provided by Crossref

Fourier series of higher-order Bernoulli functions and their applications

Taekyun Kim ${ }^{1,2^{*}}$, Dae San Kim ${ }^{3}$, Seog-Hoon Rim ${ }^{4}$ and Dmitry V. Dolgy ${ }^{\text {5,6 }}$
"Correspondence: tkkim@kw.ac.kr
Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea Full list of author information is available at the end of the article

Abstract

In this paper, we study the Fourier series related to higher-order Bernoulli functions and give new identities for higher-order Bernoulli functions which are derived from the Fourier series of them.

MSC: 11B68; 42A16
Keywords: Fourier series; Bernoulli polynomials; Bernoulli functions

1 Introduction

As is well known, Bernoulli polynomials are defined by the generating function

$$
\begin{equation*}
\frac{t}{e^{t}-1} e^{x t}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!} \quad(\text { see }[1-23]) . \tag{1.1}
\end{equation*}
$$

When $x=0, B_{n}=B_{n}(0)$ are called Bernoulli numbers. From (1.1), we note that

$$
\begin{equation*}
B_{n}(x)=\sum_{l=0}^{n}\binom{n}{l} B_{l} x^{n-l} \in \mathbb{Q}[x] \quad(n \geq 0) \tag{1.2}
\end{equation*}
$$

with $\operatorname{deg} B_{n}(x)=n$ (see [9-11]). By (1.1), we easily get

$$
(B+1)^{n}-B_{n}=\left\{\begin{array}{ll}
1, & \text { if } n=1, \tag{1.3}\\
0, & \text { if } n>1,
\end{array} \text { and } \quad B_{0}=1,\right.
$$

with the usual convention about replacing B^{n} by B_{n} (see [9,10]). From (1.2), we note that

$$
\begin{align*}
\frac{d B_{n}(x)}{d x} & =\frac{d}{d x} \sum_{k=0}^{n}\binom{n}{k} B_{k} x^{n-k}=\sum_{k=0}^{n-1}\binom{n}{k} B_{k}(n-k) x^{n-k-1} \\
& =n \sum_{k=0}^{n-1} \frac{(n-1)!}{(n-k-1)!k!} B_{k} x^{n-k-1}=n \sum_{k=0}^{n-1}\binom{n-1}{k} B_{k} x^{n-1-k} \\
& =n B_{n-1}(x) \quad(n \geq 1)(\text { see }[9-18]) . \tag{1.4}
\end{align*}
$$

Thus, by (1.4), we get

$$
\begin{equation*}
\int_{0}^{x} B_{n}(x) d x=\frac{1}{n+1}\left(B_{n+1}(x)-B_{n+1}(0)\right) \quad(n \geq 0) \tag{1.5}
\end{equation*}
$$

For any real number x, we define

$$
\begin{equation*}
\langle x\rangle=x-[x] \in[0,1), \tag{1.6}
\end{equation*}
$$

where $[x]$ is the integral part of x. Then $B_{n}(\langle x\rangle)$ are functions defined on $(-\infty, \infty)$ and periodic with period 1, which are called Bernoulli functions. The Fourier series for $B_{m}(\langle x\rangle)$ is given by

$$
\begin{equation*}
B_{m}(\langle x\rangle)=-m!\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{e^{2 \pi i n x}}{(2 \pi i n)^{m}}, \tag{1.7}
\end{equation*}
$$

where $m \geq 1$ and $x \notin \mathbb{Z}$ (see $[1,2,8,14,22]$). For a positive integer N, we have

$$
\begin{aligned}
\sum_{k=0}^{N-1} B_{m}\left(\left\langle\frac{x+k}{N}\right\rangle\right) & =-m!\sum_{k=0}^{N-1} \sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty} \frac{e^{2 \pi i n\left(\frac{x+k}{N}\right)}}{(2 \pi i n)^{m}} \\
& =-m!\sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty} \frac{e^{2 \pi i n \frac{x}{N}}}{(2 \pi i n)^{m}} \sum_{k=0}^{N-1} e^{2 \pi i n \frac{k}{N}} \\
& =-m!N^{1-m} \sum_{\substack{l=-\infty \\
l \neq 0}}^{\infty} \frac{e^{2 \pi i l x}}{(2 \pi i l)^{m}}=N^{1-m} B_{m}(\langle x\rangle) \quad(x \notin \mathbb{Z}) .
\end{aligned}
$$

