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Abstract—A suitable knowledge of the orientation and motion

of the Earth in space is a common need in various fields. That

knowledge has been ever necessary to carry out astronomical

observations, but with the advent of the space age, it became

essential for making observations of satellites and predicting and

determining their orbits, and for observing the Earth from space as

well. Given the relevant role it plays in Space Geodesy, Earth

rotation is considered as one of the three pillars of Geodesy, the

other two being geometry and gravity. Besides, research on Earth

rotation has fostered advances in many fields, such as Mathematics,

Astronomy and Geophysics, for centuries. One remarkable feature

of the problem is in the extreme requirements of accuracy that must

be fulfilled in the near future, about a millimetre on the tangent

plane to the planet surface, roughly speaking. That challenges all of

the theories that have been devised and used to-date; the paper

makes a short review of some of the most relevant methods, which

can be envisaged as milestones in Earth rotation research,

emphasizing the Hamiltonian approach developed by the authors.

Some contemporary problems are presented, as well as the main

lines of future research prospected by the International Astro-

nomical Union/International Association of Geodesy Joint

Working Group on Theory of Earth Rotation, created in 2013.

Key words: Earth rotation, nutation, precession, polar

motion, UT1.

1. Relevance and Features of the Earth Rotation

Problem

The accurate determination and prediction of the

orientation and the motion of the Earth in the space is

needed in various fields, especially since the advent

of the space age. Direct examples in which that

knowledge is essential are: carrying out astronomical

observations from an observatory located on the

Earth’s surface, making observations of spacecrafts

from ground-located tracking stations, observing the

Earth from the space, determination and prediction of

satellite orbits, etc.

A good knowledge of the Earth’s orientation is

necessary for any applications related to pinpointing

of points or objects with respect to the Earth at a

global scale. There is a very broad set of such

applications, ranging from popular handy simple

navigation devices to the most sophisticated investi-

gations of Space Geodesy that address the

quantification of the physical effects of climate

change. The most popular issue is the determination

of sea level variation, whose magnitude is typically of

a few millimetres per year. Besides, there is a variety

of geodetic research aimed at finding the fingerprints

of different geophysical processes: mass movements

in oceans, ice sheets, terrestrial water storages, dis-

placement fields associated with earthquakes, etc.

(PLAG et al. 2009a, 2010) All of those geodetic

studies have very demanding requirements of accu-

racy. The GGOS (Global Geodetic Observing

System) initiative developed by the International

Association of Geodesy (IAG) targeted the require-

ments of accuracy on the level of 1 mm in position

and 1 mm/year in stability (PLAG et al. 2009b).

The IAG considers Earth rotation as one of the

three pillars of Geodesy, because of the relevant role

it plays in Space Geodesy, the other two being Earth

geometry and gravity. Those ‘‘three pillars’’ provide

the basis for the realization of the reference systems

required to assign time-dependent coordinates to

points and objects, and to describe the Earth’s motion

in space. This is not at all new: a quick look to the

table of contents of some classic treatises like TISS-

ERAND (1891) would suffice to appreciate how the

interaction of those pillars have fostered theoretical
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advances in many fields, such as Mathematics,

Physics, Astronomy, Geodesy or Geophysics.

The solution to the Earth rotation problem con-

sists mainly in the determination of the rotation

matrix linking the celestial and the terrestrial refer-

ence frames. Nowadays, one of its most remarkable

features is the extreme requirements of accuracy that

must be fulfilled in the near future, at the level of a

millimetre on the tangent plane to the planet surface,

which corresponds to an angle about 30 l as from the

Earth centre, roughly speaking. Due to its relevance

and the broad range of its applications, there is an

international service in charge of monitoring and

predicting the Earth rotation, the International Earth

Rotation and Reference Systems Service (IERS). It

was established in 1987 by the International Astro-

nomical Union (IAU) and the International Union of

Geodesy and Geophysics (IUGG). IERS is also

responsible of the realization and maintenance of the

celestial and terrestrial reference frames associated

with Earth rotation, namely the International Celestial

Reference Frame (ICRF) (FEY et al. 2004) and the

International Terrestrial Reference Frame (ITRF)

(ALTAMIMI et al. 2011). More information appears in

the Annual Reports yearly published by IERS (DICK

2011). This service provides the international com-

munity with combined solutions for the EOP (Earth

Orientation Parameters) (BIZOUARD and GAMBIS 2009)

and also publishes the IERS Conventions, which are

widely used not only in the field of Earth rotation, but

in satellite orbit determination and many other geo-

detic or geophysical applications (PETIT and LUZUM

2010).

The Earth rotation is affected by many factors that

must be accounted for to obtain solutions suitable to

meet the present needs. Apart from the mathematical

methods used to derive solutions, the main physical

influences come from:

• Lunisolar gravitational attraction and planetary

attraction.

• Earth figure and tensor of inertia (really not

constant but time-varying).

• Earth internal structure: fluid outer core (FOC),

solid inner core (SIC), etc.

• Effects at the boundaries of the inner layers, with

dissipations and topography.

• Deformations (which produce geometric and

dynamical effects).

• Tides: solid earth tides, ocean tides.

• Many other geophysical influences: redistribution

of ice–water-vapor masses, currents, winds,

hydrology, magnetism, post-glacial rebound, earth-

quakes, etc.

2. The Rigid-Earth Model: A First Step Towards

the Solution

Assuming the Earth is a rigid body is a logic first

step, which has fulfilled the practical needs of accu-

racy for centuries. The solutions for nutations are

close enough to the actual non-rigid Earth nutations,

since the maximum differences between them (for

each frequency) are below 30 mas (milliarcseconds),

about 1 m on the Earth surface, and therefore irrel-

evant in ancient observations. The accuracy was thus

satisfactory for applications until the development of

highly accurate space geodetic techniques. Besides,

the rigid model allows a great simplification for

several reasons:

• In this case, perturbations only arise from the

gravitational attraction of celestial bodies on an

Earth with a constant tensor of inertia.

• The theoretical definition of the terrestrial frame is

trivial, since there are no intricacies associated to

deformations.

• Rigid body rotations have been widely studied for

centuries, and there are lots of well-known topics

easily found in the literature: Euler equations for

rigid body rotation, systems of variables, integra-

bility issues, etc.

• There are several well-established approaches at

hand: Newtonian, Eulerian, Lagrangian,

Hamiltonian.

• The unperturbed motion is essentially the Euler-

Poinsot problem; therefore, it is integrable (in the

Liouville sense) and convenient to derive asymp-

totic solutions by means of perturbation methods.

