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Abstract In micromechanics, the stress–force–fabric (SFF) relationship is referred to as an analytical expres-
sion linking the stress state of a granular material with microparameters on contact forces and material fabric.
This paper employs the SFF relationship and discrete element modelling to investigate the micromechanics
of fabric, force and strength anisotropies in two-dimensional granular materials. The development of the SFF
relationship is briefly summarized while more attention is placed on the strength anisotropy and deformation
non-coaxiality. Due to the presence of initial anisotropy, a granular material demonstrates a different behaviour
when the loading direction relative to the direction of the material fabric varies. Specimens may go through
various paths to reach the same critical state at which the fabric and force anisotropies are coaxial with the
loading direction. The critical state of anisotropic granular material has been found to be independent of the
initial fabric. The fabric anisotropy and the force anisotropy approach their critical magnitudes at the critical
state. The particle-scale data obtained from discrete element simulations of anisotropic materials show that in
monotonic loading, the principal force direction quickly becomes coaxial with the loading direction (i.e. the
strain increment direction as applied). However, material fabric directions differ from the loading direction and
they only tend to be coaxial at a very large shear strain. The degree of force anisotropy is in general larger than
that of fabric anisotropy. In comparison with the limited variation in the degree of force anisotropy with varying
loading directions, the fabric anisotropy adapts in a much slower pace and demonstrates wider disparity in the
evolution in the magnitude of fabric anisotropy. The difference in the fabric anisotropy evolution has a more
significant contribution to strength anisotropy than that of force anisotropy. There are two key parameters that
control the degree of deformation non-coaxiality in granular materials subjected to monotonic shearing: the
ratio between the degrees of fabric anisotropy and that of force anisotropy and the angle between the principal
fabric direction and the applied loading direction.
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1 Introduction

Granular materials have anisotropic structures either formed during natural geological processes or resulting
from various in situ loading conditions. Extensive experimental and in situ data have shown the significant effect
of material anisotropy on the observed stress–strain responses. For example, a cross-anisotropic sand sample,
which can sustain a high shear stress when loaded vertically, may yield and even collapse when the same
loading is applied horizontally [21,46]. Strength anisotropy is of key engineering importance in estimating the
stability of infrastructures and has therefore attracted much research interest. Extensive efforts of experimental
testing and constitutive modelling have been made to better estimate the strength and deformation of anisotropic
granular soils [2,3,5,6,9,19,22,27,29,32,34,42]. Experiments have been carried out by preparing and testing
specimens of different tilting angles or loading a soil specimen along various directions [20,29,30,45]. In
addition, numerical simulations using discrete element methods [8] are reported and found in qualitative
agreement with laboratory observations [22,31,41].

Another interesting phenomenon associated with anisotropic soil behaviour is deformation non-coaxiality,
which is defined as the non-coincidence between the principal stress directions and the principal strain incre-
ment directions [1,11,36,44,47]. It was firstly observed in Roscoe et al. [36] and later widely reported for
soil tests involving rotation of stress directions [13], for example, using a hollow cylindrical apparatus. The
angle between the principal stress direction and the principal direction of plastic strain rate is referred to as the
degree of non-coaxiality.

Material anisotropy is believed to be the main reason causing strength anisotropy and deformation non-
coaxiality. However, this issue may not be fully addressed in continuum mechanics by only considering a
granulate soil as an equivalent continuum. Multi-scale approaches treating a granular material as an assembly
of discrete particles have been developed over the past few decades. It has become increasingly popular as
particle-scale information has been made more accessible nowadays [10,14,18]. The fabric tensor has been
proposed to characterize material structure and incorporated in constitutive model development to better capture
the material behaviour [27,33,40,42]. Challenges remain on establishing the correlation between the proposed
fabric tensors and the key characteristics of material constitutive behaviours.

Rothenburg and Selvadurai [39] were among the first to introduce Fourier series in the description of the
directional variation of contact normal density. They further derived the stress–force–fabric (SFF) relationship
for two-dimensional assemblies consisting of discs [37], and later extended the expression to two-dimensional
elliptical-shaped particles [38] and three-dimensional ellipsoidal particles with anisotropy tensors [35]. The
SFF relationship proposed by Rothenberg and his co-workers expressed the macroscopic stress tensor with
an explicit statistical description in terms of microscopic parameters. It is an analytical relationship providing
micromechanical insight into the stress state of granular materials.

Recently, Li and Yu [24] employed the theory of directional statistics to study the statistics of particle-scale
information. They revisited the assumptions made in Rothenburg and his co-workers’ derivation and proposed
a more general form of the SFF relationship using tensor multiplication. The form of polynomial expansions in
direction n proposed in Kanatani [16,17] was followed to approximate the directional distributions of contact
normal density, mean contact vector and mean contact force. The least square error criterion was employed to
determine the tensorial coefficients, i.e. the direction tensors. These direction tensors are macroscopic variables
representing the particle-scale statistics. The SFF relationship and the theory of directional statistics are useful
tools in studying the micromechanics and exploring the micro–macro relationships of granular materials.
Following a brief summary of this new development, this paper applies them to study the micromechanics of
anisotropic granular materials.

In a study of the dependence of granular material behaviour on initial fabric and loading directions, Li
and Yu [22] prepared and tested two anisotropic specimens consisting of non-spherical particles using a two-
dimensional commercial discrete element package, Particle Flow Code in Two Dimensions (PFC2D) [15].
Observations were made on strength anisotropy and deformation non-coaxiality for both specimens. Multi-
scale data obtained from Li and Yu [22] will be used here, where appropriate, to facilitate our discussion in
this paper.

