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Abstract Tests and/or test items can sometimes be

expensive, unique, or only performed in a few laboratories.

There can be cases where assigned values are unknown,

there is no information, or only poor information on the

probability density function attributed to the test result.

Sometimes there are neither reference materials nor the

ability to establish consensus values due to a lack of

experts. It can be impossible to repeat a test on the same

item because it is destroyed during the test itself, or the

homogeneity of tested items is unknown and no criteria can

be established. Specified technical requirements concern-

ing proficiency testing and interlaboratory comparison

schemes are generally not applicable in this situation.

However, interlaboratory comparison could allow labora-

tories to have more confidence in their results. The present

paper discusses three statistical methods of assessing

interlaboratory comparison results obtained in such con-

ditions. Two methods are based on an assigned value

determined from participant results through robust analy-

sis. The third is based on the compatibility of results

assessed using the f parameter. This paper focuses on an

interlaboratory comparison for two laboratories, each

testing three samples. The use of statistical methods turns

out to be high risk, particularly in terms of falsely

accepting results. Additionally, is shown that methods

dedicated to small samples are also not efficient in

detecting discrepancies of test results.

Keywords Proficiency testing criteria �
Quality control of tests � Small samples

Introduction

According to EN ISO IEC 17025 [1] and EA-4/18 [2],

accredited laboratories should assure the quality of test

results by participating in proficiency testing programs. In

the case of a lack of proficiency tests because of, for

example, the technical characteristics of the measurement

or the low number of existing laboratories in the sector,

other methods of assuring quality are accepted. However,

interlaboratory comparisons (ILCs) are preferred by

accreditation bodies. This is the reason why interlaboratory

comparisons are organized often even if there are no rea-

sonable methods of assessing the results.

Typical methods of assessment of ILC results are

described in standards EN 17043 [3] and ISO 13528 [4].

Most are based on a known assigned value (value attrib-

uted to a particular quantity and accepted [4]) and its

uncertainty. This knowledge comes from preparing special

samples for the purpose of ILC, using certified reference

materials (CRMs) or testing the samples at expert labora-

tories before the ILC. For some statistics used in the

assessment of laboratory proficiency, reference laboratories

are involved. When it is not possible to apply the above

methods, consensus values calculated from participant

results using robust analysis are recommended for the

estimation of an assigned value. But for a limited number

of participating laboratories when statistical methods

become increasingly unreliable, schemes based on CRMs

are preferred in the available literature [5].

However, it is sometimes not possible to apply a rec-

ommended method of assessment of ILC results. The
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assigned value is unknown. Neither are there reference

materials nor is there the possibility of establishing con-

sensus values owing to a lack of experts. It is impossible

to repeat a test on the same test item because it is

destroyed during tests. The homogeneity of tested items is

unknown. Moreover, tests and/or test items are expensive

or unique, and thus, a small number of tests results are

available.

Such situations are frequent in the mechanical testing

of construction product conducted to find a character-

istic (type) of an unknown product [6]. An example is

the mechanical testing of doors, windows, walls, panels,

lintels, and small wastewater treatment systems, where

both the tests and test items are often expensive.

Additionally, in these situations, it is important to

assure the quality of the test result because the result

can directly affect safety or health. The above problem

can also be encountered in laboratories that conduct

chemical tests of substance/elements that are rarely

presented or expensive and in the medical testing of

human tissue.

Performing an ILC test on simplified samples is one of

many solutions (e.g., a laboratory that tests the load bearing

capacity of small wastewater treatment systems having

tanks of about 3 m3 may take part in an ILC of the com-

pressive strength of concrete blocks of the size order of

dm3), but it does not provide the laboratories and its cus-

tomers with a sense of security.

Technical requirements specified in EN ISO/IEC 17043

[3] and ISO 13528 [4] or IUPAC Technical Report [5]

concerning proficiency testing and ILC schemes are

generally not applicable in the situation of interest; i.e.,

the situation of comparison a small number of laboratories

and a small number of samples with no knowledge of the

assigned value, when statistical criteria for ILC can only

be based on an assigned value and/or standard deviation

(SD) taken from the participant. There are commonly

used statistical tests of consistency, such as F and t tests,

but such statistics seem to be useless in this case because

of the high critical values for small samples, which entail

a risk of false acceptance. Other statistics (e.g., v2) are

unsuitable because of the need to know a predetermined

value of variance.