Eulerian formulation The formulation using Euler

equations (1749) is the most extended and well-

known in rotational dynamics. In the Newtonian
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framework, we consider an inertial reference system

F centered at the barycenter O of the body and a

system B attached to the body, moving with angular

velocity x. The velocity of a body particle P with

respect to both frames holds vF ¼ vB þ x�
r ¼ x� r, since P is in rest in B. Therefore, the

absolute angular momentum M can be expressed in

the body frame as M ¼ Px, P being the matrix of

inertia, constant in this case. If L stands for the

external torque, the basic Newtonian equation in the

inertial frame, dMF=dt ¼ LF , writes in the body

frame as

dM

dt
þ x�M ¼ L; or P

dx

dt
þ x�Px ¼ L:

ð1Þ

It is usual to choose the body axes of B aligned with

the principal axes of inertia of the body, and then

Euler equation (1) reduces to the most familiar form

A _x1 þ C � Bð Þx2x3 ¼ L1;

B _x2 þ A� Cð Þx1x3 ¼ L2;

C _x3 þ B� Að Þx1x2 ¼ L3:

Let us notice that those equations provide the deriv-

atives of the angular velocities, but not the angles

specifying the orientation of the body system B rel-

ative to the inertial one F . This information is

necessary to determine the rotational motion, since

usually the torque L depend on the attitude of the

body. Therefore, Eq. (1) must be complemented with

other equations. One choice in Astronomy is to

describe the attitude by means of the Euler angles w,

h, u, by performing a sequence of three consecutive

rotations with respect to the 3, 1, and 3 axes,

respectively (Fig. 1, left). The time derivatives of the

Euler angles are related to the components of the

angular velocity vector x by the kinematical equa-

tions (WOOLARD 1953a; LEIMANIS 1965)

du
dt
¼ x1

sin w
sin h

þ x2

cos w
sin h

;

dh
dt
¼ x1 cos w� x2 sin w;

dw
dt
¼ x3 � x1 cot h sin w� x2 cot h cos w:

ð2Þ

Variational formulations Eulerian formulations

are seldom used nowadays in Earth rotation studies.

An exception is the solution by ROOSBEEK and DEHANT

(1998), that followed the Eulerian method, with

direct computation of torques. WOOLARD (1953a) used

a Lagrangian approach to derive the most accurate

solution of his epoch, which was adopted by the IAU

for a period. BRETAGNON et al. (1988) later computed

a highly accurate solution with that formalism.

Nevertheless, the most successful variational

approach has been the Hamiltonian one. It allowed

systematic derivations of accurate solutions with the

concourse of perturbation methods based on the Lie

series. KINOSHITA (1977) established such an approach

Figure 1
Euler (left) and Andoyer (right) variables
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to rigid Earth rotation that became a model to follow.

His solution was the best of its class and was the base

of the non-rigid solution by Wahr, adopted by the

IAU in 1980. Accuracy was improved later by KI-

NOSHITA and SOUCHAY (1990) and SOUCHAY and

KINOSHITA (1996, 1997). The fundamentals of this

method are presented in the next section.

3. The Hamiltonian Treatment of Rigid Earth

Rotation

Variables. A key of the success of the Hamiltonian

method application to rotation problems is the use of

Andoyer variables, also named after Serret (TISSERAND

1891; DEPRIT and ELIPE 1993). The fixed frame F of

coordinates (OXYZ) is transformed into the moving

frame F (Oxyz) by means of five rotations, since the

plane orthogonal to the angular momentum vector

(often called Andoyer plane) is used as an interme-

diate step to go from the equinoctial plane OXY to the

equator Oxy. The scheme of rotations is 3–1–3–1–3,

and the corresponding angles are k; I; l; r; mð Þ. They

are shown in Fig. 1, to the right.

Three of those five angles k; l; mð Þ are canonical

coordinates and the other two I; rð Þ are auxiliary

angles related to the conjugate momenta through

cos I ¼ K=M, cos r ¼ N=M. The canonical momenta

are denoted as K, M, N, and they have a clear

dynamical meaning: M is the modulus of the angular

momentum vector M, N its component along the polar

or figure axis Oz of the body, and K its component

along the OZ axis of the fixed frame. Let us point that

the notation k; l; m; K;M;Nð Þ corresponds to

h; g; l; H;G; Lð Þ used by Kinoshita; the auxiliary angle

I (obliquity of the Andoyer plane) has the same nota-

tion and r stands for Kinoshita’s J, the angle between

M and the body figure axis. Further analyses of the

Andoyer set appear in EFROIMSKY and ESCAPA (2009).

The components of M in the body system have the

expressions

M1 ¼ M sin r sin m; M2 ¼ M sin r cos m; M3 ¼ M cos r:

ð3Þ

Unperturbed problem In Andoyer variables, the

kinetic energy is

T ¼ 1

2
M2 � N2
� � sin2 m

A
þ cos2 m

B

� �
þ 1

2

N2

C
: ð4Þ

It is especially simple in the case of axial symmetry,

since all the coordinates are cyclic:

T ¼ 1

2

M2 � N2

A
þ 1

2

N2

C
: ð5Þ

The free motion of a symmetric body is easily

described in Andoyer variables. As the potential

V ¼ 0, the Hamiltonian H ¼ T þ V ¼ T . Therefore,

the moments M, N, K, are constant and angles I, r are

as well. Coordinate k (representing an ecliptic lon-

gitude) is also constant. The remaining two angles,

l; m, are linear functions of time. The sum lþ m
corresponds to the diurnal rotation with angular

velocity XE and m provides the rotation of the angular

momentum around the figure (or polar) axis. Its fre-

quency is proportional to the dynamical ellipticity

H ¼ ðC � AÞ=A. That is the simplest case of the free

polar motion, known as Euler free oscillation.

Let us remark that the solution to the angular

variables is computed directly and no previous solu-

tion to the angular velocity is needed, unlike in the

approaches based on Euler–Liouville equations. The

longitude and obliquity of the Earth equator, kf ; If

can be computed from the approximate relationships

kf � k ¼ r
sin l
sin I

; If � I ¼ r cos l ð6Þ

which hold up to first order in r, of the order of 10�6

rad. Those differences are known as Oppolzer terms.

The classic precession-nutation angles used in

Astronomy are w ¼ �kf and � ¼ �If , since they are

reckoned in the opposite direction.

