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Abstract
In this paper, we propose and analyze a two-grid variational multiscale method for
the steady natural convection problem based on two local Gauss integrations
technique. This method possesses the best algorithmic characteristics of both
variational multiscale method and two-grid discretization. The main idea is to first
solve the nonlinear steady natural convection problem on the coarse grid, then to use
the coarse grid solution to fix the nonlinear terms, and to solve a linear problem on
the fine grid. Stability and optimal error estimates of the discrete solutions in both
one-grid and two-grid variational multiscale formulations are established. Finally,
some numerical examples are presented to verify the method’s promise and testify
the theoretical predictions.

Keywords: natural convection problem; two-grid discretization; Oseen iteration;
variational multiscale method; error estimates

1 Introduction
The natural convection phenomenon is present in many real situations such as room ven-
tilation, double glass window design, etc. More importantly, it is behind the oceanic and
atmospheric dynamics. Let � ⊂ R

d (d =  or ) be a regular bounded open domain, we
consider the following steady natural convection problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

– Pr�u + (u · ∇)u + ∇p = Pr Ra ζT + γ, ζ = e/|e|, in �,
∇ · u = , in �,
u = , on ∂�,
–∇ · (k∇T) + (u · ∇)T = γ, in �,
T = , on �T , ∂T

∂n = , on �B,

(.)

where � is a bounded convex polyhedral domain, the unknown functions are the veloc-
ity u, the pressure p, and the temperature T . e is a unit vector in the direction of gravi-
tational acceleration, γ and γ are known functions. n is the outward unit normal to �,
and �T = ∂�\�B where �B is a regular open subset of ∂�. Pr, Ra, and k >  denote Prandtl
number, Rayleigh number, and thermal conductivity parameter, respectively.

The natural convection problem (.) is an important system with dissipative nonlinear
terms in atmospheric dynamics. This system not only contains the velocity and pressure,
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but also includes the temperature field, finding the numerical solution of problem (.) be-
comes a difficult task. For the research of the natural convection problem (.), there have
enormous works been devoted to the development of efficient schemes ([–] and the ref-
erences therein). For example, [, ] developed the mixed finite element method (FEM) for
problem (.). Cibik and Kaya [] constructed a projection-based stabilization finite ele-
ment method. Galvin et al. [] studied problem (.) with poor mass conservation in mixed
finite element algorithm for flow problems of large rotation-free forcing in the momen-
tum equations. Zhang et al. [] developed the decoupled two-grid method. For the time-
dependent case, Benítez and Bermúdez [] considered a second order Lagrange-Galerkin
method. Boland and Layton [] presented stability and error estimates for the Galerkin fi-
nite element spatial semi-discretization case. Manzari [] used standard Galerkin FEM in
spatial discretization and an explicit multistage Runge-Kutta scheme in the time domain
for convection heat transfer problem.

It is well known that the small viscous problem is a challenge subject due to the sin-
gularity of the numerical solutions. As a result, much attention has been appealed to the
recent years. There are several numerical schemes have been developed for the simula-
tion of small viscous flows, such as the decoupled method [], the variational multiscale
method [–], the defect-correction method [, ] and so on. Among them, the vari-
ational multiscale method is a popular numerical technique. This method is on the base
of the decomposition of the flow scales and definition of the large scales that is projected
into appropriate subspaces. In this work, we propose a new variational multiscale method
by defining the stabilization terms via two local Gauss integrations based on projection
operators. A significant feature of this new variational multiscale method is that the stabi-
lization terms are defined by the difference between a consistent and an under-integrated
matrix only involving the velocity gradient (and temperature gradient), rather than the
projection operator as used in the common variational multiscale method. This new vari-
ational multiscale method does not need to introduce extra variables and can keep good
accuracy. Zhang et al. have made some numerical examples in [] to verify the efficiency
of this new variational multiscale method for problem (.), Shang [] has presented an
error analysis of two level subgrid stabilized Oseen iterative method for time-dependent
Navier-Stokes equations. The main contribution of this work can be listed as follows. ()
The theoretical analysis of new variational multiscale method based on two local Gauss
integrations for steady natural convection problem is provided. () A two-grid variational
multiscale Oseen iterative scheme for the steady natural convection problem is developed,
the corresponding error estimates are presented. Therefore, our work can be considered
as an extension and supplement of the existing results [, , ].

