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Abstract

Jinan, Shandong Province, China

Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide.
The high mortality might be attributed to delay in detection and is closely related to lymph node metastasis. Therefore, it is of
great importance to explore the mechanism of lymph node metastasis and find strategies to block GC metastasis. Messenger
RNA (mRNA), microRNA (miRNA) and long non-coding RNA (IncRNA) expression data and clinical data were downloaded
from The Cancer Genome Atlas (TCGA) database. A total of 908 differentially expressed factors with variance >0.5
including 542 genes, 42 miRNA, and 324 IncRNA were screened using significant analysis microarray algorithm, and
interaction networks were constructed using these differentially expressed factors. Furthermore, we conducted functional
modules analysis in the network, and found that yellow and turquoise modules could separate samples efficiently. The
groups classified in the yellow and turquoise modules had a significant difference in survival time, which was verified in
another independent GC mRNA dataset (GSE62254). The results suggested that differentially expressed factors in the
yellow and turquoise modules may participate in lymph node metastasis of GC and could be applied as potential biomarkers

or therapeutic targets for GC.
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Introduction

Gastric cancer (GC) is the fifth most common cancer
and the third leading cause of cancer-related deaths
worldwide (1). The high mortality of GC might be attributed
to delay in detection and is closely related to metastasis
and recurrence. Lymph node metastasis occurs in 70%
of patients with advanced GC (2,3). It is an early event in
GC metastasis and an independent prognostic factor, and
can significantly affect the prognosis of patients (4).
Therefore, predicting, diagnosing and investigating lymph
node metastasis in GC is very important for the prognosis
and treatment of patients.

The molecular mechanism of lymph node metastasis
has been preliminarily clarified, and mainly includes cell
migration and degradation of extracellular matrix, tumor
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cell apoptosis and immune escape, formation of new
lymphatic vessels, and other aspects (5,6). A series of
growth factors, cytokines, chemokines, miRNA and long
non-coding RNA (IncRNA) associated with lymph node
metastasis have been discovered, which were found to
interact with each other to form a complex regulatory
network and are involved in various processes of lymph
node metastasis in GC (7-13). For example, miRNA-375
is downregulated in gastric carcinomas and regulates cell
survival by targeting PDK1 and 14-3-3C (14), miRNA-7
functions as an anti-metastatic miRNA in GC by targeting
insulin-like growth factor-1 receptor (15), and miR-148a
contributes to the maintenance of homeostasis in normal
stomach tissue and plays an important role in GC invasion
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by regulating MMP7 expression. (16). As for IncRNAs, the
HOTAIR functions as a competing endogenous RNA to
regulate HER2 expression by sponging MiR-331-3p (12),
HMIincRNA717 may play crucial roles during cancer
occurrence and progression (8), and ATB plays an impor-
tant role in epithelial-mesenchymal transition to promote
invasion and metastasis through the TGFp/miR-200s/ZEB
axis, resulting in a poor prognosis in GC (10). Although
researchers have explored the factors that affect lymph
node metastasis, most of the studies focus on one or
several factors, and the molecular mechanism of lymph
node metastasis is still unclear.

Recent developments in bioinformatics and statistical
genomics provide biological systems approaches to better
understand the organization of the transcriptome and
transcriptional regulation. Among all of the systematic biol-
ogy approaches, gene network analysis is a powerful
approach that considers gene interactions. It has been
widely applied in gene expression studies of humans and
model organisms (17-19).

In the present study, we used large quantities of
messenger RNA (mRNA)-seq and microRNA (miRNA)-
seq data in GC patients in The Cancer Genome Atlas
(TCGA) database to screen mRNA, miRNA, and IncRNA
with differential expression between the samples with
and without lymph node metastasis, and then construct
the co-expression networks based on the differential
expression of various factors. The network module and
Cox regression model were combined to screen survival-
related genes. Moreover, the correlation between differ-
ent expression levels of these genes and prognosis
of GC patients was verified in another independent
dataset.