For $r \in \mathbb{N}$, the higher-order Bernoulli polynomials are defined by the generating function

$$
\begin{equation*}
\left(\frac{t}{e^{t}-1}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{(r)}(x) \frac{t^{n}}{n!} \quad(\text { see }[1,10,11,22]) \tag{1.8}
\end{equation*}
$$

When $x=0, B_{n}^{(r)}=B_{n}^{(r)}(0)$ are called Bernoulli numbers of order r (see [1, 22]). Then $B_{n}^{(r)}(\langle x\rangle)$ are functions defined on $(-\infty, \infty)$ and periodic with period 1 , which are called Bernoulli functions of order r. In this paper, we study the Fourier series related to higherorder Bernoulli functions and give some new identities for the higher-order Bernoulli functions which are derived from the Fourier series of them.

2 Fourier series of higher-order Bernoulli functions and their applications

From (1.8), we note that

$$
\begin{equation*}
B_{m}^{(r)}(x+1)=B_{m}^{(r)}(x)+m B_{m-1}^{(r-1)}(x) \quad(m \geq 0) \tag{2.1}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
\sum_{m=0}^{\infty} B_{m}^{(r)}(x+1) \frac{t^{m}}{m!} & =\left(\frac{t}{e^{t}-1}\right)^{r} e^{(x+1) t}=\left(\frac{t}{e^{t}-1}\right)^{r} e^{x t}\left(e^{t}-1+1\right) \\
& =\left(\frac{t}{e^{t}-1}\right)^{r-1} t e^{x t}+\left(\frac{t}{e^{t}-1}\right)^{r} e^{x t} \\
& =\sum_{m=0}^{\infty} B_{m}^{(r-1)}(x) \frac{t^{m+1}}{m!}+\sum_{m=0}^{\infty} B_{m}^{(r)}(x) \frac{t^{m}}{m!} \\
& =\sum_{m=0}^{\infty}\left(m B_{m-1}^{(r-1)}(x)+B_{m}^{(r)}(x)\right) \frac{t^{m}}{m!} \tag{2.2}
\end{align*}
$$

Let $x=0$ in (2.1). Then we have

$$
\begin{equation*}
B_{m}^{(r)}(1)=B_{m}^{(r)}(0)+m B_{m-1}^{(r-1)}(0) \quad(m \geq 0) \tag{2.3}
\end{equation*}
$$

Now, we assume that $m \geq 1, r \geq 2 . B_{m}^{(r)}(\langle x\rangle)$ is piecewise C^{∞}. Further, in view of (2.3), $B_{m}^{(r)}(\langle x\rangle)$ is continuous for those (r, m) with $B_{m-1}^{(r-1)}(0)=0$, and is discontinuous with jump discontinuities at integers for those (r, m) with $B_{m-1}^{(r-1)}(0) \neq 0$. The Fourier series of $B_{m}^{(r)}(\langle x\rangle)$ is