Perturbing potential The free rotation of a rigid

earth is perturbed by the gravitational attraction of

the Sun, Moon and planets. The gravitational

potential due to a body of mass m� and coordinates

ðr�; a; dÞ in the fixed frame has a known expansion

as a series of spherical harmonics (SH) multiplied

by the corresponding Stokes coefficients. In the case

of the Earth, the zonal term due to the Earth

oblateness (associated to P20 and also named Mac-

Cullagh’s term) is at least 1,000 times larger than

the others, and thus provides a good approximation

to the potential

60 J. M. Ferrándiz et al. Pure Appl. Geophys.



V ’ V0 ¼
Gm�

a�3
ðC � AÞ a�

r�

� �3

P2ðsin dÞ ; ð7Þ

It must be expressed in terms of the canonical vari-

ables and the coordinates of the disturbing body,

assumed to be known functions of time provided by

some ephemeris, usually referred either to an inertial

(or quasi-inertial) system or to a non-inertial system

with known motion (e.g., ecliptic of date). Nutation

theories have relied on analytical or semi-analytical

ephemeris since a long time ago (NEWCOMBE 1898;

WOOLARD 1953b, etc.), and they still use such

ephemeris, instead of numerical ones as in the JPL

series (e.g., DE432, FOLKNER et al. 1994, 2014). The

main reason is that nutation theories intend to derive

semi-analytical solutions in which the constituent

frequencies are explicit, and resorting to numerical

ephemeris would introduce additional complications.

The ephemeris commonly used are ephemeris

VSOP87 (BRETAGNON 1982) and ELP2000 (CHA-

PRONT-TOUZÉ 1980), respectively. The transformation

of the standard expansion in SH is a difficult task,

since it requires performing five rotations. Kinoshita

successively applied Wigner’s theorem of transfor-

mation of SH under rotation and calculated the

second degree SH of Moon and Sun to obtain up to

the order of r

V ¼
X

p¼S;M

k0p
X

i

1

2
ð3 cos2 r� 1ÞBi cos Hi

�

� 1

2
sin 2r

X

s¼�1

Ci;s cosðl� sHiÞ
#

ð8Þ

where subindex p stands for the perturbing body (S =

Sun, M = Moon), the parameter k0p ¼ 3GmpðC �
AÞ=a3

p factorises the main terms of the potential

generated by body p and the coefficients Bi, Ci;s,

depending on the variable I, are

Bi ¼ �
1

6
ð3 cos2 I � 1ÞA0Þ

i �
1

2
sin 2IA

1Þ
i �

1

4
sin2 IA

2Þ
i ;

Ci;s ¼ �
1

4
sin 2IA

0Þ
i þ

s
4

sin Ið1þ s cos IÞA1Þ
i

þ 1

2
ð1þ s cos IÞð�1þ 2s cos IÞA2Þ

i : ð9Þ

As for arguments Hi, we have that

Hi ¼ m1ilM þ m2ilS þ m3iF þ m4iDþ m5iX, where

lM , lS, F, D, and X are the Delaunay arguments of the

Moon and the Sun. Within our level of approxima-

tion, we can assume that dHi=dt ¼ ni, the mean

motion ni being constant. Let us stress that the

canonical variable k is implicitly contained in X
through X ¼ X0 � k, where X0 is the mean longitude

of the Moon referred to the origin of longitude on the

ecliptic of date. The numerical values of coefficients

A
jÞ
i , Hi and ni, as well as of the list of the five integer

numbers ðm1i; m2i; m3i;m4i;m5iÞ associated to each

value of the index i, depend on the orbital theories of

the Moon and the Sun. They were first computed by

KINOSHITA (1977) and updated by KINOSHITA and

SOUCHAY (1990) and NAVARRO (2002).

3.1. Note on the Efficient Expansion of the Potential

A main difficulty of the Hamiltonian theory in the

rigid case is the handling of terms of the gravitational

potential due to lunisolar attraction. The expansion of

the potential contains spherical harmonics (SH) of the

perturbing bodies (Sun, Moon and Planets) beyond

McCullagh’s approximation. Their spherical coordi-

nates are given by numerical or semi-analytical

ephemeris, which provide them as multiple Fourier

series whose arguments are linear combinations of

the orbital variables of the relevant body. The semi-

analytical expansion of those SH is a difficult task

because of the large number of terms (thousands),

and the help of computer algebra is essential.

The best option is designing and using special

purpose symbolic manipulators to handle the so-

called Poisson series. More advanced processors

exist, capable of manipulating the full expansions

of the potential, including canonical variables (Ki-

noshita series) and performing transformations of SH,

even rotations applying Wigner’s Theorem (NAVARRO

and FERRÁNDIZ 2002).

Since the early 1960s, investigators have used

computers to generate analytical expressions. The

first symbolic processors were developed to work

with Poisson series, that is, multivariate Fourier series

whose coefficients are multivariate Laurent series,

X

i1;...;in

X

j1;...;jm

C
j1;...;jm
i1;...;in

xi1
1 . . .xin

n

cos

sin
ðj1/1 þ � � � þ jm/mÞ ;

where C
j1;...;jm
i1;...;in

2 R, i1; . . .; in; j1; . . .; jm 2 Z, and

x1; . . .; xn and /1; . . .;/m are called polynomial and
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angular variables, respectively. These processors

were applied to problems in non-linear mechanics or

non-linear differential equations in the field of

celestial mechanics. One of their first applications

was concerned with the orbital motion of the Moon.

Delaunay devised his perturbation method to treat the

lunar problem and spent 20 years doing algebraic

calculations by hand to solve it. DEPRIT et al. (1971)

extended the solution of Delaunay’s work with the

help of a special purpose symbolic processor, and

HENRARD (1979) pushed it to order 25. This solution

was improved by iteration by CHAPRONT-TOUZÉ

(1980), and planetary perturbations were also intro-

duced by CHAPRONT-TOUZÉ (1980). Later, analytical

theories for the rotation of the Earth (KINOSHITA 1977)

were treated with the help of symbolic computation

packages. Nowadays, there are many open problems

that require massive symbolic computation. To cite

one example, we will refer to the analytical theory of

the resonant motion of Mercury. Motivated by the

projects of space missions like BepiColombo and

MESSENGER, D’HOEDT and LEMAITRE (2004)

developed a spin–orbit model for the rotation of

Mercury. The computation of the spherical harmonics

of Mercury are performed with the use of the plan-

etary theory ‘‘Variations Séculaires des Orbites

Plantaires’’ (VSOP) (BRETAGNON 1988). The VSOP87

analytical solution of the motion of Mercury contains

trigonometric series that represent the coordinates of

the body (elliptic, rectangular or spherical coordi-

nates according to the version). For instance, the

solution for the distance Sun–Mercury (r) is given as

a Poisson series containing 2,371 terms, and so, the

calculus of 1=r through a Taylor expansion requires

high accuracy symbolic computation with Poisson

series containing hundreds of thousands of terms.

Many Poisson series processors have been devel-

oped until now, as PSP (BROUCKE 1970), mechanised

algebraic operations (MAO) (ROM 1969), Trigono-

metric Manipulator (TRIGMAN) (JEFFERYS 1970),

MSNam (HENRARD 1986), PARSEC (RICHARDSON

1989), and others.