The present paper addresses the question: Is it possible

to show the reliability of test results and competence of

laboratories in an interlaboratory comparison for a small

number of possible tests, limited number of participants,

no determined assigned value, and no determined per-

missible uncertainty? Moreover, are statistical

assessments of ILC results reliable and rational? This

paper considers ILC for two laboratories, each having

three samples. This issue has been not considered

previously.

Common methods of assessing the consistency of test

results

There are three general methods of assessing test results in

an ILC:

• assessing the difference between each result and a ‘‘true

value,’’

• comparing laboratory variance (or uncertainty) with

predicted, required, or known variance, and

• assessing of comparability of laboratory results.

The last method is the most promising for our purposes

because it does not require knowledge of a ‘‘true value’’ or

predicted variance.

Typical simple methods of ILC result assessment are

described in ISO 13528 [4]. In our case, there is no pos-

sibility of establishing reference laboratory, and thus, the

En number is useless and the z score (z) and zeta score

(fX in this paper) should be employed instead. These are

defined as

z ¼ x� X

r_
; ð1Þ

fX ¼ x� X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2lab þ u2av
p ; ð2Þ

where x is the participant result, X is the assigned value, r
_

is the SD for proficiency assessment, ulab is the combined

standard uncertainty of a participant’s result, and uav is the

standard uncertainty of the assigned value.

According to Eqs. (1) and (2), both z and fX scores are

based on an assigned value (X) and the SD for proficiency

assessment (r_) or standard uncertainty of the assigned

value (uav). However, Eq. (2) can be used only if x and

X are independent, and therefore, X should not be calcu-

lated from the results of participants. Thus, among the

statistics listed, only the z score is adopted in this work.

If we assume that the values of X and/or r_ cannot be

determined by any method that is not related to the current

comparison, then according to ISO 13528, they should be

determined from participant results through robust analy-

sis. It is recommended that Algorithm A [4, 7] be used to

obtain robust values of the assigned value and SD. How-

ever, the question arises whether this algorithm might be

used for the estimation of X and r_ in the case under con-

sideration, because the intention is not to use the algorithm

for a small population of test results.

Robust estimators for small samples were studied by

Rousseeuw et al. [8]. Obviously, robustness is not possible

for n equal to 1 or 2 (where n is number of results). When

n = 3 and the location and scale are unknown, it is rec-

ommended that the location is estimated as the sample

median, but there is no robust scale estimator. For n C 4,
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the authors propose the location be estimated using the M-

estimator with a smooth w function and the median abso-

lute deviation MADn using as the auxiliary scale, and

analogously, the estimation scale be estimated by the M-

estimator with a smooth q function using medn (median) as

the auxiliary location. In contrast to Algorithm A, functions

used for location and scale estimation are monotonic. The

question is does the employment of these analyses for the

estimation of X and r_ solve the problem of assessment of

ILC for a small number of tests and laboratories?

The estimation of X and r_ could be avoided using

methods of assessment that do not consider an assigned

value.

Kacker et al. [9–11] and Kessel et al. [12] considered a

discrepancy measure that can be used to check the agree-

ment of test results. They discussed the Birge test, which is

a classical test that was developed for checking the con-

sistency of interlaboratory test results, specifically whether

measured values might be considered as realizations of a

normal probability density function with unknown expec-

ted values but known variance [9, 10]. Kacker et al. [11]

showed that the Birge test is not consistent with the phi-

losophy of the Guide to the Expression of Uncertainty in

Measurement (GUM) [13]. The concept of the metrological

compatibility of results consistent with VIM3 [14] and

GUM has been discussed [11, 12]. According to the VIM3

definition restated in [12], two metrologically comparable

results [x1, u(x1)] and [x2, u(x2)] for the same measurand

are said to be metrologically compatible if

fðx1 � x2Þ ¼
x1 � x2j j

uðx1 � x2Þ
� j; ð3Þ

where [xi, u(xi)] denotes the measured quantity value and

its standard uncertainty, j is the chosen threshold (con-

ventionally having a value of two). f is a function that may

be used as a measure of the significance of the difference

between two results, [x1, u(x1)] and [x2, u(x2)]. Such a

concept of metrological compatibility is consistent with the

GUM.