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} C_{n}^{(r, m)} e^{2 \pi i n x} \quad(i=\sqrt{-1}) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
C_{n}^{(r, m)} & =\int_{0}^{1} B_{m}^{(r)}(\langle x\rangle) e^{-2 \pi i n x} d x=\int_{0}^{1} B_{m}^{(r)}(x) e^{-2 \pi i n x} d x \\
& =\left[\frac{1}{m+1} B_{m+1}^{(r)}(x) e^{-2 \pi i n x}\right]_{0}^{1}+\frac{2 \pi i n}{m+1} \int_{0}^{1} B_{m+1}^{(r)}(x) e^{-2 \pi i n x} d x \\
& =\frac{1}{m+1}\left(B_{m+1}^{(r)}(1)-B_{m+1}^{(r)}(0)\right)+\frac{2 \pi i n}{m+1} C_{n}^{(r, m+1)} \\
& =B_{m}^{(r-1)}(0)+\frac{2 \pi i n}{m+1} C_{n}^{(r, m+1)} . \tag{2.5}
\end{align*}
$$

Replacing m by $m-1$ in (2.5), we get

$$
\begin{equation*}
C_{n}^{(r, m-1)}=B_{m-1}^{(r-1)}(0)+\frac{2 \pi i n}{m} C_{n}^{(r, m)} \tag{2.6}
\end{equation*}
$$

Case 1. Let $n \neq 0$. Then we have

$$
\begin{aligned}
C_{n}^{(r, m)} & =\frac{m}{2 \pi i n} C_{n}^{(r, m-1)}-\frac{m}{2 \pi i n} B_{m-1}^{(r-1)} \\
& =\frac{m}{2 \pi i n}\left(\frac{m-1}{2 \pi i n} C_{n}^{(r, m-2)}-\frac{m-1}{2 \pi i n} B_{m-2}^{(r-1)}\right)-\frac{m}{2 \pi i n} B_{m-1}^{(r-1)} \\
& =\frac{m(m-1)}{(2 \pi i n)^{2}} C_{n}^{(r, m-2)}-\frac{m(m-1)}{(2 \pi i n)^{2}} B_{m-2}^{(r-1)}-\frac{m}{2 \pi i n} B_{m-1}^{(r-1)}
\end{aligned}
$$

$$
\begin{align*}
= & \frac{m(m-1)}{(2 \pi i n)^{2}}\left\{\frac{m-2}{2 \pi i n} C_{n}^{(r, m-3)}-\frac{m-2}{2 \pi i n} B_{m-3}^{(r-1)}\right\}-\frac{m(m-1)}{(2 \pi i n)^{2}} B_{m-2}^{(r-1)}-\frac{m}{2 \pi i n} B_{m-1}^{(r-1)} \\
= & \frac{m(m-1)(m-2)}{(2 \pi i n)^{3}} C_{n}^{(r, m-3)}-\frac{m(m-1)(m-2)}{(2 \pi i n)^{3}} B_{m-3}^{(r-1)} \\
& -\frac{m(m-1)}{(2 \pi i n)^{2}} B_{m-2}^{(r-1)}-\frac{m}{2 \pi i n} B_{m-1}^{(r-1)} \\
= & \cdots \\
= & \frac{m(m-1)(m-2) \cdots 2}{(2 \pi i n)^{m-1}} C_{n}^{(r, 1)}-\sum_{k=1}^{m-1} \frac{(m)_{k}}{(2 \pi i n)^{k}} B_{m-k}^{(r-1)} \tag{2.7}
\end{align*}
$$

where $(x)_{n}=x(x-1) \cdots(x-n+1)$, for $n \geq 1$, and $(x)_{0}=1$. Now, we observe that

$$
\begin{align*}
C_{n}^{(r, 1)} & =\int_{0}^{1} B_{1}^{(r)}(x) e^{-2 \pi i n x} d x=\int_{0}^{1}\left(x+B_{1}^{(r)}\right) e^{-2 \pi i n x} d x \\
& =\int_{0}^{1} x e^{-2 \pi i n x} d x+B_{1}^{(r)} \int_{0}^{1} e^{-2 \pi i n x} d x \\
& =-\frac{1}{2 \pi i n}\left[x e^{-2 \pi i n x}\right]_{0}^{1}+\frac{1}{2 \pi i n} \int_{0}^{1} e^{-2 \pi i n x} d x \\
& =-\frac{1}{2 \pi i n} \tag{2.8}
\end{align*}
$$