2 A summary of the SFF relationship

In this paper, an Einstein summation convention is adopted for repeated subscripts unless indicated otherwise.
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2.1 The derivation of the SFF relationship

Treating a granular material as an assembly of granular particles with only point contact interactions and
volume forces, the macro-stress tensor can be evaluated from the tensor product of contact forces f c

i and
contact vectors vc

i as follows:

σi j = 1

V

∑

c∈V

vc
i f c

j , (1)

in which σi j stands for the average stress over volume V [4,7,12,26,28,39,43]. To be consistent with the sign
convention in soil mechanics, a contact vector is defined here as the vector pointing from the contact point to
the particle centre. Equation (1) was established based on Newton’s second law of motion and is subject to no
constraints on particle or sample geometries. For each internal contact point between the particles P and Q,
there is always a pair of action and reaction forces in association with two contact vectors pointing from the
contact point to each of the particle centres. They are accounted as two contacts and contribute to Eq. (1) as
two separate terms.

In granular mechanics, contact direction is important. Denoting the contact normal direction as n, a unit
direction vector normal to the particle surface at the contact point, the terms on the right-hand side of Eq. (1)
can be grouped according to their contact normal directions, leading to

σi j = 1

V

∑

�

〈
vi f j

〉 |n�M(n) = M

V

∑

�

ec(n)
〈
vi f j

〉 |n��, (2)

where� represents the unit circle in two-dimensional spaces (D = 2) and the unit sphere in three-dimensional
spaces (D = 3). ∗|n denotes the value of variable * in direction n, and 〈∗〉 |n denotes the average value of
all terms of ∗ sharing the same contact normal direction n. The total number of contacts is denoted as M ,
and �M(n) represents the number of contacts whose normal directions fall into the stereo-angle element
�� centred at direction n. ec(n) = �M(n)/�� is the probability density function of contact normals. The
average number of contacts per particle is ω = M/N , where N is the total number of particles. In the case of
thermodynamic limit, ω approaches a limit, i.e. lim

N→∞ M/N = ω. It is referred to as the coordination number,

an index characterizing the packing density.
When �� → 0, the transition leads to an expression of the stress tensor in terms of integration over all

stereo-angles as follows:

σi j = ωN

V

∮

�

ec(n)
〈
vi f j

〉 |nd�, (3)

where d� is an elementary solid angle. Equation (3) is a directional integration over the product of the contact
normal probability density ec(n) and the joint product

〈
vi f j

〉 |n.
Equation (3) involves the joint product

〈
vi f j

〉 |n within the integration. In general,
〈
vi f j

〉 |n 	= 〈vi 〉 |n
〈
f j
〉 |n,

where 〈vi 〉 |n and
〈
f j
〉 |n denote the mean contact vector and the mean contact force along direction n, respec-

tively. The statistical dependence between them can be investigated by comparing the directional distribution of〈
vi f j

〉 |n, 〈vi 〉 |n
〈
f j
〉 |n [24]. The observation supports the assumption that the statistical dependence between

contact vectors and contact forces can be considered isotropic. This is the first simplification made in the
derivation of the SFF relationship.

Simplification 1 The effect of the statistical dependence between contact vectors and contact forces could be
taken into account by approximating:

〈
vi f j

〉 |n = ς 〈vi 〉 |n
〈
f j
〉 |n (4)

with ς a direction independent scalar.

Applying the directional statistic theory [16,23], directional distributions, such as ec(n), 〈vi 〉 |n and 〈 fi 〉 |n,
can be approximated in terms of polynomials of unit directional vector n. Normally, only a limited number
of terms is necessary for approximation. Statistical analyses were carried out to process the microscale data
obtained in 2D DEM simulations reported in [22]. The results suggested that it is sufficient to approximate the
directional distributions of contact normal density, mean contact forces and mean contact vectors with up to 2nd,
3rd and 1st ranks of power terms of direction vector n [24]. This supports the following three simplifications.
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Simplification 2 The contact normal density ec(n) can be sufficiently approximated with up to 2nd ranks of
power terms of the direction vector n as follows:

Ec(n) = 1

E0

(
D0 + Dc

i1i2
ni1ni2

)
, (5)

where Dc
i1i2

is the 2nd rank deviatoric direction tensor for contact normal density. It is a deviatoric and
symmetric tensor.

Simplification 3 The mean contact force 〈f〉 |n can be sufficiently approximated with up to 3rd ranks of power
terms of the direction vector n as:

Fj (n) = f0

(
n j + G f

ji1
ni1 + G f

ji1i2i3
ni1ni2 ni3

)
, (6)

where G f
ji1

and G f
ji1i2i3

are the deviatoric direction tensors for the 1st rank and 3rd rank polynomial terms

in the approximation. They are deviatoric tensors, and G f
ji1i2i3

is symmetric with respect to the subscripts
i1, i2, i3.

Simplification 4 The mean contact vector 〈v〉 |n can be sufficiently approximated with up to 1st ranks of
power terms of the direction vector n as:

Vj (n) = v0

(
n j + Gv

j i1
ni1

)
, (7)

where Gv
j i1

is the deviatoric direction tensors for the first rank polynomial term in the approximation. It is
again a deviatoric tensor.