Material and Methods

Data sources

Samples of gastric cancer were selected from the
TCGA database (http://cancergenome.nih.gov/), in which
mRNAs data and miRNAs data were profiled from the
lllumina platform. The IncRNAs data were annotated from
mRNA transcriptomic database through matching to the
HGNC database. In total, 396 samples with mMRNA-miRNA-
IncRNA paired samples were obtained, and 356 samples
remained after removing 40 samples with unclear status in
lymph node metastasis. A total of 210 lymph node metas-
tasis samples and 146 non-lymph node metastasis samples
were included.

Data preprocessing

After download from TCGA, the expression profiles in
level 3 were merged and prepared. The mRNA, miRNAs
and IncRNAs with >20% missing values were removed,
while those with <20% missing values were replaced by
mean values. The values of IncRNA and mRNA were
assessed by PRKM, and miRNA values were assessed
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by RPM. Next, these values were transformed by log2
logarithms to obtain Gaussian distribution.

Identification of differentially expressed genes and
functional enrichment analysis

Significant analysis microarray (SAM) (20) is an algo-
rithm used to screen the differentially expressed genes
(DEGs). When differential gene expression was simply
checked by t-test or variance analysis, high rates of false
positive results were produced under repeated tests.
However, SAM is effective at correcting the false positive
rates through controlling the false discovery rate (FDR) in
multiple tests to filter DEGs with significant differences.
An absolute value of log2 ratio >1.5 and FDR <0.001
were set as the threshold for determining the significance
of gene expression difference.

The identified DEGs were analyzed in terms of
gene ontology (GO) function and pathway enrichment
analysis using the DAVID (Database for Annotation,
Visualization, and Integrated Discovery) hypergeometric
test (21).

Construction of co-expression networks and
excavation of network modules

Based on information of disease-related gene expres-
sion profiles under GC, co-expression networks were con-
structed by calculating adjacency matrix A of a gene pair
using the WGCNA package (< https://cran.r-project.org/
web/packages/WGCNA/index.html>) (22). To calculate
the adjacency matrix, an intermediate quantity called the
co-expression similarity s; was first defined. The default
method defines the co-expression similarity s; as the
absolute value of the correlation coefficient between the
profiles of nodes i and j:

Sjj = |cor(X;, X;)|

where x; and x; are the vector expression values of gene i
and j, respectively, and Cor is used to evaluate Pearson
correlation coefficient of the two vector values.

A weighted network adjacency was defined by raising
the co-expression similarity to a power:

st

1)
With B>1, the adjacency function calculates the adja-
cency matrix from expression data. The adjacency in
Equation 2 implies that the weighted adjacency a;; between
two genes is proportional to their similarity on a logarithmic
scale, log(a;) = B x log(s;). Pearson correlation coefficient
S is exponentially transformed into connection coefficient
ayj, to achieve a reliable network.

Network topology property is taken into account to
excavate modules of co-expression networks in WGCNA.
This algorithm analyses not only the relationship of two
conjoint node genes, but other genes correlated to the two
nodes. Connection coefficient a;; in co-expression network

(Equation 1)

aj= (Equation 2)
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was turned into weight coefficient W; by the following
formula:

. lij + ajj .
W= minfki} + 12 (Equation 3)

of which, lj= 3", aiayki= >, au

Wj; considers overlapping between neighbors of the two
conjoint genes i and j. Network modules were excavated
after hierarchical cluster analysis of W gene weighted matrix.

Survival analysis

Gastric carcinoma related genes were sorted out on
the background of expression profile data, and then were
constructed into the co-expression network according to
their expression levels, which was next divided into various
modules. Samples were hierarchically clustered based on
module genes and the significant differences of survival time
between samples were analyzed through K-M simple cluster-
ing. Finally, analysis of COX single variable regression (23)
was carried out between survival time and factors in modules.

Results

Preprocessing of expression profile data

There were 560 miRNAs and 12,474 mRNAs left after
preprocessing. Totally 1,165 IncRNAs were obtained from
transcripts of mMRNA expression profiles matched to HGNC
database (http://www.genenames.org/). The expression data
of mRNA, IncRNA and miRNA after preprocessing are
displayed in Figure 1. After standardization, the distribution
values among samples were relatively uniform.

Screening of differentially expressed factors and
functional enrichment analysis

The differentially expressed mRNA, miRNA and IncRNA
were screened by SAM algorithm. The result showed that
908 differentially expressed factors with variance > 0.5 were
screened, including 324 differentially expressed IncRNAs,
42 differentially expressed miRNAs and 542 differential
expressed genes (see Supplementary Table S1). These
differentially expressed factors divided the samples into two
classes as shown in Figure 2.