From (2.7) and (2.8), we can derive equation (2.9):

$$
\begin{align*}
C_{n}^{(r, m)} & =-\frac{m!}{(2 \pi i n)^{m}}-\sum_{k=1}^{m-1} \frac{(m)_{k}}{(2 \pi i n)^{k}} B_{m-k}^{(r-1)} \\
& =-\sum_{k=1}^{m} \frac{(m)_{k}}{(2 \pi i n)^{k}} B_{m-k}^{(r-1)} \tag{2.9}
\end{align*}
$$

Case 2. Let $n=0$. Then we have

$$
\begin{align*}
C_{0}^{(r, m)} & =\int_{0}^{1} B_{m}^{(r)}(\langle x\rangle) d x=\int_{0}^{1} B_{m}^{(r)}(x) d x=\frac{1}{m+1}\left[B_{m+1}^{(r)}(x)\right]_{0}^{1} \\
& =\frac{1}{m+1}\left(B_{m+1}^{(r)}(1)-B_{m+1}^{(r)}(0)\right)=B_{m}^{(r-1)} \tag{2.10}
\end{align*}
$$

Before proceeding, we recall the following equations:

$$
\begin{equation*}
\left.B_{m}(\langle x\rangle)=-m!\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{e^{2 \pi i n x}}{(2 \pi i n)^{m}}, \quad(m \geq 2) \text { (see }[1]\right) \tag{2.11}
\end{equation*}
$$

and

$$
-\sum_{\substack{n=-\infty \tag{2.12}\\ n \neq 0}}^{\infty} \frac{e^{2 \pi i n x}}{2 \pi i n}= \begin{cases}B_{1}(\langle x\rangle), & \text { for } x \notin \mathbb{Z} \\ 0, & \text { for } x \in \mathbb{Z},(\text { see }[1,22]) .\end{cases}
$$

The series in (2.11) converges uniformly, while that in (2.12) converges pointwise. Assume first that $B_{m-1}^{(r-1)}(0)=0$. Then we have $B_{m}^{(r)}(1)=B_{m}^{(r)}(0)$, and $m \geq 2$. As $B_{m}^{(r)}(\langle x\rangle)$ is piecewise C^{∞} and continuous, the Fourier series of $B_{m}^{(r)}(\langle x\rangle)$ converges uniformly to $B_{m}^{(r)}(\langle x\rangle)$, and

$$
\begin{align*}
B_{m}^{(r)}(\langle x\rangle)= & \sum_{n=-\infty}^{\infty} C_{n}^{(r, m)} e^{2 \pi i n x} \\
= & B_{m}^{(r-1)}-\sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty}\left(\sum_{k=1}^{m} \frac{(m)_{k}}{(2 \pi i n)^{k}} B_{m-k}^{(r-1)}\right) e^{2 \pi i n x} \\
= & B_{m}^{(r-1)}+\sum_{k=1}^{m} \frac{(m)_{k}}{k!} B_{m-k}^{(r-1)} \cdot\left(-k!\sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty} \frac{e^{2 \pi i n x}}{(2 \pi i n)^{k}}\right) \\
= & B_{m}^{(r-1)}+\sum_{k=2}^{m}\binom{m}{k} B_{m-k}^{(r-1)} B_{k}(\langle x\rangle) \\
& +\binom{m}{1} B_{m-1}^{(r-1)} \times \begin{cases}B_{1}(\langle x\rangle), & \text { for } x \notin \mathbb{Z}, \\
0, & \text { for } x \in \mathbb{Z}\end{cases} \\
= & \begin{cases}\sum_{k=0}^{m}\binom{m}{k} B_{m-k}^{(r-1)} B_{k}(\langle x\rangle) & \text { for } x \notin \mathbb{Z}, \\
\sum_{\substack{k=0 \\
k \neq 1}}^{m}\binom{m}{k} B_{m-k}^{(r-1)} B_{k}(\langle x\rangle) & \text { for } x \in \mathbb{Z} .\end{cases} \tag{2.13}
\end{align*}
$$