With the above simplifications, the directional integration in Eq. (3) can be achieved in terms of tensor
multiplication, leading to:

σi j = ωN

V
ςv0 f0

⎡

⎢⎢⎢⎢⎣

α2

(
δi j + G f

ji + Gv
i j + G f

jl1
Gv

il1

)

+ 2
3α4

(
Dc

i j + Dc
im1

G f
jm1

+ Dc
im1

Gv
jm1

+ Dc
l1m1

Gv
il1

G f
jm1

)

+ 2
5α6

(
Dc

k1k2
G f

jik1k2
+ Dc

k1k2
Gv

il1
G f

jl1k1k2

)

⎤

⎥⎥⎥⎥⎦
, (8)

where α2n =
⎧
⎨

⎩

2nCn
22n , D = 2

1
2n+1 , D = 3

and nCk stands for the number of k-combinations of an n-element set [24].

Equation (8) is valid for both two-dimensional spaces and three-dimensional spaces for granular materials of
various particle shapes, as long as the above four simplifications are considered reasonable.

2.2 Two-dimensional SFF relationship in terms of Fourier Expansions

2.2.1 Contact normal density ec(n)

In two-dimensional conditions, the unit direction vector n can be represented as n = (cos θ, sin θ) in terms of
the angle θ in the given coordinate system. For contact normal density, the deviatoric direction tensor of the
second-order power term can be represented as

Dc
i1i2

= dc
2

(
cosφc

2 sin φc
2

sin φc
2 − cosφc

2

)
, (9)

where dc
2 denotes the magnitude of directional variation, and φc

2/2 indicates the preferred principal direction,
as exemplified in Fig. 1. Simplification 2 implies that the directional distributions of contact normal density
could be approximated as

Ec(n) = 1

2π

[
1 + dc

2 cos
(
2θ − φc

2

)]
. (10)
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Fig. 1 Directional distribution of contact normal density ec(n)

It is the summation of an isotropic component and an anisotropic component as shown in Fig. 1.
Now we will make use of the particle-scale information obtained from Li and Yu [22] for illustration.

The approximation using Eq. (10) is plotted in Fig. 1 together with the data directly obtained from DEM
simulation. When the initially anisotropically specimen was sheared at α = 45◦ up to 2 % of deviatoric strain,
it is calculated that dc

2 = 0.36, φc
2 = 131◦, as indicated in the figure.

2.2.2 Mean contact force 〈f〉 |n
For mean contact forces, Li and Yu [24] showed that Eq. (6) is sufficient and the two-dimensional deviatoric
direction tensors for the 1st rank and 3rd rank terms in the approximation take the form

G f
ji1

= B f
1

(
cosβ f

1 sin β f
1

sin β f
1 − cosβ f

1

)
, G f

ji111 = A f
3

(
cosα f

3 sin α f
3

− sin α f
3 cosα f

3

)
, (11)

where B f
1 and A f

3 denote the magnitudes of directional variation, β f
1 and α f

3 give information on the preferable
directions.

Simplification 3 suggests that the mean contact force could be approximated as

〈f〉 |n = f0

⎡

⎣
(

cos θ

sin θ

)
+ B f

1

⎛

⎝
cos
(
θ − β

f
1

)

− sin
(
θ − β

f
1

)

⎞

⎠+ A f
3

⎛

⎝
cos
(

3θ − α
f

3

)

sin
(

3θ − α
f

3

)

⎞

⎠

⎤

⎦ . (12)

Decomposing the mean contact force into a normal component and a tangential component, we have
〈
f n 〉 |θ = f0

[
1 + B f

1 cos
(

2θ − β
f

1

)
+ A f

3 cos
(

2θ − α
f

3

)]
= f0

[
1 + C f

n cos
(

2θ − φ
f

n

)]
, (13)

〈
f t 〉 |θ = f0

[
−B f

1 sin
(

2θ − β
f

1

)
+ A f

3 sin
(

2θ − α
f

3

)]
= − f0C f

t sin
(

2θ − φ
f

t

)
, (14)

where C f
n =

√
B f 2

1 + A f 2
3 + 2B f

1 A f
3 cos

(
β

f
1 − α

f
3

)
, tan φ f

n =
(

B f
1 sin β f

1 + A f
3 sin α f

3

)/(
B f

1 cosβ f
1

+ A f
3 cosα f

3

)
, C f

t =
√

B f 2
1 + A f 2

3 − 2B f
1 A f

3 cos
(
β

f
1 − α

f
3

)
and tan φ f

t =
(

B f
1 sin β f

1 − A f
3 sin α f

3

)/

(
B f

1 cosβ f
1 − A f

3 cosα f
3

)
. The mean normal contact force and the mean tangential contact force are sinusoidal

functions with period π , while the magnitudes and phase angles for normal and tangential forces may not
necessarily be the same. The parameters in Eqs. (13) and (14) are indicated in Fig. 2 to exemplify directional
distributions of normal and tangential contact forces.