3.2. Analytical Solutions up to the Second Order

The Hamiltonian method allows the derivation of

highly accurate asymptotic solutions, depending

analytically on the canonical variables and the

arguments of lunisolar and planetary orbits, consid-

ered as known functions of time. Accurate solutions

need to derive perturbations up to the second order,

using, e.g., Hori’s perturbation method (1966). The

Hamiltonian can be cast in the form

Hðp; qÞ ¼ H0ðp; qÞ þ H1ðp; qÞ þ H2ðp; qÞ; ð10Þ

Hi being of order OðeiÞ, where i is a nonnegative

integer and e is a small parameter measuring the

perturbation. We will sketch this procedure at the

second order in e following a similar method to that

of KINOSHITA (1977).

The algorithm consists in performing a canonical

transformation from the actual canonical set ðp; qÞ to

a new one ðp�; q�Þ. This transformation is given at the

second order by the generating function

W ¼W1 þW2, with W i ¼ OðeiÞ, which depends

on the transformed set ðp�; q�Þ of canonical variables.

The transformed Hamiltonian at the second order has

a similar form

H�ðp�; q�Þ ¼ H�0ðp�; q�Þ þ H�1ðp�; q�Þ þ H�2ðp�; q�Þ;
ð11Þ

with H�i ðp�; q�Þ ¼ OðeiÞ. In addition, some extra

conditions are imposed on H�i in order to ensure that

H� is easier to integrate than H. In particular, we

force H� to be free from periodic terms, that is to say,

we combine the Lie transformation with an averaging

method. By so doing, the transformed Hamiltonian

H� and the generating functionW are determined by

the so–called equations of the method (HORI 1966),

which can be written up to the second order as

H�0 ¼ H0; H�1 ¼ H1sec;

H�2 ¼ H2sec þ
1

2
H1 þH1sec;W1f gsec;

W1 ¼
Z

UP

H1per dt; W2 ¼
Z

UP

H2per dt

þ 1

2
H1 þH1sec;W1f gper;

ð12Þ

where the subscripts per and sec denote the periodic

or secular part of the corresponding function, and the

Poisson brackets are computed in the ðp�; q�Þ
canonical set. The integrals are evaluated along the

solutions to the unperturbed problem generated by the
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Hamiltonian H�0, obtained by literal substitution of

the variables ðp; qÞ by the variables ðp�; q�Þ in H0.

The time evolution of the transformed canonical

variables ðp�; q�Þ is determined by solving the

Hamiltonian equations

dp�

dt
¼ � oH�

oq�
;

dq�

dt
¼ oH�

op�
: ð13Þ

The variation of a function f p; qð Þ of the canonical

variables can be computed at the second order by the

expression f ðp; qÞ ¼ f �ðp�; q�Þ þ Df ðp�; q�Þ, with

f �ðp�; q�Þ ¼ f ðp�; q�Þ; Df ¼ D1f þ D2f þ D3f

!

D1f ¼ f �;W1f g
D2f ¼ f �;W2f g

D3f ¼ 1

2
f �;W1f g;W1f g:

8
>><

>>:

The determination of the transformed Hamiltonian

H� and the generating functionW allows to describe

the time evolution of any variable of the Earth rota-

tion up to the second order in the perturbation

parameter e. For the sake of brevity, only a few

expressions corresponding to a first order integration

are displayed, following GETINO and FERRÁNDIZ

(1995). The first order generating function W1 is

W1 ¼ K 00
1

2
3 cos2 r� 1
� �

Wa �
1

2
sin 2rWb

� �
;

ð14Þ

with

Wa ¼
X

i

Bi

ni

sin Hi; Wb ¼
X

s¼�1

X

i

Ci sð Þ
nl � ni

sin l� sHið Þ;

ð15Þ

nl; ni being the mean motions of l and si, i.e.,
dl
dt
; dHi

dt

� �
respectively.

The perturbations of all the canonical variables can be

obtained in a straight forward manner by taking derivates

before being simplified doing r ¼ 0, in short as

D K;M;Nð Þ ¼ � oW

o k; l; mð Þ ;

D k; l; mð Þ ¼ oW

o K;M;Nð Þ

ð16Þ

The first order nutations of the angular momentum

axis (or Andoyer plane), are

Dk ¼ �K0

1

sin I

oWa

oI
¼ � K0

sin I

X

i

o

oI

Bi

ni

� �
sin Hi;

DI ¼ K0

1

sin I

oWa

ok
¼ K0

sin I

X

i

�m5ð ÞBi

ni

cos Hi;

ð17Þ

with K0 ¼ K 00=M. The nutations of the figure axis are

obtained by adding the Oppolzer terms

D kf � k
� �

¼ K0

sin I

X

s¼�1

X

i

sCi sð Þ
nl � sni

sin Hi;

D If � I
� �

¼ K0

X

s¼�1

X

i

Ci sð Þ
nl � sni

cos Hi:

ð18Þ

No other approach but the Hamiltonian succeeded in

computing the nutations up to the second order.

Solutions provide the longitude of the equinox and

the obliquity of the equator as Poisson series of the

arguments Hi, with coefficients depending analyti-

cally of Andoyer variables and of numbers A
jÞ
i . Final

series result after numerical evaluation. Solutions can

be computed for any of the three axes of interest: axis

of figure, angular momentum and angular velocity.

The number of accounted terms is very high:

• REN 2000 solution (SOUCHAY et al. 1999) contains

several 1,000 terms of lunisolar and planetary

origin; the truncation level is approximately 0.1 las.

• FGN 2000 solution (Ferrándiz, Navarro and Geti-

no) fully derived by computer algebra has a similar

number of terms. A detailed second order solution

showing the origin of the various terms was

published by GETINO et al. (2010).

Solutions only include the perturbations due to the

external potential (‘‘forced nutations’’ and preces-

sion). The secular part of the solution, arising from

Eq. (13) provides the precession. The non-rigidity

effects on precession are so small (WILLIAMS 1994)

that is not difficult to read that the precession is

independent of the considered Earth model, which is

not really true (FERRÁNDIZ et al. 2004, 2007).

4. Effect of the Liquid Core

Poincaré equations In (1891), Chandler detected

variations of latitude in astrometric observations that
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pointed to a pole wobble, with a period of about 430

days, far from the Euler period for a rigid earth of

about 305 days. The discovery of the so-called

Chandler wobble (CW) stimulated the research on the

effects of elasticity and the potential existence of a

liquid core on Earth rotation. POINCARÉ (1901, 1910)

developed the first satisfactory model for an Earth

model consisting of a rigid mantle and a liquid core

undergoing certain simple motion, often denoted as

Poincaré model. He used two differentiated approa-

ches to derive a set of equations quite similar to those

of Euler,

_M þ x�M ¼ L; _Mc � dx�Mc ¼ 0: ð19Þ

Here, M and L are the total angular momentum and

torque acting on the whole earth, x the angular

velocity of the frame linked to the mantle and dx the

relative angular velocity of the fluid core with respect

to the mantle. Mc is the total angular momentum of

the core, given by Mc ¼ Pc xþ dxð Þ; Pc being the

tensor of inertia of the core in the mantle frame.