The paper is organized as follows. In Section , we present the notations and mathe-
matical preliminaries for the considered problem and finite element spaces. Based on the
elliptic projections of velocity and temperature, we formulate one-grid variational multi-
scale method, and apply the Oseen iterative scheme to linearize this nonlinear problem
in Section . Section  develops and analyzes a two-grid variational multiscale Oseen it-
erative method. Finally, some numerical tests are presented to testify the correctness of
the theoretical predictions and verify the effectiveness and efficiency of the developed
method.
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2 Preliminaries
2.1 Mathematical setting and basic results
The function spaces for the velocity u, the pressure p, and the temperature T are defined,
respectively, by

X = H
(�)d =

{
v ∈ H(�)d : v =  on ∂�

}
,

M = L
(�) =

{
p ∈ L(�) : (p, )� = 

}
,

W =
{

S ∈ H(�) : S =  on �B
}

,

V = H
,div(�) = {v ∈ X : ∇ · v =  in �},

where the spaces L(�)m, m = , ,  are equipped with the standard L-scalar product (·, ·)
and L-norm ‖ · ‖, Hj(�) denotes the standard Sobolev space with norm ‖ · ‖j. The space
X is endowed with the usual scalar product (∇u,∇v) and the norm ‖∇u‖.

The weak form of (.) reads as follows: Find (u, p, T) ∈ X × M × W such that

{
Pr a(u, v) + c(u, u, v) + b(v, p) – b(u, q) = Pr Ra(Tζ , v) + (γ, v),
kā(T , S) + c̄(u, T , S) = (γ, S),

(.)

for all (v, q, S) ∈ X × M × W , where

a(u, v) = (∇u,∇v), ā(T , S) = (∇T ,∇S), b(v, q) = –(∇ · v, q),

c(u, v, w) =
(
(u · ∇)v, w

)
+



(
(∇ · u)v, w

)
=



(
(u · ∇)v, w

)
–



(
(u · ∇)w, v

)
,

c̄(u, T , S) =
(
(u · ∇)T , S

)
+



(
(∇ · u)T , S

)
=



(
(u · ∇)T , S

)
–



(
(u · ∇)S, T

)
.

The following lemma and theorem provide some important results for bilinear terms
a(·, ·), ā(·, ·) and the existence and uniqueness of solutions for problem (.).

Lemma . (see []) For all u, v, w ∈ X and S, T ∈ W , the following estimates hold.

∣
∣a(u, v)

∣
∣ ≤ ‖∇u‖‖∇v‖,

∣
∣a(u, u)

∣
∣ ≥ ‖∇u‖

,
∣
∣ā(T , S)

∣
∣ ≤ ‖∇T‖‖∇S‖,

∣
∣ā(T , T)

∣
∣ ≥ ‖∇T‖

,
∣
∣c(u, v, w)

∣
∣ ≤ N‖∇u‖‖∇v‖‖∇w‖,

∣
∣c(u, v, v)

∣
∣ = ,

∣
∣c(u, T , S)

∣
∣ ≤ N‖∇u‖‖∇T‖‖∇S‖,

∣
∣c(u, T , T)

∣
∣ = ,

where N = sup�=u,v,w∈X
|c(u,v,w)|

‖∇u‖‖∇v‖‖∇w‖
and N = sup�=u∈X,�=θ ,ψ∈W

|c(u,θ ,ψ)|
‖∇u‖‖∇θ‖‖∇ψ‖

.

Theorem . (see []) Under the condition

Ra‖γ‖– +
Pr–

k– + Pr Nk– ‖γ‖– ≤ Pr

k– + Pr Nk– , (.)

problem (.) admits a unique solution (u, T) and satisfies

‖∇u‖ ≤ Pr– ‖γ‖– + Ra k–‖γ‖–, ‖∇T‖ ≤ k–‖γ‖–. (.)
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2.2 The finite element spaces
To introduce the finite element discretization of (.), we assume T μ(�) = {K} (here
μ = H , h with H 	 h) to be a shape-regular triangulation of � into triangles or quadri-
laterals (if d = ), or tetrahedrons or hexahedrons (if d = ) with mesh size  < μ < . The
fine mesh T h(�) is found by a mesh refinement process of the coarse mesh. It is of worth
to mention that it is not necessary for our method, nor needed for the results of our con-
vergence theorems to hold. However, we assume the coarse and fine grids nested since
it will simplify our analysis substantially. Let Xμ ⊂ X, Mμ ⊂ M, Wμ ⊂ W be three finite
element spaces associated with T μ(�) and satisfying the following assumptions.