In all, 542 DEGs were functionally enriched by DAVID
analysis. There were 15 major enriched GO terms assigned
into the biological process categories, including immune
response (GO:0006955), response to stress (GO:0006950),
defense response (G0O:0006952), cell surface receptor signal-
ing pathway (GO:0007166), cell proliferation (GO:0008283),
regulation of immune system process (GO:0002682), cell
migration (GO:0016477), leukocyte activation (GO:0045321),
inflammatory response (GO:0006954), positive regulation of
response to stimulus (GO:0048584), regulation of cell proli-
feration (GO:0042127), cell differentiation (GO:0030154),
cellular developmental process (GO:0048869), cell adhesion
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(GO:0007155), and biological adhesion (G0:0022610)
(Table 1, also see Supplementary Table S2).

Construction of co-expression networks and mining
of modules

Based on the above mentioned 908 differential factors
(including differentially expressed genes, miRNA and
IncRNA), co-expression networks were constructed by
using WGCNA package in R language. The gene degrees
in the co-expression network were submitted to the power
distribution law (24), which showed in line with the free
scale characteristic in biological networks (Figure 3).

Furthermore, we carried out the module mining of
genes in the co-expression networks. As shown in Figure 4,
these differentially expressed factors in the co-expression
networks were divided into four module groups presented
by blue, brown, turquoise and yellow color, which included
73, 39, 89, and 35 differentially expressed factors, respec-
tively. In addition, there were other 672 factors that could
not be modular, and were presented in grey.

Classification validation of factors in four modules

The following analysis was the classification of 356
samples based on the module factors. It was found that
yellow and turquoise modules could separate samples
efficiently (group 3 was excluded when classified by
yellow module because there were rare death samples in
the group), and there were significant differences between
the survival curves of isolated samples (P <0.01; Figure 5).
By contrast, the genes in blue and brown modules could not
separate samples effectively, and therefore, these genes
were given up in the following survival time analysis.

Further validation between factors in yellow and
turquoise modules and survival time of GC samples was
performed by COX univariate regression analysis. The top
7 factors with significant regression in yellow module are
shown in Table 2, including adenosine receptor A3
(ADORAZ3), toll-like receptor 7 (TLRY7), interferon regula-
tory factor (IRF4), CC chemokine receptor 4 (CCR4),
reticulon-1 (RTN1), growth factor receptor—bound protein 2
(GRB2)-binding adaptor protein (GAPT), and GRB2-related
adapter protein 2 (GRAP2). There were 10 factors with
significant regression in turquoise module, including six
genes (guanine nucleotide-binding protein G(o) subunit
alpha, GNAO1; isthmin-1, ISM1; cartilage intermediate
layer protein, CILP; slit homolog 2 protein, SLIT2; scrapie-
responsive protein 1, SCRG1; tumor necrosis factor
a-induced protein 8 (TNFAIP8)-like protein 3, TNFAIP8L3),
two miRNAs (hsa-mir-183 and hsa-mir-942) and two
IncRNA (MIR345 and HCG18) (Table 2).

Classification validation of factors in yellow and
turquoise modules

GSE62254, the expression profile dataset of gastric
cancer, was obtained from GEO database (http://www.ncbi.
nim.nih.gov/geo/query/acc.cgi?acc=GSE62254), including
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Figure 1. Box plot distribution of TCGA data related to gastric carcinoma samples. A, messenger RNA (mRNA) expression; B, long non-
coding RNA (IncRNA) expression; C, microRNA (miRNA) expression. Horizontal axis indicates cancer samples; vertical axis indicates
the expression value distribution of the mRNAs, IncRNAs and miRNAs.

survival time information of 300 samples, which generated
from the GPL570 platform. In the pretreated samples,
20,692 genes were found and their box plot distribution is
shown in Figure 6.

