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Abstract
Let Un denote the nth Cohen number. Some combinatorial properties for Un have
been discovered. In this paper, we prove the ratio log-concavity of Un by establishing
the lower and upper bounds for Un

Un–1
.
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1 Introduction
An infinite sequence {an}∞n= is said to be log-concave (respectively, log-convex) if for any
positive integer n,

a
n ≥ an+an–

(
respectively, a

n ≤ an+an–
)
.

Furthermore, a positive sequence {an}∞n= is said to be ratio log-concave if the sequence
{ an+

an
}∞n= is log-concave. The aim of this paper is to prove the ratio log-concavity of the

Cohen numbers. The nth Cohen number was first introduced by Cohen [] which is de-
fined by

Un = h(n)Un– + g(n)Un– (n ≥ ) (.)

with U =  and U = , where

h(n) =
(n – )(n – n + )(n – n + )

n (.)

and

g(n) =
(n – )(n – )(n – )

n . (.)

In [], Zudilin proved that DnUn is an integer where Dn is the least common multiple of
, , . . . , n. Moreover, he conjectured some stronger inclusions that were finally proved by
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Krattenthaler and Rivoal []. In particular, they proved that

Un =
∑

i,j

(
n
i

)(n
j

)(n + j
n

)(
n + j – i

n

)(
n – i

i

)
,

where the binomial coefficients
(a

b
)

are zero if b <  or a < b; see also [].
Recently, the combinatorial properties of Un were considered. Employing a criterion due

to Xia and Yao [], it is easy to prove the log-convexity of Un. Chen and Xia [] proved the
-log-convexity of Un, that is,

(
Un–Un+ – U

n
)(

Un+Un+ – U
n+

)
>

(
UnUn+ – U

n+
).

In this paper, we prove the ratio log-concavity of Un. The main results of the paper can be
stated as follows.

Theorem . The sequence {Un}∞n= is ratio log-concave, namely, for n ≥ ,

U
n

U
n–

>
Un+

Un

Un–

Un–
. (.)

2 Lower and upper bounds for Un
Un–1

In order to prove Theorem ., we first establish the lower and upper bounds for Un
Un–

.

Lemma . For n ≥ ,

l(n) <
Un

Un–
, (.)

where

l(n) =  + 
√

 –
 + 

√


n
+

,
√

 + ,
n –

,
√

 + ,
n . (.)

Proof We are ready to prove Lemma . by induction on n. It is easy to check that (.) is
true when n =  and n = . Suppose that Lemma . holds when n = m ≥ , that is,

l(m) <
Um

Um–
. (.)

In order to prove Lemma ., it suffices to prove that this lemma holds when n = m + ,
that is,

l(m + ) <
Um+

Um+
. (.)

Based on (.) and (.),

Um+

Um+
= h(m + ) + g(m + )


Um+
Um

= h(m + ) + g(m + )


h(m + ) + g(m + ) Um–
Um

> h(m + ) + g(m + )


h(m + ) + g(m+)
l(m)

, (.)
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where h(n), g(n), and l(n) are defined by (.), (.), and (.), respectively. Thanks to (.),

Um+

Um+
– l(m + )

> h(m + ) + g(m + )


h(m + ) + g(m+)
l(m)

– l(m + )

=
(, – ,

√
)α(m)

,,(m + )β(m)
, (.)

where α(m) and β(m) are defined by

α(m) = ,,,m – ,,,
√

m + ,,,m

+ ,,,,m – ,,,,
√

m + ,,,,m

– ,,,,
√

m – ,,,,
√

m

+ ,,,,m – ,,,,
√

m

+ ,,,,m + ,,,,m

– ,,,,
√

m + ,,,,m – ,,,
√

m

– ,,,
√

m + ,,,m

– ,,,
√

 + ,,,

and

β(m) = m – m – 
√

m + 
√

m – m – ,,
√

m

+ ,,m + ,,m – ,,
√

m – ,,
√

m

+ ,,m – ,
√

m + ,,m + , – ,
√

.

By (.) and the fact that α(m)β(m) >  for m ≥ , we obtain (.). This completes the
proof of Lemma . by induction. �

Lemma . For n ≥ ,

Un

Un–
< u(n), (.)

where

u(n) =  + 
√

 –
 + 

√


n
+

,
√

 + ,
n –

,
√

 + ,
n . (.)

Proof We also prove Lemma . by induction on n. It is easy to verify that (.) holds for
n =  and n = . Assume that Lemma . is true for n = m ≥ , that is,

Um

Um–
< u(m), (.)
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where u(m) is defined by (.). In order to prove Lemma ., it suffices to prove that
Lemma . is true when n = m + , namely,

Um+

Um+
< u(m + ). (.)