(A) Approximation. For each (u, p, T) ∈ Hk+(�)d × Hk(�) × Hk+(�), there exists an
approximation (π 

μu,ρμp,π
μT) such that

∥
∥∇(

u – π 
μu

)∥
∥

 ≤ cμs‖u‖+s, ‖p – ρμp‖ ≤ cus‖p‖s, (.)
∥
∥∇(

T – π
μT

)∥
∥

 ≤ cμs‖T‖+s,  ≤ s ≤ k, (.)

here and below, the letters c and C denote the general positive constants dependent at most
on the coefficients of the equations and the domain, but independent of the mesh size and
the iterative times m, furthermore, they are different at their different occurrences.

(A) inf-sup condition. For the finite element spaces Xμ and Mμ, there exists a constant
β >  such that

β‖qμ‖ ≤ sup
vμ∈Xμ ,vμ �=

(∇ · vμ, qμ)
‖∇vμ‖

, ∀qμ ∈ Mμ. (.)

It is noted that many mixed finite element pairs such as the Taylor-Hood element, the
MINI element, and the P-P element satisfy the above assumptions (A) and (A).

Set

Vμ =
{

vμ ∈ Xμ : (∇ · vμ, qμ) = ,∀qμ ∈ Mμ

}
.

It is well known that (see [])

inf
vμ∈Vμ

∥
∥∇(v – vμ)

∥
∥

 ≤ C
(

 +

β

)

inf
vμ∈Xμ

∥
∥∇(v – vμ)

∥
∥

, ∀v ∈ V . (.)

Under the above assumptions, the mixed finite element approximation of (.) reads:
Find a pair (uμ, pμ, Tμ) ∈ Xμ × Mμ × Wμ such that for all (vμ, qμ, Sμ)

{
Pr a(uμ, vμ) + c(uμ, uμ, vμ) + b(vμ, pμ) – b(uμ, qμ) = Pr Ra(Tμζ , vμ) + (γ, vμ),
kā(Tμ, Sμ) + c̄(uμ, Tμ, Sμ) = (γ, Sμ).

(.)

The following theorem establishes the existence and uniqueness of the numerical solu-
tions for problem (.) and provides the optimal L-norm error estimates.

Theorem . (see []) Under the assumptions of (A), (A), and some assumptions as re-
gards the k, Pr, Ra, γ, γ, problem (.) possesses a unique solution (uμ, pμ, Tμ) and satisfies

‖u – uμ‖ + ‖T – Tμ‖ ≤ Cμ,
∥
∥∇(u – uμ)

∥
∥

 +
∥
∥∇(T – Tμ)

∥
∥

 + ‖p – pμ‖ ≤ Cμ.
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3 The variational multiscale method based on two local Gauss integrations
In this section, we shall first formulate the variational multiscale method, and then develop
the numerical scheme for the considered problem (.).

3.1 The variational multiscale method
Our variational multiscale method is based on two elliptic projection operators,


μ : X → R = {v ∈ H

(�)d : v|K ∈ (P)d,∀K ∈ Eμ(�)},


μ : W → R = {S ∈ H
(�) : S|K ∈ P,∀K ∈ Eμ(�)},

which can be defined as follows (see []):

(∇
μu,∇v

)
= (∇u,∇v), ∀u ∈ X, v ∈ R,

(∇
μT ,∇S

)
= (∇T ,∇S), ∀T ∈ W , S ∈ R,

and have the following properties:

∥
∥∇

μu
∥
∥

 ≤ ‖∇u‖, ∀u ∈ X,
∥
∥∇

μT
∥
∥

 ≤ ‖∇T‖, ∀T ∈ W , (.)

where R and R are two spaces of polynomials of degree less than or equal to one.
Based on projections 

μ and 
μ, we define the following stabilization terms:

G(u, v) = α
(∇(

I – 
μ

)
u,∇(

I – 
μ

)
v
)
, ∀u, v ∈ X, (.)