Note that (2.13) holds whether $B_{m-1}^{(r-1)}(0)=0$ or not. However, if $B_{m-1}^{(r-1)}(0)=0$, then

$$
B_{m}^{(r)}(\langle x\rangle)=\sum_{\substack{k=0 \\ k \neq 1}}^{m}\binom{m}{k} B_{m-k}^{(r-1)} B_{k}(\langle x\rangle), \quad \text { for all } x \in(-\infty, \infty)
$$

Therefore, we obtain the following theorem.

Theorem 2.1 Let $m \geq 2, r \geq 2$. Assume that $B_{m-1}^{(r-1)}(0)=0$.
(a) $B_{m}^{(r)}(\langle x\rangle)$ has the Fourier series expansion

$$
B_{m}^{(r)}(\langle x\rangle)=B_{m}^{(r-1)}(0)-\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty}\left(\sum_{k=1}^{m} \frac{(m)_{k}}{(2 \pi i n)^{k}} B_{m-k}^{(r-1)}\right) e^{2 \pi i n x},
$$

for $x \in(-\infty, \infty)$. Here the convergence is uniform.
(b) $B_{m}^{(r)}(\langle x\rangle)=\sum_{\substack{k=0 \\ k \neq 1}}^{m}\binom{m}{k} B_{m-k}^{(r-1)} B_{k}(\langle x\rangle)$, for all $x \in(-\infty, \infty)$, where $B_{k}(\langle x\rangle)$ is the Bernoulli function.

Assume next that $B_{m-1}^{(r-1)}(0) \neq 0$. Then $B_{m}^{(r)}(1) \neq B_{m}^{(r)}(0)$, and hence $B_{m}^{(r)}(\langle x\rangle)$ is piecewise C^{∞} and discontinuous with jump discontinuities at integers Thus the Fourier series of $B_{m}^{(r)}(\langle x\rangle)$ converges pointwise to $B_{m}^{(r)}(\langle x\rangle)$, for $x \notin \mathbb{Z}$, and converges to $\frac{1}{2}\left(B_{m}^{(r)}(0)+B_{m}^{(r)}(1)\right)=$ $B_{m}^{(r)}(0)+\frac{m}{2} B_{m-1}^{(r-1)}(0)$, for $x \in \mathbb{Z}$. Thus we obtain the following theorem.

Theorem 2.2 Let $m \geq 1, r \geq 2$, Assume that $B_{m-1}^{(r-1)}(0) \neq 0$.
(a) $B_{m}^{(r-1)}(0)-\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty}\left(\sum_{k=1}^{m} \frac{(m)_{k}}{(2 \pi i n)^{k}} B_{m-k}^{(r-1)}\right) e^{2 \pi i n x}= \begin{cases}B_{m}^{(r)}(\langle x\rangle), & \text { for } x \notin \mathbb{Z}, \\ B_{m}^{(r)}+\frac{m}{2} B_{m-1}^{(r-1)}, & \text { for } x \in \mathbb{Z} .\end{cases}$

Here the convergence is pointwise,
(b) $\quad \sum_{k=0}^{m}\binom{m}{k} B_{m-k}^{(r-1)} B_{k}(\langle x\rangle)=B_{m}^{(r)}(x), \quad$ for $x \notin \mathbb{Z}$,
and

$$
\sum_{\substack{k=0 \\ k \neq 1}}^{m}\binom{m}{k} B_{m-k}^{(r-1)} B_{k}(\langle x\rangle)=B_{m}^{(r)}+\frac{m}{2} B_{m-1}^{(r-1)}, \quad \text { for } x \in \mathbb{Z}
$$