Assuming axial symmetry and after neglecting the

second and higher order terms in x1;x2; ~x3 ¼ x3 �
XE and dx, the equations for ~x3 and dx happen to be

uncoupled and the problem reduces to four linear

equations. In this approximation, the complex vari-

ables u ¼ x1 þ ix2, and v ¼ dx1 þ idx2 oscillate

with two free frequencies

r1 ¼
C � A

Am

X; r2 ¼ �X 1þ A

Am

Cc � Ac

Ac

� �
;

ð20Þ

whilst the solution of the free polar motion (PM) is a

linear combination of eir1t, eir2t. The frequency r1

corresponds to CW, which replaces the Euler free

oscillation of the rigid case. As Am\A, frequency r1

is larger for a Poincaré Earth than for a rigid Earth, so

that the period of the polar oscillation is shortened by

the fluid core. The lengthening of the period is mainly

due to the elastic yielding of the earth, as already

explained by NEWCOMBE (1892)—see also GETINO and

FERRÁNDIZ (1995) who performed more detailed

calculations.

Besides, a second new free frequency r2 emerges

due to the presence of the liquid core, that is known

as NDFW (nearly diurnal free wobble) or RFCN

(retrograde free core nutation), because it does not

contribute solely to PM, but also gives rise to an

observable nutation, named free core nutation (FCN).

It was predicted by theory in early times (VICENTE and

JEFFREYS 1964), but its observation remained elusive

for a long period and only could be evidenced after

some years of very long baseline interferometry

(VLBI) observations.

POINCARÉ (1910) also found the ratio of the

amplitudes of the nutations of a rigid planet with and

without a liquid core (in the linear approximation).

That established the basis of the transfer function

approach, which has been followed in most of the

research on non-rigid earth nutations. Besides, he

included in that paper a section treating a body with a

fluid core contained in an elastic shell.

Hamiltonian approach to Poincaré’s earth model

Nevertheless, Poincaré did not perform any numeri-

cal evaluation of his solution to obtain values of the

main nutations. Accurate solutions for a Poincaré

model were computed much later by GETINO (1995)

and GETINO and FERRÁNDIZ (1997), but using their

Hamiltonian method. Let the tensors of inertia be Pm

for the mantle, Pc for the core and P ¼ Pm þPc for

the whole Earth, which are assumed constant in a

frame attached to the (rigid) mantle. If M, Mm and

Mc are, respectively, the angular momenta of the

total Earth, the mantle and the core, they satisfy:

M ¼Mm þMc ¼ Pm xþPc xþ dxð Þ
¼ P xþPc dx :

ð21Þ

Notice that setting Mc ¼ Pc xþ dxð Þ means that an

appropriate definition of the core rotation (MORITZ

1982) has been made, so that it is referred to a

Tisserand frame (MORITZ 1982), as detailed in GETINO

(1995). The kinetic energy is thus

T ¼ 1

2
ðM�McÞt P�1

m ðM�McÞ þ
1

2
Mt

c P�1
c Mc :

ð22Þ

This expression is canonically formulated by means

of a set of canonical variables, k, l, m, K, M, N for the

whole Earth, and kc, lc, mc, Kc, Mc, Nc for the core,

with the help of the auxiliary angles r, I, rc, Ic

described by GETINO (1995). The angular momenta M

and Mc are given by
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M ¼
K sin m

K cos m

N ¼M cos r

0

B@

1

CA; Mc¼
Kc sin mc

�Kc cos mc

Nc ¼Mc cos rc

0

B@

1

CA;

ð23Þ

where K ¼ M sin r; Kc ¼ Mc sin rc: Note that r
and rc are small quantities, of the order of 10�6 rad.

The kinetic energy can be written as

T0 ¼
1

2 Am

K2 þ A

Ac

K2
c

� 	
þ K Kc

Am

cosðmþ mcÞ

þ 1

2 Cm

N2 � 2 N Nc þ
C

Cc

N2
c

� 	
;

A ¼ Am þ Ac, C ¼ Cm þ Cc, being the principal

moments of the total Earth. Let us remark that these

hypotheses pose no problem related to the terrestrial

frame, since the mantle is rigid and its principal axes

are well defined. However, the number of canonical

variables has been doubled, which increases the dif-

ficulty of the treatments. But there is an additional,

essential difference with respect to the rigid case:

resonance phenomena occur, which amplify the

amplitudes of some Oppolzer terms, hence of nuta-

tions. That fact helps to constrain the values of

certain geophysical parameters. Besides, the unper-

turbed problem is not integrable any more,

irrespective of the axial symmetry of the body. The

integrability issues in this model were studied by

FERRÁNDIZ and BARKIN (2001).

5. Theories of Non-Rigid Earth Nutations

5.1. Two-Layer Earth Models

As we pointed out above, explaining the observed

CW period requires taking into account elasticity

besides the liquid core. A number of solutions were

developed between about 1950 and 1990 by considering

Earth models composed of an elastic mantle and a liquid

core, the standard two-layer model. They made use of

the theory of elasticity, developed by Cauchy, Green,

Poisson, Stokes, Lord Kelvin, etc. These approaches are

very different, but they share some features:

• Kelvin solutions of the Laplace equations in terms

of SH are used, as well as generalizations,

including the assumption of variability for some

parameters, such as density or Lamé parameters.

• Some simplifying hypotheses are usually made, as

radial dependence of parameters or certain equi-

librium conditions.

• In general, this procedure allows the reduction of

the original continuous problem of elasticity to a

discrete one, with the relevant parameters deter-

mined by quadratures assuming certain rheological

models.

JEFFREYS and VICENTE (1957) proposed a variational

formulation of Lagrangian type; therefore, the com-

putation of the internal dissipative moments is

avoided. In Molodenski’s model (1961), the elastic

equations for the mantle are approximated by spher-

ical functions, and the fluid core is treated using

hydrodynamical equations. SOS equations (SASAO

et al. 1980) had deep impact on later research. They

are a simple generalization of Poincaré’s, including

elasticity and dissipations at the core–mantle bound-

ary (CMB) due to friction and electromagnetic

coupling. The original derivation was carried out by

direct methods (Euler–Liouville). Using variational

methods allowed a drastic simplification (Moritz).