Based on (.) and (.),

Um+

Um+
= h(m + ) + g(m + )


Um+
Um

= h(m + ) + g(m + )


h(m + ) + g(m + ) Um–
Um

< h(m + ) + g(m + )


h(m + ) + g(m+)
u(m)

, (.)

where h(n), g(n), and u(n) are defined by (.), (.), and (.), respectively. Thanks to (.),

Um+

Um+
– u(m + )

< h(m + ) + g(m + )


h(m + ) + g(m+)
u(m)

– u(m + )

=
(, – ,

√
)ϕ(m)

(m + )ψ(m)
< , (.)

where ϕ(m) and ψ(m) are defined by

ϕ(m) = ,,,m + ,,,m – ,,,
√

m

+ ,,,m – ,,,
√

m – ,,,
√

m

+ ,,,m – ,,,
√

m + ,,,m

– ,,,
√

m + ,,,m + ,,,m

– ,,,
√

m – ,,,
√

m + ,,,m

– ,,,
√

m + ,,,m + ,,,m

– ,,,
√

m + ,, – ,,
√



and

ψ(m) = ,m – 
√

m – m + ,,,m – ,,,
√

m

+ ,,,m – ,,,
√

m – ,,,
√

m

+ ,,,m – ,,,
√

m + ,,,m

+ ,,m – ,,
√

m – ,,
√

 + ,,.

By (.) and the fact that ϕ(m)ψ(m) >  for m ≥ , we arrive at (.). This completes the
proof of Lemma . by induction. �
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3 Proof of Theorem 1.1
In this section, we present a proof of Theorem ..

Lemma . For n ≥ ,

Un+Un–

U
n

< f (n), (.)

where

f (n) =
(n – n +  – 

√
)(n – )

(n – n +  – 
√

)(n + )
. (.)

Proof Let h(n) and g(n) be defined by (.) and (.), respectively. It is easy to verify that,
for n ≥ ,

h(n + ) + f (n)g(n + ) =
a(n)

(n – n +  – 
√

)(n + )(n + )
> , (.)

where

a(n) = ,,n + ,,n – ,,
√

n + ,,n

– ,,
√

n – ,,n – ,,
√

n + ,,n

– ,,
√

n + ,,n + ,,,n – ,,
√

n

– ,,
√

n + ,,,n – ,,
√

n + ,,n

– ,,
√

n + ,,n + ,,n – ,,
√

n

+ ,,n – ,,
√

n – ,
√

n + ,,n

+ ,n – ,
√

n + , – ,
√

.

Moreover, it is easy to check that, for n ≥ ,

f (n)l(n) – h(n + )

=
√

b(n)
n(n – n +  + 

√
)(n + )(n + )

>  (.)

and

(
f (n)l(n) – h(n + )

) –
(
h(n + ) + f (n)g(n + )

)

=
(, + 

√
)(n – )(n – n +  – 

√
)c(n)

n(n – n +  + 
√

)(n + )(n + )
> , (.)

where

b(n) = ,,n – ,,n – ,,
√

n + ,,
√

n

+ ,,n + ,,n – ,,
√

n – ,,n
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– ,,
√

n – ,n – ,,
√

n + ,,n

+ ,,
√

n – ,,
√

n – ,,n – ,,n

– ,,
√

n + ,,
√

n + ,,n + ,,
√

n

+ ,,n – ,, – ,,
√



and

c(n) = ,,n – ,,,n + ,,,
√

n

– ,,,
√

n + ,,,n + ,,,n

– ,,,
√

n + ,,,
√

n – ,,,n

– ,,,,n + ,,,
√

n + ,,,
√

n

– ,,,n + ,,,
√

n – ,,,n

– ,,,n + ,,,
√

n – ,,,n

+ ,,,
√

n – ,,n + ,,
√

n – ,,n

+ ,,
√

n – ,,
√

 + ,,.

It follows from (.)-(.) that, for n ≥ ,

f (n)l(n) – h(n + ) >
√

h(n + ) + f (n)g(n + )

and thus

l(n) >
h(n + ) +

√
h(n + ) + f (n)g(n + )

f (n)
. (.)

In view of (.) and (.),

Un

Un–
>

h(n + ) +
√

h(n + ) + f (n)g(n + )
f (n)

, (.)

which implies that, for n ≥ ,

f (n)
(

Un

Un–

)

– h(n + )
Un

Un–
– g(n + ) > . (.)