Thirty-four genes within yellow module were gained
from the GSE62254 database. Using these module genes,
samples were well grouped into two classes. Moreover, the
survival time in Figure 7A showed significant differences
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between the two groups of samples (P=0.0144). The similar
results were received via 81 genes of turquoise module
contained in GSE62254 database: samples were divided
into three groups, and their survival times exhibited signifi-
cant differences (P=0.00128; Figure 7B). These analyses
demonstrated that selected genes of yellow and turquoise
modules have significant correlation with survival time of
GC samples.
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Figure 2. Heatmap of sample clustering based on differentially expressed factors. Horizontal axis indicates samples; vertical axis

indicates differentially expressed factors.

Table 1. Top 15 gene ontology functions enriched by differently expressed genes.

ID Description P value P adjusted
G0:0006955 Immune response 2.19E-63 3.27E-61
G0:0006952 Defense response 2.15E-57 2.80E-55
G0:0006950 Response to stress 1.57E-56 1.96E-54
G0:0007166 Cell surface receptor signaling pathway 1.20E-55 1.43E-53
G0:0008283 Cell proliferation 1.06E-49 1.09E-47
G0:0002682 Regulation of immune system process 6.12E-42 4.82E-40
G0:0016477 Cell migration 7.58E-40 5.66E-38
G0:0045321 Leukocyte activation 1.90E-39 1.32E-37
G0:0006954 Inflammatory response 3.92E-38 2.66E-36
G0:0048584 Positive regulation of response to stimulus 6.10E-38 4.05E-36
G0:0042127 Regulation of cell proliferation 1.72E-37 1.10E-35
G0:0030154 Cell differentiation 3.01E-34 1.70E-32
G0:0048869 Cellular developmental process 2.06E-33 1.14E-31
GO0:0007155 Cell adhesion 7.77E-33 4.22E-31
G0:0022610 Biological adhesion 1.11E-32 5.90E-31

Fisher’s exact test was used for statistical analyses, and the P value was adjusted by Bonferroni correction.

Discussion

Lymph node metastasis and recurrence are the main
factors that affect the prognosis of GC, and lymph nodes
without metastasis have important immune monitoring
functions. Therefore, it is very important to accurately deter-
mine the extent and degree of lymph node metastasis,
and to carry out rational lymph node dissection. As an
early and complicated event in GC metastasis, lymph
node metastasis involves a series of functional and
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regulating genes (4), and therefore it is more meaningful
to mine the co-expression network of various cancer
related factors. In the present study, we downloaded large
quantities of mRNA-seq and miRNA-seq data from the
TCGA database to screen the mRNA, miRNA and IncRNA
related to GC lymph node metastasis, and then constructed
co-expression networks based on the differential expres-
sion of these factors. Compared with previous studies,
which only focused on one or two factors of coding genes,
miRNAs and IncRNAs (7-10,15,25-27), the present study
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Figure 4. Clustering results of gene modules in co-expression network. Top, hierarchical clustering of 908 genes in co-expression
network. Bottom, divisional module classes. Gray zones indicate genes that do not belong to any modules.

performed a systematic analysis of the three factors for the
first time. There were 542 DEGs which were functionally
enriched into 15 major GO terms in the biological process
category, most of which were related to cancer, such as
immune response, cell proliferation, cell migration, cell
differentiation and cell adhesion.

Thanks to the rapid development in bioinformatics and
statistical genomics, gene network analysis has become a
powerful approach that can explore the interactions between
genes and has been widely applied in gene expression
studies of humans and model organisms (17-19). Mean-
while, genes that are highly interconnected within the
network are usually involved in the same biological modules
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or pathways, and therefore, modular analysis also plays
an important role in the analysis of gene co-expression
network (28,29). Several studies have demonstrated the
value of analyzing networks based on TCGA database. In
the present study, 908 differentially expressed factors
including 542 genes, 42 miRNAs and 324 IncRNAs were
included in the network analysis, and furthermore, genes
in the co-expression networks were used for the modular
mining. Four module groups were coded in blue, brown,
turquoise and yellow color, which included 73, 39, 89, and 35
differentially expressed factors. Except genes in the group 3
of the yellow module lacking sufficient death number, the
other genes in yellow and turquoise modules could separate
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Figure 5. Sample clustering based on yellow (A) and turquoise (B) module factors and differences in survival curves of the two groups

of samples.

Table 2. Genes with top significance of COX univariate regression
in the yellow and turquoise modules.