The IAU 1980 nutation theory Wahr’s solution

WAHR (1981) was obtained by applying a certain

transfer function to the rigid earth solution by

KINOSHITA (1977). An IAU Working Group proposed

its adoption (SEIDELMANN 1982) and the theory was

endorsed by IAU as its first non-rigid Earth nutation

theory in 1981. This solution follows the method of

Smith and Whar: The partial differential equations of

the elastic problem are transformed into an infinite

system of ordinary differential equations through a

series expansion of spheroidal and toroidal harmon-

ics. A drastic truncation produces a finite system. The

resulting equations are integrated numerically over

the Earth volume, assuming a certain rheological

model. This solution gives the nutations of an

oceanless, elastic solid Earth with a fluid core. In

the framework of IAU 1980, other effects not

addressed in the official theory (oceanic, atmospheric,

anelastic, etc.) are treated in the moving (terrestrial)

reference frame, mainly using some versions of the

Euler–Liouville equations, and are usually classified

as ‘‘polar motion’’ terms (see Sect. 6).
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Earth elasticity in the Hamiltonian method The

Hamiltonian method contributed with a series of

papers by GETINO and FERRÁNDIZ who introduced the

Hamiltonian formalism to study an elastic Earth

(1990, 1991, 1995). Let us notice that the definition

of the body frame has no special difficulties under the

assumption of linear elasticity, since the deformations

have known expressions depending on constant Love

numbers, and the variations of the principal axes and

moments of inertia can be derived analytically

(BARKIN and FERRÁNDIZ 2000). More properties of

the rotation of weakly deformable bodies are given

by BARKIN (1998, 2000a, b).

GETINO and FERRÁNDIZ (2000, 2001) also combined

their previous results to derive an accurate Hamiltonian

solution for a two-layered earth made of a liquid core

and an inelastic mantle, and accounted for dissipation

at CMB. That way of proceeding guarantees consis-

tency of the new considered effects with the former

pieces of theory. For instance, the main change when

elasticity is put into the Poincaré model is the addition

of a new term Tt to the Hamiltonian, which represents

the increment of the kinetic energy due to the tidal

deformation and is given by

Tt ¼
N � Nc

Am Cm

Dt
m Kc t13 sin mc � t23 cos mcð Þ½

� :�K t13 sin mþ t23 cos mð Þ�

� Nc

Ac Cc

Dt
c Kc t13 sin mc � t23 cos mcð Þ;

ð24Þ

where Dt
m;c are constants related to the Love number

k2 and functions ti;j have expansions similar to the

components of the potential.

5.2. Three-Layer Earth Models

The improvements of the space geodetic obser-

vation techniques since the late 1980s revealed that

IAU1980 was not accurate enough. Besides, the

launch and operation of new geodetic satellites

improved the observational possibilities and contrib-

uted to obtaining more insight into matters such as

bodily tides and other geophysical properties of the

Earth. New investigations aimed at explaining the

new results, among them DEHANT et al. (1999).

MATHEWS et al. (1991a, b) introduced a solid inner

core in the basic Earth structure. An empirical

nutation model was adopted in the IERS Conventions

1996 (MCCARTHY 1996). In this context, an IAU

Working Group on non-rigid Earth nutation theory

started in 1994 and recommended that theories be

based on geophysical models closer to the actual

Earth (DEHANT et al. 1999).

Most of the theories developed in that epoch

assumed a three-layered Earth made of elastic mantle,

fluid outer core (FOC) and solid inner core (SIC).

They had to rely upon a pre-existent rigid Earth

solution, since they used a transfer function approach.

Depending on theories, elasticity might be extended

to deal with in-elastic or an-elastic assumptions,

include dissipations in the inner layers boundaries or

consider oceanic and atmospheric effects to some

extent. Among those theories, we can cite first DD97

(DEFRAIGNE and DEHANT 1998), Sch97 (SCHASTOK

1997), Hg2000 (HUANG et al. 2001) among the main

differentiated approaches.

In March 2000, three theories were selected as

candidates to become the IAU 2000 nutation model

(DEHANT 2002). They were:

• MHB2000 (MATHEWS et al. 2002): a transfer

function derived from a generalization of Poin-

caré–SOS equations was applied to REN2000. It

was complemented with the Kinoshita–Souchay–

Folgueira (1999) planetary perturbations for the

rigid Earth.

• SF2000 (SHIRAI and FUKUSHIMA 2000): applied a

numerical convolution in the time domain to adjust

parameters of Herrings transfer function.

• GF2000 (GETINO and FERRÁNDIZ 2000): Hamilto-

nian, analytical theory for the Earth rotation,

extending Kinoshita and Souchay’s rigid Earth

theory. It was complemented with the planetary

non–rigid perturbations by Ferrándiz–Navarro–Ge-

tino and Huang et al. oceanic corrections, the final

series being named FGHN.

All of them fit a low number of basic Earth

parameters to observations and got similar accuracy,

about 150 las in terms of wrms (weighted root mean

squared) observations-model differences (if an empir-

ical model for FCN is used). The accuracy of IAU

1980 was thus improved in more than one order of

magnitude. MHB2000 was preferred and selected as

IAU2000, and it is in force since 2003. In that year
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FUKUSHIMA (2003) published a new precession theory.

The IAU1976 model of the precession (LIESKE et al.

1977) was changed 6 years later and the P03 model

by CAPITAINE et al. (2003) was adopted as the

IAU2006 precession model (HILTON et al. 2006).

5.3. The Hamiltonian Method

Main features The Hamiltonian or global

approach is the only one that allows the direct

derivation of a non-rigid solution up to the second

order of perturbation, in a fully consistent manner,

since it is independent of any previous rigid Earth

solution. That is because transfer function approaches

are intrinsically linear. The rigid solution can be

recovered when some parameters vanish. The calcu-

lation of some poorly known internal torques is

avoided, since the approach is variational. The effect

of geophysical Earth models is concentrated in a

reduced set of parameters. Analytical solutions are

convenient for several reasons, like fitting parame-

ters, allowing the identification of resonances and

providing more insight into the Earths interior and

geophysical properties. Besides numerical methods

have failed to provide good solutions in the non-rigid

case so far: the attempts which have been successful

within a fitting time interval (KRASINSKY 2006)

showed a quick degradation when extrapolated

beyond that interval (CAPITAINE et al. 2009).