If we assume that measurements of [xi, u(xi)] are

uncorrelated and their weights are the same, then

u2ðx1 � x2Þ ¼ u2ðx1Þ þ u2ðx2Þ; ð4Þ

and thus,

fðx1 � x2Þ ¼
x1 � x2j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2ðx1Þ þ u2ðx2Þ
p : ð5Þ

On the above basis, two functions are employed in this

paper for the analysis of results of ILC for a small number

of laboratories and small number of samples: the f function
given by Eq. (5) and the z function given by Eq. (1). For

the calculation of z, X and r_ values are determined from

participant results through robust analysis. Algorithm A

according to ISO 13528 and ISO 5725-5 is used for the

calculation of robust X = XA and r_ ¼ r_A, and zA is

calculated as

zA ¼ x� XA

r_A

: ð6Þ

Another algorithm, referred to as Algorithm B in this

paper and based on robust analysis for small samples

following Rousseeuw et al. [8], is employed for the

calculation of X = XB and r_ ¼ r_B, and zB is calculated as

zB ¼ x� XB

r_B

ð7Þ

Parameters f, zA, and zB are then compared in terms of

detecting the inconsistency of test results for two

laboratories, each testing three samples.

Simulation of interlaboratory comparison

To compare the effectiveness of parameters f, zA, and zB
for small samples, it is considered that two laboratories

participate in ILC, and each laboratory performs three tests.

During testing, test items are destroyed, and it is thus not

possible to repeat a test for the same sample. Three samples

of the same product are tested at each laboratory.

This paper takes a single repetition xij (for i = labora-

tory 1 or 2 and j = repetition 1, 2, or 3 for each laboratory)

as the test result. A relatively wide dispersion of results is

assumed. Sources of this dispersion are discussed in the

next section.

Simulation of interlaboratory tests is carried out using

Excel Data Analysis Tool: Random Number Generation.

The tool is used to generate 12 sets, with each set con-

taining six random numbers drawn from a normal

distribution with mean l = 5 and SD r = 1. Such a ratio

between the mean and SD is typical for the example of

mechanical tests of large items. Each set of six values is

then divided into two parts. Each part represents simulated

test results (xij) of one of the two laboratories LABi, where

i = 1, 2.

A discrepancy between results is introduced by intro-

ducing d = 1 or 2 outliers in the LAB2 results. The value

of an outlier is given by

o ¼ x2;j þ b; ð8Þ

where x2,j is the jth result of laboratory 2 and b = 2, 3, 4, 5,

10 is the bias value added to x2,j.

In case of three ‘‘outliers,’’ which means that all LAB2

results differ from the results of LAB1, three random

numbers (LAB2 test results) are drawn from a normal

distribution with l2 = 5 ? b and r = 1. The results of

LAB1 are unchanged. Additionally, to conduct a simulation

of two tests performed in two laboratories, the same sets of
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data are used but with the exclusion of the third result of

each laboratory.

The following three sections present the methods used to

assess the simulated results of laboratories.

Method I of assessing the ILC results using the f

function of the compatibility of test results

Function f defined in Eq. (5) requires only knowledge of

probability density functions represented by the results of

the laboratories [x1, u(x1)], [x2, u(x2)] and not knowledge of

an assigned value. The result for a laboratory conducting

n tests (repetitions) is

xi ¼
P

j xi;j

n
; ð9Þ

for j = 1, 2…n.

To simplify the problem, we assume that there are the

three following main sources of uncertainty u(xi).

• The characteristic (accuracy) of measuring instruments.

Uncertainty is evaluated using data provided by cali-

bration certificates.

• Variability due to repeatability and reproducibility of

the test method. Factors affecting this variability

depend on the method. In most cases, it is not possible

to assess the effect of an individual factor on uncer-

tainty and it is common to use the Type A [13]

evaluation of standard uncertainty from the statistical

distribution of the values obtained from a series of

measurements.

• Variability due to the tested product and its inhomo-

geneity. The repeatability of the test item is not

dependent on the laboratory but on the type of product

and its production process.

If it is possible to perform tests on items of known

homogeneity or on reference materials, then it is possible

to separate variability due to the laboratory from variability

due to the tested product. However, in the cases considered

here, there is no reasonable way of separating the effects of

the tested product and test method on the variability of test

results. All historical data concern a small number of tests

of different products (tests are expensive, and sample is

destroyed during the test). The SD values taken from

results obtained in the same laboratory differ appreciably

for different types of product, and knowledge of the SD

that could be assigned to laboratory uncertainty is thus

unavailable. Uncertainty u(xi) can be estimated only on the

basis of the current sample. It seems to be justified, as the

only available option in such case, to use the sample SD of

current results as an approximation of uncertainty u(xi) in

this article. Hence, in the f function (Eq. 5) used as a

measure of the difference between the results of two lab-

oratories, we used the mean of the results for laboratory i as

xi and the sample SD of results for laboratory i as u(xi).