When the initially anisotropic specimen is sheared up to 2 % of deviatoric strain, the deviatoric direction
tensor for contact forces is calculated with f0 = 0.078N , B f

1 = 0.35, β f
1 = 98◦, A f

3 = 0.09, α f
3 = 106◦

and c f
n = 0.44, φ

f
n = 100◦, c f

t = 0.26, φ f
t = 96◦. Substituting these parameters into Eqs. (13) and (14)

gives the approximation of mean contact forces. They are plotted in Fig. 2 together with actual DEM data for
comparison.
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Fig. 2 Approximation of mean contact force 〈f〉 |n with Eqs. (13) and (14). a Mean normal contact force. b Mean tangential
contact force

2.2.3 Mean contact vector 〈v〉 |n
The two-dimensional deviatoric direction tensors for the 1st rank term in the approximation of mean contact
vectors can be expressed as

Gv
j i1

= Bv1

(
cosβv1 sin βv1
sin βv1 − cosβv1

)
, (15)

where Bv1 denotes the magnitude of directional variation, βv1 indicates the preferable direction. The magnitudes
and the phase angles for the normal and tangential components are equal because only the 1st rank term is
used here for approximation.

Simplification 4 suggests that the directional distributions of mean contact vectors can be sufficiently
approximated as

〈v〉 |θ = v0

[(
cos θ

sin θ

)
+ Bv1

(
cos
(
θ − βv1

)

− sin
(
θ − βv1

)
)]

. (16)
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Fig. 3 Approximation of mean contact vector 〈v〉 |n with Eqs. (17) and (18). a Mean normal contact vector. b Mean tangential
contact vector

Decomposing the mean contact vector 〈v〉 |n into a normal component and a tangential component leads to:

〈
vn 〉 |θ = v0

[
1 + Bv1 cos

(
2θ − βv1

)]
, (17)

〈
vt 〉 |θ = v0

[−Bv1 sin
(
2θ − βv1

)]
. (18)

When the initially anisotropic specimen is sheared up to 2 % of deviatoric strain, it has been calculated that
v0 = 0.193 mm, Bv1 = 0.053, β f

1 = 6.71◦. The approximations are plotted in Fig. 3 together with the
information collected from DEM simulation for comparison. The disparity in the mean tangential contact
vector is negligible due to the fact that the anisotropic magnitude is extremely low.

2.2.4 Simplified SFF in two dimensions

The stress tensor expression can be further simplified by invoking the symmetry in the Cauchy stress tensor,
i.e. σ12 = σ21. Note that the contact normal density, mean normal contact force and mean contact vector in all
directions are nonnegative, and the magnitudes of the direction tensors are of limited range (between 0 and 1).
Under most conditions, the triple products of the high rank terms of the three direction tensor are insignificant
and can be ignored. Noticing that Dc

i1i2
, Gv

j i1
and G f

ji1
are symmetric and deviatoric tensors, Li and Yu [24]

proposed a simplified form of the SFF relationship in two-dimensional spaces:

σi j = ωN

2V
ςv0 f0

[
(1 + h) δi j + G f

ji + Gv
i j + 1

2
Dc

i j

]
, (19)

where h = 1
2 G f

il1
Gv

il1
+ 1

4

(
Dc

ik1
G f

ik1
+ Dc

ik1
Gv

ik1

)
+ 1

8 Dc
k1k2

G f
iik1k2

is a scalar accounting for the contribution

from the joint products. It is interesting to note that G f
ji1i2i3

does not appear directly in Eq. (19), but contributes

only to the coefficient h through the joint product Dc
k1k2

G f
iik1k2

.
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With the expressions of deviatoric direction tensors given in Eqs. (9), (11) and (15), the SFF relationship
in two dimensions can be expressed, in a component form, as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ11 = ωN
2V ςv0 f0

[
(1 + h)+

(
B f

1 cosβ f
1 + Bv1 cosβv1 + 1

2 dc
2 cosφc

2

)]
,

σ12 = σ21 = ωN
2V ςv0 f0

[
B f

1 sin β f
1 + Bv1 sin βv1 + 1

2 dc
2 sin φc

2

]
,

σ22 = ωN
2V ςv0 f0

[
(1 + h)−

(
B f

1 cosβ f
1 + Bv1 cosβv1 + 1

2 dc
2 cosφc

2

)]
.

(20)

Hence, we have the expression of the mean normal stress as:

p = ωN

2V
ς (1 + h) v0 f0 (21)

and the normalized deviatoric stress tensor as:

ηi j = σi j

p
− δi j = 1

1 + h

(
G f

ji + Gv
i j + 1

2
Dc

i j

)
. (22)

It is symmetric and deviatoric and can be expressed in the form

ηi j = η

2

(
cos θσ sin θσ

sin θσ − cos θσ

)
, (23)

where η is the material stress ratio and θσ /2 denotes the principal stress direction. The stress ratio η = q/p is
defined as the ratio of deviatoric stress q to mean normal stress p. In 2D spaces, the mean normal stress and
the deviatoric stress are defined as p = (σ1 + σ2)/2 and q = σ1 − σ2, respectively, where σ1 and σ2 are the
major and minor principal stresses.