Free motion of a three layers Earth in the

Hamiltonian approach The definition of the Andoyer

variables for FOC and SIC takes into account the

relations among a frame fixed to the mantle,

Oxmymzm, the Andoyer planes defined by the angular

momentums of FOC and SIC, and frames ‘‘attached’’

to the FOC or SIC, Oxf yf zf or Oxsyszs. It originates a

set of 18 canonical variables, k, l, m, K, M, N for the

total Earth, kf , lf , mf , Kf , Mf , Nf for the fluid outer

core, and ks, ls, ms, Ks, Ms, Ns for the solid inner core,

with auxiliary angles r, I, rf , If , rs and Is. Their

geometrical meaning is displayed in Fig. 2. Denoting

by M, Mf and Ms the absolute angular momenta of

the whole earth, FOC and SIC, respectively; the

canonical moments satisfy

M ¼ jMj; Mf ¼ jMf j Ms ¼ jMf j;
N ¼ M cos r; Nf ¼ Mf cos rf ; Ns ¼ Ms cos rs;

K ¼ M cos I; Kf ¼ Mf cos If ; Ks ¼ Ms cos Is:

The three layers Earth kinetic energy T is written

as

T ¼ 1

2
ðM�Mf �MsÞt Pm

�1ðM�Mf �MsÞ

þ 1

2
Mf

t Pf
�1 Mf þ

1

2
Ms

t Ps
�1 Ms;

P, Pf and Ps being the respective inertia matrices.

The angular momenta hold

M ¼
K sin m

K cos m

N ¼M cos r

0

B@

1

CA; Mf ¼
Kf sin mf

�Kf cos mf

Nf ¼Mf cos rf

0

B@

1

CA;

Ms ¼
Ks sin mf

�Ks cos mf

Ns ¼Ms cos rs

0

B@

1

CA;

with K ¼ M sin r;Kf ¼ Mf sin rf ;Ks ¼ Ms sin rs.

The explicit expression of the Hamiltonian is

involved even for the unperturbed motion, especially

if no restrictive hypothesis on the SIC attitude is

made. ESCAPA et al. (2001) derived a solution to the

linearised equations, which gives the frequencies of

the four normal modes or free harmonic oscillations

of the rotation pole in terms of the ellipticities and an

additional small parameter d:

m1 ¼
A

Am

e ! CW or Chandler wobble;

m2 ¼ �1� Af þ Am

Am

ef ! RFCN or retrograde free core nutation;

m3 ¼ �1þ d ! PFCN or prograde free core nutation;

m4 ¼ es � d ! ICW or inner core wobble:
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Recent progress in the Hamiltonian theory of non-

rigid Earth Since the year 2000, many effects have

been investigated by different authors and under

various approaches. Several effects have been found

to contribute to the nutations with direct or indirect

terms reaching the magnitude of some tens of las.

Most of them are not included in the current IAU or

IERS models. Those terms are often referred to as of

second order, although they can be cast in at least two

distinct groups. The first group is made of second

order terms in the sense of perturbation theory

(crossing of the ordinary first order precession–

nutation terms with themselves). They are part of a

solution that is non-linear with respect to the dynam-

ical ellipticity H. The other group gathers small terms

of various physical origins but sharing some proper-

ties: arising from unaccounted terms of the potential,

like high frequency nutations (ESCAPA et al. 2002) and

indirect effect of sectorial and tesseral third order

harmonics (FERRÁNDIZ et al. 2003), effect of fluid core

on the precession (FERRÁNDIZ et al. 2004, 2007), direct

effects of the actual rotation of the inner core (ESCAPA

et al. 2012), effects on nutations (FERRÁNDIZ et al.

2011) of the observed J2 variation (CHENG and TAPLEY

2004; CHENG et al. 2011; COX and CHAO 2002), and

other time variations of the geopotential as unac-

counted effects of tidal models (FERRÁNDIZ et al.

2011), etc. The Hamiltonian method provided a

systematic, consistent procedure to approach all of

them in the non-steady, non-rigid case.

6. The Solution for Polar Motion

Theories of earth rotation usually devote a part to

calculate the frequencies of the unperturbed or free

polar motion (PM), corresponding to the oscillations

or wobbles of the axis of angular velocity or angular

momentum around the figure axis or vice versa. Let

us note that the differences between free periods in

the rigid and non-rigid cases are more marked than

those in the corresponding forced motions (nutation

amplitudes), whose main components are the so-

called Poisson terms, practically independent of the

Earth model. Conversely, the amplitudes and phases

of the polar wobbles are highly dependent on the

Earth physics. Woolard already mentioned the rele-

vance of geophysical effects on nutations and what he

called diurnal nutations, although his terminology

differs from the currently used.

The main components of nutations have long

periods in the ‘‘inertial’’ frame. However, the main

components of PM have long periods in the terrestrial

or body-fixed frame, therefore they are in the diurnal

band when seen from the inertial frame. However, the

terrestrial frame is more convenient for their study as

well as their determination since the advent of radio-

interferometric techniques like VLBI.

In fact, the actual motion of the Earths pole, dis-

played in Fig. 3, has not been fully explained by any

theory yet. It includes noticeable changes of ampli-

tudes and phases of its main components (the

Figure 2
The Andoyer variables for FOC and SIC relate a fixed frame of mantle, Oxmymzm, the plane defined by the angular momentum of FOC and

SIC, Andoyer plane of FOC and SIC, and a fixed frame of FOC or SIC, Oxf yf zf or Oxsyszs
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Chandler wobble with an amplitude usually ranging

from 100 to 200 las and the annual term with an

amplitude nearby 100 las) as well as a long-term

drift (BARKIN 2000a, b; SCHUH et al. 2001). A thor-

ough review can be found in, e.g., GROSS (2007).

Whilst nutations arise from a mainly astronomical

forcing, the free wobbles of the pole are excited

mainly by geophysical processes, and are difficult to

predict (CHAO and GROSS 1987; DICKEY et al. 2002,

GROSS et al. 2005). For that reason, the solution for

the forced PM is not derived analytically along with

the nutations, but is computed from different equa-

tions using empirical time series providing the

relevant excitation functions (GROSS 1992; BRZEZIŃSKI

1992).

That behaviour was essential for the definition of

the set of Earth orientation parameters (EOP) cur-

rently in use. In 1982, an IAU Working Group on

Nutation (SEIDELMANN 1982) recommended the

adoption of five EOP, namely: the precession/nuta-

tion angles �, w, referred to the equinox and equator;

UT1 (universal time 1), corresponding to the sidereal

diurnal revolution and GMST or GAST (Greenwich

Mean Sidereal Time or Greenwich Apparent Sidereal

Time); the polar motion angles x, and y.

This set provides the transformation of coordi-

nates from the celestial to the terrestrial frame (or

vice-versa) by performing five rotations. The trans-

formation is mathematically redundant, since the

relative orientation of two reference systems can be

specified by only three independent parameters.

Nevertheless, that redundancy was convenient for the

analysis of the VLBI observations of Earth rotation,

which started in the early 1980s. It proceeded by

fitting one set of five EOP to each observation session

spanning a whole day.

