
but potassium wasting is compensated simultaneously. 
Potassium citrate treatment in dRtA patients seems to have 
positive effects on bone mineral density and bone cell func-
tion [11]. Additionally, a recent randomized controlled trial 
showed that potassium citrate increases bone density and 
reduced fracture risk in healthy elderly without RtA [12].

Conclusions

In this review, we discussed the physiology of acid–base 
homeostasis and translated this mechanism to the RtA syn-
dromes. the pathophysiology is divided into four categories 
each associated with different etiologies. Physicians should 
test for dRtA in patients with (recurrent) calcium phosphate 
stones and/or a chronic metabolic acidosis. the diagnosis of 
dRtA is made using a urinary acidification test, in which the 
patient is unable to acidify the urine to pH <5.3. treatment 
of dRtA is based on restoring the acid–base balance, which 
can be achieved with potassium citrate.

Open Access this article is distributed under the terms of the crea-
tive commons Attribution license which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s) 
and the source are credited.
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