G(T , S) = α
(∇(

I – 
μ

)
T ,∇(

I – 
μ

)
S
)
, ∀T , S ∈ W , (.)

where α,α >  are two user-defined stabilization parameters, typically chosen as α =
α = O(μ)s (here s >  is a constant related to the finite elements used for the discretization
of the considered problem).

Thanks to (.) and (.), the finite element variational multiscale method for problem
(.) reads as follows: Find (uμ, pμ, Tμ) ∈ Xμ × Mμ × Wμ such that

⎧
⎪⎨

⎪⎩

Pr a(uμ, vμ) + c(uμ, uμ, vμ) + b(vμ, pμ) – b(uμ, qμ) + G(uμ, vμ)
= Pr Ra(Tμζ , vμ) + (γ, vμ),

kā(Tμ, Sμ) + c̄(uμ, Tμ, Sμ) + G(Tμ, Sμ) = (γ, Sμ),
(.)

for all (vμ, qμ, Sμ) ∈ Xμ × Mμ × Wμ.

3.2 Stability and convergence of scheme (3.4)
The system (.) is nonlinear; it needs to be linearized in computations. A popular lin-
earization process is the one based on the Newton iterative method. However, it is well
known that the Newton iterative method is sensitive to the initial guess for the nonlin-
ear iterations, i.e., to guarantee the convergence of the Newton iterations, the initial guess
should be close enough to the solution (uμ, Tμ). Here we use the Oseen iterative method
to solve (.).

From the definitions (.) and (.) of the projection operators 
μ, 

μ, we have

G(u, v) = α
(∇(

I – 
μ

)
u,∇(

I – 
μ

)
v
)

= α(∇u,∇v) – α
(∇

μu,∇v
)
, ∀u, v ∈ X, (.)
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G(T , S) = α
(∇(

I – 
μ

)
T ,∇(

I – 
μ

)
S
)

= α(∇T ,∇S) – α
(∇

μT ,∇S
)
, ∀T , S ∈ W . (.)

By applying the Oseen iterative method to the nonlinear problem (.) and thanks to
(.) and (.), we develop the variational multiscale Oseen iterative scheme for the natural
convection problem: Find an iterative solution (un

μ, pn
μ, Tn

μ) ∈ Xμ × Mμ × Wμ such that

⎧
⎪⎨

⎪⎩

(Pr +α)a(un
μ, vμ) + c(un–

μ , un
μ, vμ) + b(vμ, pn

μ) – b(un
μ, qμ)

= Pr Ra(Tn
μζ , vμ) + (γ, vμ) + α(∇

μun–
μ ,∇vμ),

(k + α)ā(Tn
μ, Sμ) + c̄(un–

μ , Tn
μ, Sμ) = (γ, Sμ) + α(∇

μTn–
μ ,∇Sμ),

(.)

for all (vμ, qμ, Sμ) ∈ Xμ × Mμ × Wμ, n = , , . . . , with u
μ = , T

μ = .
Throughout this paper, we assume that μ is small enough such that the iterative scheme

(.) is convergent. In order to keep notation brief, we define

A = Pr– ‖γ‖– + Ra k–‖γ‖–, B = k–‖γ‖–.

Theorem . The iterative solution (un
μ, Tn

μ) defined by (.) satisfies

∥
∥∇un

μ

∥
∥

 ≤ A,
∥
∥∇Tn

μ

∥
∥

 ≤ B, ∀n ≥ . (.)

Proof Let Sμ = Tn
μ in the second equation of (.), we have

(k + α)ā
(
Tn

μ, Tn
μ

)
=

(
γ, Tn

μ

)
+ α

(∇
μTn–

μ ,∇Tn
μ

)
.

We use the Cauchy-Schwarz inequality and (.) to obtain

(k + α)
∥
∥∇Tn

μ

∥
∥

 ≤ ‖γ‖– + α
∥
∥∇

μTn–
μ

∥
∥

 ≤ ‖γ‖– + α
∥
∥∇Tn–

μ

∥
∥

.

When n = , we get

(k + α)
∥
∥∇T 

μ

∥
∥

 ≤ ‖γ‖– ⇒ ∥
∥∇T 

μ

∥
∥

 ≤ 
k + α

‖γ‖– ≤ k–‖γ‖–,

which shows that the second inequality of (.) holds for n = . We now assume it holds
for n = J and prove it holds for n = J + ,

(k + α)
∥
∥∇TJ+

μ

∥
∥

 ≤ ‖γ‖– + α
∥
∥∇TJ

μ

∥
∥

 ≤ k–(k + α)‖γ‖–.