7. Present State of the Earth Rotation Modelling

and Outlook

Since the IERS establishment, EOP solutions are

provided by IERS along with several Analysis Cen-

tres. Besides VLBI, other techniques contribute to

determine a subset of EOP (UT1 and PM), namely

satellite laser ranging (SLR) and GNSS (Global

Figure 3
Motion of the Earth pole. Source: IERS
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Navigation Satellite Systems). Time series of daily

EOP values are produced by IERS (BIZOUARD and

GAMBIS 2009), by a combination of individual solu-

tions computed by various associated Analysis

Centres for each technique. Nowadays, IERS releases

two sets of EOP related by a known transformation,

since the nutation offsets dX; dY and the Earth rota-

tion angle (ERA) were recommended to replace the

former three equinox-based EOP after a new para-

digm was adopted by IAU in 2000, based in the use

of the celestial intermediate origin and pole (CIO and

CIP, respectively). Precise definitions of the main and

auxiliary parameters and frames can be found in, e.g.,

the IERS Conventions 2010, Supplement to the

Nautical Almanac (URBAN and SEIDELMANN 2013) or

standards of fundamental astronomy (SOFA) docu-

mentation (HOHENKERK 2010).

Current accuracy of EOP series is difficult to

assess. Comparisons between combined solutions and

individual solutions corresponding to different tech-

niques and analysis centres provide some insight into

their accuracy or uncertainty. Following the IERS

Annual Report 2011 (DICK 2011), the uncertainty of

VLBI solutions may be near 90 las for nutations in

average and in about 170 las for PM. The accuracy

of precession/nutation models, when used to make

forward predictions, is stabilised at around 150 las,

in terms of wrms of the observation-model differ-

ences, and the figures are larger for PM prediction.

The remarkable efforts made in the last years pro-

vided a better insight into the problem and unveiled

new potential sources of error, but have not been

compensated yet by a significant reduction of the

residuals. Let us recall that the IAG’s Global Geo-

detic Observing System (GGOS) initiative demands

an accuracy of 1 mm to the systems of reference,

besides a stability in time of 0.1 mm/year. That cor-

responds roughly to a value of 30 las for angular

EOP (2 ls for time).

From the observational side, the accuracy and

performance of the major techniques is increasing.

Therefore, series of more accurate EOP will be

available in a few years. Besides, higher time reso-

lution is expected. There are still many difficult open

problems, such as magnetic effects (HUANG et al.

2011), motions of inner layers (BARKIN and VILKE

2004), relativistic effects (KLIONER et al. 2009),

consistent and comprehensive treatment of a more

realistic time-varying earth model, etc. Clearer sep-

aration of nutations and polar motion is also sought as

we approach the EOP determination at a sub-diurnal

rate (NILSSON et al. 2010) and non-predictable con-

stituents are accounted in the nutation angles like the

free core nutation (FCN) (LAMBERT 2007; KRASNA

et al. 2013), whereas some short periodic predictable

astronomical effects are included into PM (GETINO

et al. 2001; ESCAPA et al. 2002, BRZEZINSKI 2001).

In this context, the International Association of

Geodesy (IAG) and the International Astronomical

Union (IAU) set up a new Joint Working Group on

Theory of Earth Rotation (or JWG ThER) in April

2013. The purpose of the new JWG is: ‘‘To promote

the development of theories of Earth rotation that are

fully consistent and that agree with observations and

provide predictions of the Earth rotation parameters

(ERP) with the accuracy required to meet the needs

of the near future as recommended by, e.g., GGOS,

the Global Geodetic Observing System of the IAG.

Its structure is more complex than usual and adapts to

the characteristics of the current EOP, as well as the

specialised fields of research. The people in charge

are:

• Chair: José M. Ferrándiz (IAU)

• Vice-Chair: Richard S. Gross (IAG)

The JWG is composed of three Sub-Working Groups

(SWG):

1. Precession/Nutation (Chair: Juan Getino)

2. Polar Motion and UT1 (Chair: Aleksander

Brzezinski)

3. Numerical Solutions and Validation (Chair: Rob-

ert Heinkelmann)

These SWG should work independently but in

parallel for the sake of efficiency, and they must be

linked together as closely as the needs of consistency

demand. More information is available in FERRÁNDIZ

and GROSS (2014) and on the JWG website: http://

web.ua.es/en/wgther/.

7.1. Future Prospects of the Hamiltonian Method

Meeting the stringent GGOS accuracy and stabil-

ity goals is a challenging task, whose fulfilment
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requires a joint cooperative effort of the scientific

community involved in the determination, modelling

and prediction of Earth rotation. In the authors’

opinion, the Hamiltonian approach can provide a

valuable contribution to the theoretical modelling

because of some of its features. First, the treatment

addresses the Earth rotation globally, as a whole

problem, and its previous results, described in former

sections, show that the theory can incorporate any

kind of geophysical models or effects that have been

considered up to date, like the Earth division in solid

and fluid layers, the various assumptions on its elastic

behaviour, the dissipations at the layers boundaries,

the time variation of the geopotential, etc. It also

allows the incorporation of small corrections obtained

independently by other theories. The inclusion of all

the components in a sole Hamiltonian function (or

more precisely formalism, to distinguish the gener-

alised forces) helps to assess the magnitude of any

neglected effect and ensures the self-consistency of

the developments, so that there is no need to

introduce corrections aimed at restoring consistency

when some background models are updated. But the

essential characteristic of the method is its capability

to derive solutions with a prescribed level of accuracy

in a systematic way, by calculating the approximate

solution up to the suitable order of perturbation

(usually first or second, depending on the magnitude

of each group of terms), as well as to identify the

contributions of the different effects included in the

chosen geophysical model. This last property is not

shared by any solution derived by numerical integra-

tion that also can reach high accuracy, but cannot

separate the free motion component of the solution to

the Earth attitude from the forced one, which is a

difficulty according to the current conventions and

EOP definitions.
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GETINO, J. and FERRÁNDIZ, J. M. (1995), On the effect of the mantle

elasticity on the Earth’s rotation, Celest. Mech. Dyn. Astron. 61,

117–180.
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GETINO, J. and FERRÁNDIZ, J. M. (2000b), Advances in the Unified

Theory of the Rotation of the Nonrigid Earth. In: JHONSTON, T.

et al. (ed) Towards models and constants for sub-microarcsecond

astrometry, Proc. IAU Col. 180, pp 236–241 Geophys. J. Int.

142, 703–715.

GETINO, J. and FERRÁNDIZ, J. M. (2001), Forced nutations of a two-

layer Earth model, Mon. Not. R. Astron. Soc. 322, 785–799.
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