Method II of assessing ILC results using the z score

and a robust estimator of the assigned value

obtained in Algorithm A according to ISO 13528

To use the z function (Eq. 1), information on the assigned

value X and its standard uncertainty is needed. Because

there is no reference value and there are no expert labo-

ratories, the calculation of the assigned value has to be

based on robust estimation from participant results.

According to Algorithm A, recommended by ISO

13528, the first evaluation of the location X� and scale s�

estimator is:

X� ¼ med xið Þ ð10Þ
s� ¼ 1:483 med xi � X�j j ð11Þ

where i = 1, 2,…p, with p being the number of test results.

Next, estimators are derived through an iterative calcu-

lation of X� and s�:

X� ¼
X x�i

p
;

where

x�i ¼
X� � 1:5s� if xi\X� � 1:5s�

X� þ 1:5s� if xi [X� þ 1:5s�

xi otherwise

8

>

<

>

:

9

>

=

>

;

;

ð12Þ

s� ¼ 1:134

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ðx�i � X�Þ2

p� 1

s

: ð13Þ

An iterative calculation according to ISO 13528 is

performed until there is no change from one iteration to the

next in the third significant figure of s� and the equivalent

in X�. Equation (6) is then used for the calculation of zA,

where XA = X� and r_A = s�.
The ISO 13528 standard takes the average of all par-

ticipant measurements of the test material as ‘‘result’’ xi. In

our case, we have only two results x1 and x2, referring to

LAB1 and LAB2, for the calculation of X� and s�. Using
Algorithm A for p = 2 items of data, we always obtain the

same zA (ca. 0.62), regardless of the values of x1 and x2,

which is of course useless for the assessment of laboratory

performance. For this reason, in our calculation results for

all tests performed by the two laboratories, xij (i = 1, 2,

j = 1, 2, 3) replaces xi in Eqs. (10)–(13) used to estimate

X� and s� (we then have p = 6 values of test results).
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Method III of assessing ILC results using the z score

and a robust estimator of the assigned value

obtained in Algorithm B

According to Rousseeuw et al. [8] for the estimation of XB

and r_B, we use the M-estimator of location Tn that is

described by

1

n

X

n

i¼1

w
xi � Tn

Sn

� �

¼ 0 ð14Þ

wðxÞ ¼ ex � 1

ex þ 1
¼ tanh

x

2

� �

; ð15Þ

where Tn is the location estimator and Sn is the scale

estimator.

By analogy with Method II, all tests results obtained by

the two laboratories xij (i = 1, 2, j = 1, 2, 3) are used as xi
in Eq. (14). The first evaluation X1 of the location estimator

is

X1 ¼ med ðxi;jÞ: ð16Þ

Next Tn is iteratively calculated using Eq. (14). As

recommended by Rousseeuw, Tn is computed using a

Newton–Raphson algorithm, the code of which was

developed by the author of this work (shown in

‘‘Appendix 1’’).

The scale estimator (median absolute deviation) is cal-

culated as

Sn ¼ cn � 1:483 �med xi �medðxiÞj j; ð17Þ

where cn is a small sample correction factor, dependent on

n, which ensures that the median absolute deviation is

unbiased [15].

zB is then calculated according to Eq. (7), where x = xi
is the participant result according to Eq. (9), XB = Tn, and

r_B = Sn.

Results and discussion

Appropriate interpretation of f, zA, and zB is necessary to

confirm agreement or to alert laboratories of discrepancy

after ILC. It is assumed [3, 4] that z scores above 2.0 (or

below -2.0) indicate discrepancy. The same critical value

is commonly used for f [12]. If f has a value above 2.0, the
difference between test results is deemed significant in

view of their standard uncertainties.

Critical values for f and z scores should in practice depend
on the type of test, tested product, the aim of the test, and

other risk factors. They could be derived, for example, from

z-based and, t-based uncertainty estimators or an unbiased

uncertainty estimator (z/c4), as has been recommended by

Huang even for small samples [16]. However, choice of

threshold is not the subject of this article. The main question

is are the parameters f, zA, and zB effective enough in

detecting discrepancy between laboratories.