3 Dependence of material stress on fabric anisotropy

3.1 A combined fabric tensor definition

The normalized deviatoric stress tensor, represented in Eq. (23) in terms of the stress ratio η and the principal
stress direction θσ , can be determined by anisotropy magnitudes of material fabric and contact forces (particle
interactions), and their principal directions as seen in Eq. (22). In this relationship, Dc

i j and Gv
i j are the

two deviatoric direction tensors describing particle-scale geometries (i.e. the internal structure of granular
materials). Dc

i j characterizes the anisotropy in the contact normal density and is loading sensitive. Gv
i j defines

the anisotropy in the mean contact vector and has a close correlation with the particle orientation anisotropy. We
can conveniently define a single fabric anisotropy tensor Ci j to reflect the combined influence of anisotropies
of both contact normal density and mean contact vector as follows:

Ci j = Gv
i j + 1

2
Dc

i j . (24)

Since Gv
i j and Dc

i j are deviatoric and symmetric tensors, the combined fabric anisotropy tensor Ci j is therefore
also deviatoric and symmetric, expressed as

Ci j = Gv
i j + 1

2
Dc

i j = �

(
cosψ sinψ

sinψ − cosψ

)
, (25)

where � =
√(

Bv1
)2 + (dc

2

)2/4 + Bv1 dc
2 cos

(
βv1 − φc

2

)
gives information on the magnitude of the combined

fabric anisotropy and ψ/2 indicates the principal fabric direction with tanψ = [Bv1 sin βv1 +(dc
2 sin φc

2

)
/2
] /

[
Bv1 cosβv1 +(dc

2 cosφc
2

)
/2
]
.
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With the single fabric anisotropy tensor defined by Eq. (24), the normalized deviatoric stress tensor becomes

ηi j = 1

1 + h

(
G f

ji + Cv
i j

)
. (26)

For an isotropic specimen, the fabric anisotropy tensor Cv
i j = 0. The principal stress direction is always

coaxial with the force anisotropy direction, and the stress ratio is the same irrespective of the loading direction.
However, when the material fabric is anisotropic, the non-coincidence between the principal fabric direction
and force direction leads to a variation in material stress ratio and a possible deviation between the principal
stress direction and the force anisotropy direction.

3.2 Fabric anisotropy and stress ratio

With Eqs. (11), (24) and (26), the stress ratio can be found as:

η = 2

1 + h

(
�+ B f

1

)
⎡

⎢⎣1 − 2
�/B f

1(
�/B f

1 + 1
)2

(
1 − cos

(
ψ − β

f
1

))
⎤

⎥⎦

1/2

. (27)

This equation shows that stress ratio mobilized in a granular materials under shearing is determined by the
magnitudes of fabric and force anisotropies,� and B f

1 . It is also affected by the non-coincidence between the

principal directions of force and fabric anisotropies
(
ψ − β

f
1

)
/2. When fabric anisotropy and force anisotropy

are coaxial, i.e.
(
ψ − β

f
1

)
/2 = 0◦, the stress ratio is maximal and is equal to η0 = 2

(
�+ B f

1

)
/(1 + h).

When there is a non-coincidence between the two principal directions
(
ψ − β

f
1

)
/2, the stress ratio becomes

η = κη0, where

κ =
⎡

⎢⎣1 − 2
�/B f

1(
�/B f

1 + 1
)2

(
1 − cos

(
ψ − β

f
1

))
⎤

⎥⎦

1/2

. (28)

The value of κ is calculated from the ratio �/B f
1 and the deviation in the two principal directions(

ψ − β
f

1

)
/2. In Fig. 4, κ is plotted against

(
ψ − β

f
1

)
/2 at different values of �/B f

1 . It is shown that κ

decreases with increasing
(
ψ − β

f
1

)
/2, indicating a smaller stress ratio when the fabric direction rotates away

from the force direction towards being normal to it. The decrease in stress ratio becomes more significant when
the ratio �/B f

1 increases, suggesting that a larger fabric anisotropy causes a higher strength anisotropy. The

stress ratio becomes zero, when �/B f
1 = 1 and

(
ψ − β

f
1

)
/2 = 90◦.

3.3 Fabric anisotropy and principal stress direction

Using Eqs. (11), (24) and (26), we can also determine the principal stress direction θσ /2. Denote θ/2 =(
θσ − β

f
1

)
/2 as the angle between the principal stress direction and the principal direction of force anisotropy.

We have θσ = θ + β
f

1 , where the angle θ can be determined from

tan θ =
(
�/B f

1

)
sin
(
ψ − β

f
1

)

(
�/B f

1

)
cos
(
ψ − β

f
1

)
+ 1

(29)
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Fig. 5 The principal stress direction (after Li and Yu [25])

Figure 5 plots the principal stress direction in terms of θ/2 at different values of�/B f
1 and

(
ψ − β

f
1

)
/2.

When the fabric anisotropy is much smaller than the force anisotropy, i.e. the ratio �/B f
1 is small, the

angle between the principal stress direction and the principal force direction is small with the maximum

occurring around
(
ψ − β

f
1

)
/2 = 45◦. When the fabric anisotropy is larger and becomes comparable with

force anisotropy, the angle between the principal stress direction and the principal force direction increases and

the maximal value skews towards higher
(
ψ − β

f
1

)
/2 values. With �/B f

1 = 1, the principal stress is always

in the middle between the principal force direction and the principal fabric direction, i.e. θ =
(
ψ + β

f
1

)
/2.

When the ratio increases further so that�/B f
1 > 1, the principal stress direction becomes closer to the fabric

anisotropy direction than the force anisotropy direction.