Thanks to (.),

f (n)U
n – Un–Un+ = U

n

(
f (n)

(
Un

Un–

)

– h(n + )
Un

Un–
– g(n + )

)
. (.)

Lemma . follows from (.) and (.). This completes the proof. �

Lemma . For n ≥ ,

Un+Un–

U
n

> f (n + ), (.)

where f (n) is defined by (.).
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Proof It is easy to check that, for n ≥ ,

h(n + ) + f (n + )g(n + )

=
(n + )d(n)

(n + )(n – n +  – 
√

)(n + )
>  (.)

and

f (n + )l(n) – h(n + )

=
√

(n + )e(n)
n(n – n +  – 

√
)(n + )(n + )

> , (.)

where

d(n) = ,,n + ,,n + ,,n – ,
√

n

– ,,
√

n + ,,n + ,,n – ,,
√

n

+ ,,n – ,,
√

n – ,,
√

n + ,,n

– ,,
√

n + ,,n + ,,n – ,,
√

n

– ,,
√

n + ,,n + ,,n – ,,
√

n

– ,
√

n + ,,n + , – ,
√

,

e(n) = ,,n + ,,n + ,,n – ,
√

n

– ,,
√

n + ,,n – ,,
√

n + ,,n

– ,n – ,,
√

n – ,,n – ,,
√

n

– ,,n – ,,
√

n – ,,n – ,,
√

n

– ,,
√

n – ,,n – ,,
√

n – ,,n

– ,, – ,
√

.

By (.) and (.),

–
√

h(n + ) + f (n + )g(n + ) < f (n + )l(n) – h(n + )

and thus

h(n + ) –
√

h(n + ) + f (n + )g(n + )
f (n + )

< l(n). (.)

Furthermore, it is easy to check that, for n ≥ ,

f (n + )u(n) – h(n + )

=
√

(n + )r(n)
n(n – n +  – 

√
)(n + )(n + )

>  (.)
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and

(
h(n + ) + f (n + )g(n + )

)
–

(
f (n + )u(n) – h(n + )

)

=
(, + ,

√
)(n + n +  – 

√
)(n + )s(n)

,,,,n(n + )(n + )(n – n +  – 
√

)
> , (.)

where

r(n) = ,,n + ,,n + ,,n – ,,
√

n

– ,,
√

n + ,,n – ,,
√

n + ,,n

– ,,n – ,,
√

n – ,,n + ,,
√

n

– ,,n + ,,
√

n – ,,n + ,,
√

n

+ ,,
√

n – ,,n – ,
√

n – ,,n

– ,, – ,
√

,

s(n) = ,,,,,n – ,,,,,
√

n

+ ,,,,,n + ,,,,,n

– ,,,,,
√

n – ,,,,,
√

n

+ ,,,,,n – ,,,,,
√

n

+ ,,,,,n + ,,,,,n

– ,,,,,
√

n – ,,,,,
√

n

+ ,,,,,n – ,,,,,n

+ ,,,,,
√

n – ,,,,,n

+ ,,,,,
√

n – ,,,,,n

+ ,,,,,
√

n + ,,,,,
√

n

– ,,,,,n + ,,,,,
√

n

– ,,,,,n + ,,,,
√



– ,,,,,.

Combining (.), (.), and (.) yields

u(n) <
h(n + ) +

√
h(n + ) + f (n + )g(n + )

f (n + )
. (.)

It follows from (.), (.), (.), and (.) that, for n ≥ ,

h(n + ) –
√

h(n + ) + f (n + )g(n + )
f (n + )

< l(n) <
Pn

Pn–
< u(n) <

h(n + ) +
√

h(n + ) + f (n + )g(n + )
f (n + )

,
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which yields

f (n + )
(

Un

Un–

)

– h(n + )
Un

Un–
– g(n + ) < . (.)

In view of (.),

f (n + )U
n – Un–Un+ = P

n

(
f (n + )

(
Un

Un–

)

– h(n + )
Un

Un–
– g(n + )

)
. (.)

Lemma . follows from (.) and (.). This completes the proof. �

Now, we turn to the proof of Theorem ..

Proof of Theorem . Replacing n by n –  in (.), we deduce that, for n ≥ ,

UnUn–

U
n–

> f (n). (.)

In view of (.) and (.), we deduce that, for n ≥ ,

U
n

U
n–

>
Un+

Un

Un–

Un–
. (.)

It is easy to verify that (.) also holds for  ≤ n ≤ . This completes the proof of Theo-
rem .. �
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