Gene symbol P value Module
ADORA3 1.64E-05 Yellow
TLR7 1.84E-03 Yellow
IRF4 1.86E-03 Yellow
RTNA1 3.68E-03 Yellow
CCR4 3.42E-02 Yellow
GAPT 3.78E-02 Yellow
GRAP2 4.05E-02 Yellow
GNAO1 9.94E-07 Turquoise
hsa-mir-942 1.17E-05 Turquoise
ISM1 3.55E-05 Turquoise
CILP 3.98E-05 Turquoise
SLIT2 7.82E-05 Turquoise
MIR345 9.46E-05 Turquoise
hsa-mir-183 1.88E-04 Turquoise
SCRG1 2.67E-04 Turquoise
TNFAIP8L3 4.84E-04 Turquoise
HCG18 5.58E-04 Turquoise

samples efficiently, and there were significant differences
between the survival curves of isolated samples.

Based on the network and modular analysis, seven
(ADORAS3, TLR7, IRF4, CCR4, RTN1, GAPT, and GRAP2)
and ten (GNAO1, ISM1, CILP, SLIT2, SCRG1, TNFAIP8L3,
hsa-mir-183, sa-mir-942, MIR345 and HCG18) candidate
factors with top significance of COX univariate regression
were identified in the yellow and turquoise module,
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respectively. Within yellow module, ADORAS (30), TLR7
(31), IR4 (32), and CCR4 (33-35) are genes closely
related to lymph node metastasis and survival of GC,
and within turquoise module, two miRNAs (miRNA-183
and miRNA-942) (13,36) and three genes (GNAO1,
ISM1and SLIT2) are factors involved in the regulation of
GC. The above published studies prove that our gene
network analysis for screening candidate factors related
to GC for further evaluation was reliable.

Therefore, the remaining seven identified factors includ-
ing three genes in yellow module (RTN1, GAPT, GRAP2)
and five factors in turquoise module (CILP, SCRG1,
TNFAIP8L3, MIR345 and HCG18) could be new factors
related to survival of GC. In fact, there is evidence that
these genes may be associated with several diseases and
even cancer. For example, RTN1, a neuroendocrine cell
specific protein, localized in endoplasmic reticulum, might
be involved in the activation of the expression of androgen-
responsive genes and related to prostate cancer (37). As
an adapter protein, GRB2 has been identified as a major
mediator in Ras-mitogen-activated protein kinase (MAPK)
activation, which is essential for growth factor-induced cell
proliferation and differentiation and plays a central role in
embryo development and malignant transformation. There-
fore, we believe that GAPT and GRAP2 are involved in the
activation of MAPK and growth factor-induced cell pro-
liferation and differentiation, which are often associated
with the development of cancer (38). CILP, an extracellular
matrix protein abundant in cartilaginous tissues, is impli-
cated in common musculoskeletal disorders, including
osteoarthritis and lumbar disc disease (39). It is worth
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Figure 6. Box plot distribution of GSE62254 dataset.
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Figure 7. Clustering of gastric cancer samples in GSE62254 dataset based on genes in yellow (A) and turquoise (B) modules.

noting that the TNFAIP8 family members are usually
associated with immune homeostasis and inflammatory
cancer diseases. For example, TNFAIPS itself usually func-
tions as an oncogenic molecule and it is also associated
with enhanced cell survival and inhibition of apoptosis,
and TNFAIP8-like 2 (TIPE2) governs immune home-
ostasis in both the innate and adaptive immune system
and prevents hyper-responsiveness (40). However, the
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function of TNFAIP8L3 remains unclear. Therefore, our
study provides some insight into the emergent properties
of prognostic genes, and further investigation of the
functional roles of these newly identified factors is urgent
for a functional validation system in GC.

In conclusion, our data provides a comprehensive
bioinformatics analysis of genes and pathways, which
may be involved in the lymph node metastasis of GC.
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We found a total of 542 genes, 42 miRNAs and 324
IncRNAs, and then constructed the interaction networks of
these differentially expressed factors. Furthermore, we
conducted functional modules analysis in the network,
and found that except for the genes in group 3 of the yellow
module, the other genes in the yellow and turquoise modules
could separate samples, and therefore these genes could be
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