4 Numerical simulation results

In a study on material anisotropy, Li and Yu [22] prepared and tested two anisotropic specimens using discrete
element modelling. Particles used in the simulations were formed by clumping two equal-sized discs together.
The distance between the centres of the two discs was equal to 1.5 times the disc radius, r . The particle size
was uniformly distributed within (0.2, 0.6) mm in terms of equivalent diameter, and the disc thickness was
t = 0.2 mm. The contact law included two constant stiffness models (normal and tangential) and a slip model.
In the simulations, the elastic models were linear, and the particle stiffness was set to be kn = ks = 105 N/m.
The coefficient of friction was 0.5.
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Each specimen was sheared in varying loading direction from vertical to horizontal with 15◦ intervals.
One was the initially anisotropic sample prepared using the deposition method. The void ratio of the prepared
sample was 0.204 at pc = 1,000 kPa. The other was the preloaded sample, prepared by shearing the initially
anisotropic sample vertically up to 25 % deviatoric strain and then unloading to isotropic stress state. The void
ratio of the preloaded sample was 0.222 with the mean normal stress pc = 1,000 kPa. The loading direction
was denoted by the angleα, the deviation to the horizontal direction, i.e., x1 axis direction. Loading is applied in
a strain-controlled mode with the principal strain direction fixed. Shearing was carried out at constant confining
stresses.

Further details of the numerical simulation are available in the paper [22]. Statistical analyses were carried
out on the particle and contact information. Together with the insights provided by the theoretical SFF rela-
tionship, some of these numerical results are used here to facilitate our discussions on strength anisotropy and
deformation non-coaxiality.

4.1 Fabric and force anisotropy

In Eq. (19), the contributions from the joint products of direction tensors have been taken into account in terms
of the coefficient h, which affects the mean normal stress defined in Eq. (21) as well as the stress ratio defined
in Eq. (27). For the two series of numerical simulations reported in [22], the coefficient h was found to increase
as a result of the developments in fabric and force anisotropies and when their principal directions become
more coaxial as shear continues. However throughout the whole shearing process, its magnitude remains small
and its influence is considered secondary. Hence, in the following, we will mainly focus our discussion on
the fabric anisotropy tensor Ci j and the force anisotropy tensor G f

ji and consider the micromechanics of
anisotropic granular materials in terms of their evolutions.

The evolution of fabric anisotropy and contact force anisotropy for the two series of tests are plotted
in Figs. 6 and 7 in terms of the anisotropy magnitudes, � and B f

1 , and the phase angles, ψ/2 and β f
1 /2,

respectively.
The two specimens have initially anisotropic structures, evidenced by the nonzero values of fabric

anisotropy magnitudes. The principal fabric directions at the initial state were both vertical with ψ/2 = 90◦.
Before shearing, the stress state is isotropy with η = 0. At this state, G f

ji = −Cv
i j from Eq. (26). That is to

say, the force anisotropy and the fabric anisotropy were of equal magnitudes, while their principal directions
were normal to each other, as supported by the data points in the figures.

The fabric anisotropy for the preloaded specimen was larger than that of the initially anisotropic specimen at
the initial state due to preloading. However in comparison with the preloaded specimen, the initially anisotropic
specimen quickly developed higher fabric anisotropy in the loading direction. As for contact force anisotropy,
the initially anisotropic specimen developed a high anisotropy magnitude at very low strain level, while the
increase in the preload specimen was less rapid. This is possibly due to the difference in their void ratios.

Once shearing started, the principal direction of force anisotropy adjusted almost instantaneously to the
imposed loading direction, while the principal direction of fabric anisotropy adjusted much slower. For all the
simulations, the principal directions of force anisotropy were observed to be very close to the loading direction.
The magnitudes of force anisotropy differed slightly when the loading direction changed, as seen in Fig. 7.
As for fabric anisotropy, when its principal direction was non-coaxial with the loading direction, the principal
fabric direction rotated and gradually approached the loading direction. During this process, the evolutions
of the magnitudes of fabric anisotropy were observed to be different. When the loading was coaxial with the
fabric anisotropy, the fabric anisotropy kept increasing upon shearing. The magnitudes of fabric anisotropy
became smaller when the loading direction deviated further away from the principal fabric direction, and even
experienced a temporary decrease in the case of α = 0◦, as seen in Fig. 6.

At large strain levels, the specimens approached critical states. Due to the differences in the relative direction
between initial fabric and loading, material fabric goes through various paths to reach the ultimate state at which
both the fabric anisotropy and the force anisotropy approached their respective critical magnitudes. Despite the
differences in the loading directions and hence the early evolutions, the two anisotropic specimens approached
the same critical state characterized by macroscopically the critical stress ratio ηc = 0.85, and microscopically,

the critical material fabric anisotropy�c = 0.18 and the critical force anisotropy
(

B f
1

)

c
= 0.27. At the critical

state, the directions of both fabric anisotropy and force anisotropy were coaxial with the loading direction.
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Fig. 6 Fabric anisotropy. a Initially anisotropic specimen. b Preloaded specimen

Material behaviour became coaxial, and the stress ratios for different loading directions became equal at the
critical state.

4.2 Strength anisotropy

It should be noted that the stress ratio η = q/p, when reaching a peak value during shearing, can be converted
into a peak angle of internal friction and is generally used to define shear strength of a granular materials
[47]. Equation (27) provides an analytical expression of the mobilized stress ratio and can be used to study the
micromechanics of material shear strength. For completeness, the evolutions of the mobilized stress ratio for
the two series of simulations are shown in Fig. 8. The solid symbols are the stress measured on the specimen
boundaries, while the hollow symbols are the predictions from Eq. (27). It is evident that the two sets of data
are in good agreement and hence validate the use of Eq. (27). The specimens developed a larger stress ratio
when the loading direction was closer to the principal fabric direction.