where $B_{k}(\langle x\rangle)$ is the Bernoulli function.
Remark Let $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}},(\operatorname{Re}(s)>1)$. From (1.7), we note that, for $m \geq 1$,

$$
\begin{aligned}
B_{2 m} & =-(2 m)!\sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty} \frac{(-1)^{m}}{(2 \pi n)^{2 m}} \\
& =-\frac{(2 m)!}{(2 \pi)^{2 m}} 2 \sum_{n=1}^{\infty} \frac{(-1)^{m}}{n^{2 m}}=(-1)^{m+1} \frac{2(2 m)!}{(2 \pi)^{2 m}} \zeta(2 m) .
\end{aligned}
$$

3 Results and discussion

In this paper, we studied the Fourier series expansion of the higher-order Bernoulli functions $B_{m}^{(r)}(\langle x\rangle)$ which are obtained by extending by periodicity of period 1 the higher-order Bernoulli polynomials $B_{m}^{(r)}(x)$ on $[0,1)$. As it turns out, the Fourier series of $B_{m}^{(r)}(\langle x\rangle)$ converges uniformly to $B_{m}^{(r)}(\langle x\rangle)$, if $B_{m-1}^{(r-1)}(0)=0$, and converges pointwise to $B_{m}^{(r)}(\langle x\rangle)$ for $x \notin \mathbb{Z}$ and converges to $B_{m}^{(r)}+\frac{m}{2} B_{m-1}^{(r-1)}$ for $x \in \mathbb{Z}$, if $B_{m-1}^{(r-1)}(0) \neq 0$. Here the Fourier series of the higher-order Bernoulli functions $B_{m}^{(r)}(\langle x\rangle)$ are explicitly determined. In addition, in each case the Fourier series of the higher-order Bernoulli functions $B_{m}^{(r)}(\langle x\rangle)$ are expressed in terms of Bernoulli functions which are obtained by extending by periodicity of period 1 the ordinary Bernoulli polynomials $B_{m}(x)$ on $[0,1)$. The Fourier series expansion of the Bernoulli functions are useful in computing the special values of the Dirichlet L-functions. For details, one is referred to [24].
It is expected that the Fourier series of the higher-order Bernoulli functions will find some applications in connections with a certain generalization of Dirichlet L-functions and higher-order generalized Bernoulli numbers.

4 Conclusion

In this paper, we considered the Fourier series expansion of the higher-order Bernoulli functions $B_{m}^{(r)}(\langle x\rangle)$ which are obtained by extending by periodicity of period 1 the higherorder Bernoulli polynomials $B_{m}^{(r)}(x)$ on $[0,1)$. The Fourier series are explicitly determined. Depending on whether $B_{m-1}^{(r-1)}(0)$ is zero or not, the Fourier series of $B_{m}^{(r)}(\langle x\rangle)$ converges
uniformly to $B_{m}^{(r)}(\langle x\rangle)$ or converges pointwise to $B_{m}^{(r)}(\langle x\rangle)$ for $x \notin \mathbb{Z}$ and converges to $B_{m}^{(r)}+\frac{m}{2} B_{m-1}^{(r-1)}$ for $x \in \mathbb{Z}$. In addition, the Fourier series of the higher-order Bernoulli functions $B_{m}^{(r)}(\langle x\rangle)$ are expressed in terms of Bernoulli functions $B_{k}(\langle x\rangle)$. Thus we established the relations between higher-order Bernoulli functions and Bernoulli functions. Just as the Fourier series expansion of the Bernoulli functions are useful in computing the special values of Dirichlet L-functions, we would like to see some applications to a certain generalization of Dirichlet L-functions and higher-order generalized Bernoulli numbers in near future.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea. ${ }^{2}$ Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin 300160, China. ${ }^{3}$ Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea. ${ }^{4}$ Department of Mathematics Education, Kyungpook National University, Taegu 702-701, Republic of Korea. ${ }^{5}$ Hanrimwon, Kwangwoon University, Seoul 139-701, Republic of Korea. ${ }^{6}$ School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok, Russia.