Figure 1 shows the values of f, zA, and zB obtained for

biases b = 0,…10 added to the results of LAB2 (according

to the described method of simulation). For one outlier

introduced in LAB2, only a few values of f are greater than
1 and none is greater than 2, even for bias of 10 (i.e., 10

multiples of the SD r). In other words, in this case, f has no
effectiveness in detecting discrepancies. For each bias

b = 0, 2, and 3, one f value exceeds 1, but for b = 0 this

should be interpreted as a false signal.

Better results concerning detection of discrepancies are

obtained for zA and zB parameters.

A similar situation occurs for two outliers introduced in

LAB2 results, but f becomes more effective and zA and zB a

little less effective.

There is a notable change in the case of three outliers

(Fig. 1c; Table 1). In this case, only f detect discrepancy of
the tests results, while zA and zB do not. In fact, three

outliers in LAB2 correspond to the situation that all the

results of LAB2 are incompatible with the results of LAB1

and this means that the laboratories obtain completely

inconsistent results.

The numbers of f, zA, and zB values that are greater than

1 are given in Table 1.

For a smaller number of results (i = 2 laboratories,

j = 2 results), the effects are similar.

It appears that there is very high positive correlation

between zA and zB, particularly for one and two outliers in

the case that each laboratory performs tests on three sam-

ples and for one outlier in the case of two samples. Pearson

product–moment correlation coefficients for zA versus zB
are given in Table 1.

This good correlation is not profitable. zB is based on

methods of robust location and scale estimation dedicated

specifically to small samples [8] and Algorithm A does not

concern small samples. The location estimator Tn and scale

estimator Sn show monotonicity, in contrast to estimators

X� and s� obtained using Algorithm A. It turns out that this

does not matter for the evaluation of ILC results using

parameters such as the z score.

In the present experiment, very large discrepancies

between results are introduced. Bias values are 2,…10 times

the SD r and 40,…200 % of mean l. However, the effec-

tiveness of proposed f, zA, and zB parameters in detecting

incorrect results is very low. The experiment clearly shows

the difference between the types of detected discrepancies of

test results, which of course results from the nature of the

parameter. The f parameter is more effective in detecting

differences between laboratories, whereas zA and zB are

better for detecting a laboratory with outliers.
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Fig. 1 Dependence of f, zA,
and zB for the second laboratory

on the value of bias for a one

outlier, b two outliers, and

c three outliers introduced for

the second laboratory (data

within a given range of the

b value are arranged in

ascending order by zB for

figures a and b and by f for

figure c, simply for easier

visualization.)
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The findings of this experiment are not optimistic,

because no statistically reliable parameter for the assess-

ment compliance of results, obtained by two laboratories

and for a small number of test results, has been found. Does

this mean that such a comparison should not be carried out?

In our opinion, such a comparison definitely should be

performed. The test method should provide the laboratory

customer with confidence that the laboratory has a useful

tool for the assessment of the conformity of tested item

with specified requirements. Decision making using sam-

ple-based location and scale estimators for very small

samples is uncertain and may be different for two different

laboratories. However, even if no reliable methods of

interlaboratory comparison exist, such comparisons give

both the laboratory and its client a slightly higher sense of

security. Sometimes in such cases, the ‘‘researcher’s eye’’

is more useful than statistics. If we take two sets of results,

an experienced laboratory worker would immediately find

doubtful results.

It is sometimes possible to establish simple criteria for

ILC, which are harmonized with criteria for the tested

product. There are many possibilities for such criteria. For

example, to establish criteria that refer to the suitability of

the test method for conformity assessment, one may rely on

the permissible product tolerance for the tested product:

USL � LSL

r
� j; ð18Þ

where USL and LSL are the upper and lower specification

limits for the tested item, respectively, and r is the sample

SD for all LAB1 and LAB2 results. j should of course be

dependent, as mentioned earlier, on a number of factors

and should help to minimize the risk of a different

assessment of the tested product at two different

laboratories.