The stress ratio is given in terms of microparameters as defined in Eq. (27). Apart from the secondary

parameter h, the stress ratio is mainly a function of the sum of the two magnitudes
(
�+ B f

1

)
, the ratio of

the two magnitudes �/B f
1 and the angle between the principal directions

(
ψ − β

f
1

)
/2. Figure 9 plots the

evolutions of
(
�+ B f

1

)
for the two series of tests. Since the value of h is small, the plot of

(
�+ B f

1

)
is

very informative in showing the variation of the maximal stress ratio as if the two anisotropies are coaxial.(
�+ B f

1

)
seems to be the dominant influential parameter governing the stress ratio, supported by the close

similarity between Figs. 8 and 9.
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Fig. 7 Contact force anisotropy. a Initially anisotropic specimen. b Preloaded specimen
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Fig. 8 Observations on strength anisotropy (after Li and Yu [25]) a Initially anisotropic specimen, b Preloaded specimen

The stress ratio is affected by the ratio of fabric anisotropy to force anisotropy �/B f
1 as a result of the

non-coincidence between their principal directions. The non-coincidence between fabric anisotropy and force
anisotropy can potentially further reduce material stress ratio by a factor of κ as evidenced in Eq. (29). Figure 4

plots κ in terms of the anisotropy ratio�/B f
1 and the angle

(
ψ − β

f
1

)
/2. In general, the magnitude of fabric

anisotropy is smaller than that of force anisotropy (�/B f
1 < 1). In this case, the larger the angle

(
ψ − β

f
1

)
/2,

the larger the ratio �/B f
1 , the smaller the mobilized stress ratio becomes.
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

η  2(Δ+Bf

1
)    2κ(Δ+Bf

1
) 

Loading Direction (o)

S
tr

es
s 

R
at

io

0 15 30 45 60 75 90 0 15 30 45 60 75 90
0.0

0.2

0.4

0.6

0.8

1.0

1.2

η  2(Δ+Bf

1
)    2κ(Δ+Bf

1
) 

Loading Direction (o)

S
tr

es
s 

R
at

io

(a) (b) 

Fig. 10 Stress ratios at 2 % deviatoric strain level. a Initially anisotropic specimen, b Preloaded specimen

Figure 10 plots information of the stress ratio η together with 2
(
�+ B f

1

)
and 2κ

(
�+ B f

1

)
at 2 % of

deviatoric strains, a strain level close to the occurrence of the peak stress ratio (i.e. material strength) in the dense
samples. For comparison, information of both the initially anisotropy specimen and the preloaded specimen
is presented. The figure gives clear evidence of strength characteristics of anisotropic granular materials. The
observation was shown to be in qualitative agreement with the strength anisotropy of Portway sand [5] using

a hollow cylinder apparatus. Slight differences between data points of 2κ
(
�+ B f

1

)
and η were observed as

a result of neglecting the joint product term h.

2
(
�+ B f

1

)
and 2κ

(
�+ B f

1

)
are shown almost coincident with each other, suggesting that κ is close

to 1 at 2 % of strain level. This can be explained based on the evolution of the ratio �/B f
1 and the angle(

ψ − β
f

1

)
/2. When the loading direction is further away from the initial principal fabric direction, the angle

between the two anisotropies
(
ψ − β

f
1

)
/2 is larger, while the ratio of�/B f

1 gets smaller. Even though force

anisotropy and fabric anisotropy are still non-coaxial, the angle
(
ψ − β

f
1

)
/2 has reduced to less than 20◦ at

2 % of strain level. And the influence of non-coincidence between force and fabric is not notable.
Peak stress ratio develops at a strain level around 2 % or even larger, when the angle

(
ψ − β

f
1

)
/2 gets even

smaller. Hence, at the strain level of material peak strength, κ is very close to 1. This suggests that material
strength anisotropy is mainly consequential to the differences in the sum of the magnitudes of fabric anisotropy
and force anisotropy

(
�+ B f

1

)
.

Information of the fabric anisotropy degree � and the force anisotropy degree B f
1 is presented in Figs. 6

and 7. When the specimen was loaded in different directions, the degrees of force anisotropy differed but
in a limited range, as seen in Fig. 7, while for fabric anisotropy, the evolutions of the magnitudes of fabric
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Fig. 11 Anisotropic magnitudes at 2 % of deviatoric strain level. a Initially anisotropic specimen, b Preloaded specimen

anisotropy were observed to be very sensitive to the loading direction. A large and monotonic increase was
observed for the case α = 90◦ when the loading was coaxial with the fabric anisotropy. The magnitudes of
fabric anisotropy became smaller, when the loading direction deviated further away from the principal fabric
direction, and even experienced a temporary decrease in the case α = 0◦, as seen in Fig. 6. In a word, the
variation of fabric anisotropy due to varying loading direction is more significant than that of force anisotropy.

Figure 11 compares the magnitudes of fabric anisotropy � and force anisotropy B f
1 at 2 % of deviatoric

strain, for both the initially anisotropy specimen and the preloaded specimen. η/2 is also plotted in the same

figure, bearing in mind that
(
�+ B f

1

)
is the governing parameter on η/2. It is observed that the magnitude

of force anisotropy is in general larger than that of fabric anisotropy. This explains why the peak stress ratio is
observed at around the same level of peak force anisotropy. Combining information in Figs. 6 and 7, we can
see that after the peak, the continuous increase in the fabric anisotropy compensates partially the sharp drop
in force anisotropy. The stress ratio hence softens gradually towards the critical stress ratio.