Acknowledgements

This paper is supported by grant NO 14-11-00022 of Russian Scientific Fund.
Received: 3 November 2016 Accepted: 22 December 2016 Published online: 05 January 2017

References

1. Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions. Dover, New York (1970)
2. Berndt, BC: Periodic Bernoulli numbers, summation formulas and applications. In: Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143-189. Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York (1975)
3. Carlitz, L: A note on Bernoulli numbers and polynomials. Elem. Math. 29, 90-92 (1974)
4. Carlitz, L: Some unusual congruences for the Bernoulli and Genocchi numbers. Duke Math. J. 35, 563-566 (1968)
5. Chowla, S, Hartung, P: An "exact" formula for the m-th Bernoulli numbers. Acta Arith. 22, 113-115 (1972)
6. Erdös, P, Wagstaff, SS Jr.: The fractional parts of the Bernoulli numbers. III. J. Math. 24(1), 104-112 (1980)
7. Gould, HW: Explicit formulas for Bernoulli numbers. Am. Math. Mon. 79, 44-51 (1972)
8. Herget, W: Minimum periods modulo n for Bernoulli numbers. Fibonacci Q. 16(6), 544-548 (1978)
9. Kim, DS, Kim, T: Some identities of symmetry for q-Bernoulli polynomials uner symmetric group of degree n. Ars Comb. 126, 435-441 (2016)
10. Kim, DS, Kim, T: Higher-order Bernoulli and poly-Bernoulli mixed type polynomials. Georgian Math. J. 22(1), 26-33 (2015)
11. Kim, D, Kim, T: A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials. Russ. J. Math. Phys. 22(1), 26-33 (2015)
12. Kim, DS, Kim, T, Rim, S-H, Dolgy, DV: Barnes' multiple Bernoulli and Hermite mixed-type polynomials. Proc. Jangjeon Math. Soc. 18(1), 7-19 (2015)
13. Kim, T, Kim, DS, Kwon, HI: Some identities relating to degenerate Bernoulli polynomials. Filomat 30(4), 905-912 (2016)
14. Kim, T: Note on the Euler numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 17(2), 131-136 (2008)
15. Kim, T: Euler numbers and polynomials associated with zeta functions. Abstr. Appl. Anal. 2008 Art. ID 581582 (2008)
16. Kim, T, Choi, J, Kim, YH: A note on the values of Euler zeta functions at positive integers. Adv. Stud. Contemp. Math. (Kyungshang) 22(1), 27-34 (2012)
17. Kim, T: Some identities for the Bernoulli the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 20(1), 23-28 (2010)
18. Kim, T, Kim, DS, Dolgy, DV, Seo, J-J: Bernoulli polynomials of the second kind and their identities arising from umbral calculus. J. Nonlinear Sci. Appl. 9(3), 860-869 (2016)
19. Lehmer, DH: A new approach to Bernoulli polynomials. Am. Math. Mon. 95, 905-911 (1988)
20. Shiratani, K: Kummer's congruence for generalized Bernoulli numbers and its applications. Mem. Fac. Sci., Kyushu Univ., Ser. A, Math. 26, 119-138 (1972)
21. Vasak, JT: Periodic Bernoulli numbers and polynomials. Thesis (Ph.D.), University of Illinois at Urbana-Champaign (1979) 81 pp.
22. Washington, LC: Introduction to Cyclotomic Fields, 2nd edn. Graduate Text in Mathematics, vol. 83, xiv +487 pp. Springer, New York (1997). ISBN: 0-387-94762-0
23. Yamaguchi, I: On a Bernoulli numbers conjecture. J. Reine Angew. Math. 288, 168-175 (1976)
24. Cohen, H: Number Theory Volume II: Analytic and Modern Tools. Graduate Texts in Math., vol. 240, xxiii +596 pp. Springer, New York (2007)