Sometimes conformity assessment of a product is based

on a value declared by the producer. In such a case, the best

solution is to use arbitrarily established criteria based on

Table 1 Effectiveness of the detection of incorrect results, expressed in numbers of f, zA, and zB values calculated for LAB2 that are greater than

or equal to 1

j 
Numer of 

outliers in (in 
LAB2), 

b 
Bias value,  

according to 
Eq.(8) 

i=2 laboratories, j= 3 results i=2 laboratories, j= 2 results
The number ofζ, zA and zB

values that are greater than or 
equal 1

Correlation 
between zA

and zB

values, r a

The number ofζ , zA and zB

values that are greater than or 
equal 1

Correlation 
between zA

and zB

values, r a

ζ zA zB ζ zA zB

0 0 1 1 0 2 2 2 

1 

2 1 3 4 

0.993 

3 3 4 

0.999 
3 1 5 5 3 5 5 

4 0 6 6 2 6 6 

5 0 8 8 2 9 8 

10 0 12 12 1 11 12 

2 

2 2 2 3 

0.995 

9 0 0 

0.879 
3 6 4 3 11 0 0 

4 6 4 6 12 0 0 

5 8 7 7 12 0 0 

10 10 11 11 12 0 0 

3 

2 7 3 3 

0.957 
3 7 1 1    

4 11 1 1    

5 12 1 0    

10 12 0 0    

Bold values indicate simulations for which effectiveness of the detection of incorrect results was 100 %
a Pearson product–moment correlation coefficient
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experience of the test method and its suitability for con-

formity assessment. An example of such a criterion is that

the SD r (defined as above) should not be greater than, e.g.,

10 % of the test result. As a test result we can use, for

example, the robust value XB calculated in Algorithm B.

This idea is based on the maximum permissible variance of

the test results, which will allow for a meaningful assess-

ment of the product conformity.

It should be noted that this type of test method most

commonly misses data related to precision. Unfortunately,

in the process of method development, even by standard

committees, exhaustive validation is often lacking, which

would be a source of knowledge about the properties of

the test method. If it were not so, the data regarding

precision (e.g., the SDs of repeatability and repro-

ducibility) could simply be used to establish criteria for

the ILC. Even if the assigned value is unknown, knowl-

edge about the precision of the test method presents the

possibility of developing a simple criterion based, for

example, on values of the repeatability and reproducibility

limits published in standards; e.g., the difference between

laboratory results should not be greater than the repro-

ducibility limit.

Conclusions

Requirements and rules concerning the organization of

proficiency testing or ILC and the analysis of data obtained

are not applicable for some kind of tests, when the numbers

of laboratories and tests are small and no reference values

are available.

It seems to be justified in such a situation to resign

actions aimed at ensuring the quality of tests by conducting

interlaboratory comparisons and to focus on other aspects,

such as the high competence of personnel and the suit-

ability of equipment. However, laboratories, particularly

those responsible for carrying out tests of products that

affect health and safety, tend to be concerned about the

correctness of their test results. An interlaboratory com-

parison could help them assess whether differences

between laboratories are significant and to have more

confidence in their results.

The use of statistical methods turns out to have high risk,

particularly a high risk of falsely accepting results. The

z score parameters zA and zB, based on an assigned value, are

more effective in detecting a laboratory having outlier

results. The f parameter, which is based on the difference in

results of laboratories and its SDs as described in this article,

is better for detecting differences between laboratories. The

combination of the two methods (using f and zA or f and zB)

can reduce the risk that one of the types of discrepancy is

overlooked. However, never do either of these methods or

their combination guarantee proper assessment and they

should not be used for the main assessment of laboratory

performance in such interlaboratory comparisons. It was

also shown that methods dedicated to the robust estimation

of scale and location in small samples do not improve the

efficiency of the ‘‘z score’’-type parameter in detecting dis-

crepancies of tests results.

In our opinion, the best option is to use arbitrarily

defined criteria based on the experience of laboratories,

suitable for the requirements of the tested product, the aim

of the tests, and other known risk factors.

Simultaneously to this work (unexpectedly for authors

of the paper), new version of ISO 13528 [17] has been

published. In informative Annex D1 some conclusions on

procedures for small numbers of participants has been

shown. The external criteria independent of the partici-

pants’ results are preferred in ISO for small number of

participants. Also unreliability of some procedures used for

the performance evaluation for too small number of par-

ticipants has been underlined in the standard. Thus, our

conclusions are consistent with information given in the

new standard.

Assessment of the reliability of small populations of test

results is a difficult but necessary problem to solve in terms

of not only ILC but also the conformity assessment of

tested product and will be the subject of further work of the

authors of this article.
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Appendix 1: code for calculation of location
and scale estimators according to Algorithm B.

(MATLAB language, MATLAB R2014a (8.3.0.532) by

MathWorks, Inc.)
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