4.3 Deformation non-coaxiality

Supported by the observations in Fig. 7, we can assume that in monotonic shearing, the direction of force
anisotropy is coaxial with the strain increment (i.e. loading direction). As a result, the degree of non-coaxiality
is equal to the deviation of the principal stress direction from that of force anisotropy, i.e. θ/2. As can be seen
from Eq. (29), the degree of non-coaxiality is determined by the ratio�/B f

1 and the angle between contact force

and material fabric
(
ψ − β

f
1

)
/2. The dependence of the degree of non-coaxiality on�/B f

1 and
(
ψ − β

f
1

)
/2

is shown in Fig. 5. The evolution of�/B f
1 and

(
ψ − β

f
1

)
/2 can be inferred by comparing the fabric and force

anisotropies presented in Figs. 6 and 7. When the loading direction varies from horizontal (α = 0◦) to vertical

(α = 90◦), the ratio �/B f
1 becomes larger, while the deviation in phase angle

(
ψ − β

f
1

)
/2 gets smaller.

For the initially anisotropic specimen, the contact force anisotropy increases rapidly upon shearing, and
therefore, the ratio �/B f

1 is even smaller in comparison with that of the preloaded specimen. Referring to

Fig. 5, when the ratio �/B f
1 is small, the degree of non-coaxiality is expected to small and the maximal

degree of non-coaxiality appears at around α = 45◦. This explains our observations on the deformation non-
coaxiality of the initially anisotropic specimen, as reproduced in Fig. 12a. In Fig. 12, the solid symbols are the
data measured on the specimen boundaries, while the hollow symbols are the predictions from Eq. (29).

For the preloaded sample, the anisotropy in contact force increases less rapidly and the ratio�/B f
1 is higher

than that of the initially anisotropic specimen, in particular in the small strain level. When the loading direction
varies from horizontal (α = 0◦) to vertical (α = 90◦), the ratio�/B f

1 is observed to increase even further. At

2% of shear strain, the values of �/B f
1 in general lie within the range of (0.4, 0.6) except when α = 0◦ and

α = 90◦. As can be seen from Fig. 5, we now expect a much more remarkable degree of non-coaxiality (up to
20◦). Larger degrees of non-coaxiality appear when the loading direction is closer to the horizontal direction.
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Fig. 12 Observations on deformation non-coaxiality (after Li and Yu [25]). a Initially anisotropic specimen. b Preloaded specimen

This explains the observation on the deformation non-coaxiality for the preloaded specimen, as reproduced in
Fig. 12b.

In a summary, despite that the initially anisotropic sample and the preloaded sample are of similar
anisotropic degrees before shearing, the ratio �/B f

1 in the preloaded specimen is much higher than that
in the initially anisotropic specimen. As a result, it was observed for the preloaded sample that non-coaxiality
between the principal directions of stress and strain increment was significant, but for the initially anisotropic
sample, it was negligible.

5 Conclusions

The SFF relationship has been established using the directional statistical theory. It gives an analytical expres-
sion of the material stress tensor in terms of fabric and force direction tensors. In two dimensions, the SFF can
be written in a very concise form, as given in Eq. (19). Based on the newly derived SFF and the DEM simu-
lation results obtained from [22], we have investigated the micromechanics of anisotropic granular materials
by focusing on fabric, force and strength anisotropies and their evolutions during shearing. The key findings
of this investigation are given below:

• A combined, single, fabric anisotropy tensor Ci j can be used to take into account the effect of both contact
normal density anisotropy and contact vector anisotropy.

• For the materials used in the DEM simulations, the magnitude of force anisotropy is generally larger than
that of fabric anisotropy. In monotonic loading, once shearing started, the principal direction of force
anisotropy adjusts almost instantaneously to the imposed loading direction, while the fabric anisotropy
only gradually approaches the loading direction.

• At large strain levels, the specimens approach critical states characterized macroscopically by the critical
stress ratio ηc = 0.85, and microscopically by the critical degree of fabric anisotropy �c = 0.18 and

the critical degree of force anisotropy
(

B f
1

)

c
= 0.27. At the critical states, the directions of both fabric

anisotropy and force anisotropy are coaxial with the loading direction.
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• Material strength anisotropy has been shown to be mainly due to the differences in the sum of the degrees

of fabric anisotropy and force anisotropy
(
�+ B f

1

)
. Between these two, the variation of fabric anisotropy

due to varying loading direction contributes more to strength anisotropy than that of force anisotropy. It
is also potentially affected by the non-coincidence between the principal directions of force and fabric

anisotropies
(
ψ − β

f
1

)
/2 depending on the ratio of these two magnitudes�/B f

1 as demonstrated in Fig. 4.

However, its influence is believed negligible at the strain level of peak and critical stress ratio.
• Noting that in monotonic shearing, the direction of force anisotropy is coaxial with the loading direction,

the degree of non-coaxiality can be estimated by Eq. (29). It depends on the ratio between the degrees of

fabric and force anisotropies �/B f
1 and the deviation between their directions

(
ψ − β

f
1

)
/2. It is found

that the degree of deformation non-coaxiality becomes significant only if: a) the ratio between the degree
of fabric anisotropy and the degree of force anisotropy is sufficiently large, and b) the principal fabric
direction is sufficiently different from the applied loading direction.
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