As a consequence one finds

∥
∥∇TJ+

μ

∥
∥

 ≤ k–‖γ‖–. (.)

Taking vμ = un
μ and qμ = pn

μ in the first equation of (.), and using (.), we obtain

(Pr +α)
∥
∥∇un

μ

∥
∥

 ≤ ‖γ‖– + α
∥
∥∇

μun–
μ

∥
∥

 + Pr Ra
∥
∥Tn

μ

∥
∥

–

≤ ‖γ‖– + α
∥
∥∇un–

μ

∥
∥

 + Pr Ra k–‖γ‖–.
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Due to the facts that α >  and u
μ = , we know that (.) holds for n = . Assume that

the first inequality of (.) holds for n = J . Taking (vμ, qμ) = (uJ+
μ , pJ+

μ ) ∈ Xμ × Mμ in the
first equation of (.) with n = J + , we get

(Pr +α)
∥
∥∇uJ+

μ

∥
∥

 ≤ ‖γ‖– + α
∥
∥∇uJ

μ

∥
∥

 + Pr Ra k–‖γ‖–

≤ ‖γ‖– + α
(
Pr– ‖γ‖– + Ra k–‖γ‖–

)
+ Pr Ra k–‖γ‖–

≤ Pr +α

Pr
‖γ‖– + (Pr +α) Ra k–‖γ‖–.

Consequently, we obtain

∥
∥∇uJ+

μ

∥
∥

 ≤ Pr– ‖γ‖– + Ra k–‖γ‖–,

which with (.) completes the proof. �

Theorem . Assume that (u, T) is the nonsingular solution to the natural convection
problem (.), α and α tend to zero as μ tends to zero. Under the condition of

Pr +α – NA – (k + α)– · Pr Ra NB > , (.)

there exists μ >  such that for all μ ≤ μ, the solution (un
μ, pn

μ, Tn
μ) of (.) satisfies




Pr
∥
∥∇(

u – un
μ

)∥
∥



≤ C(β)
(




Pr +α + NA +
Pr Ra NB

k + α

)

inf
ū∈Xμ

∥
∥∇(u – ū)

∥
∥



+
√

d inf
λμ∈Mμ

‖p – λμ‖ + αA +
(

NA +
Pr Ra NB

k + α

)
∥
∥∇(

un
μ – un–

μ

)∥
∥



+
Pr Ra(k + α + NA)

k + α
inf

T̄∈Wμ

∥
∥∇(T – T̄)

∥
∥

 +
 Pr RaαB

k + α
, (.)

∥
∥p – pn

μ

∥
∥

 ≤
(√

d
β

+ 
)

inf
λμ∈Mμ

‖p – λμ‖ +

β

(Pr +α + NA)
∥
∥∇(

u – un
μ

)∥
∥



+
NA
β

∥
∥∇(

un
μ – un–

μ

)∥
∥

 +
αA

β
+

Pr Ra

β

∥
∥∇(

T – Tn
μ

)∥
∥

, (.)

∥
∥∇(

T – Tn
μ

)∥
∥

 ≤ k + α + NA
k + α

inf
T̄∈Wμ

∥
∥∇(T – T̄)

∥
∥

 +
NB

k + α

∥
∥∇(

u – un
μ

)∥
∥



+
NB

k + α

∥
∥∇(

un
μ – un–

μ

)∥
∥

 +
αB
k + α

. (.)

Here ū, λμ, and T̄ are the approximations of u, p, and T in Xμ, Mμ, and Wμ, respectively.

Remark . As the velocity u and temperature T are coupled in system (.), the error
estimation for T – Tn

μ is coupled with the error u – un
μ.
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Proof Setting (en
μ,ηn

μ,φn
μ) = (u – un

μ, p – pn
μ, T – Tn

μ) and subtracting (.) from (.), we
obtain the following error equations for the variational multiscale Oseen iterative scheme:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Pr +α)(∇en
μ,∇vμ) + c(u, u, vμ) – c(un–

μ , un
μ, vμ) + b(vμ,ηn

μ) – b(en
μ, qμ)

= Pr Ra(φn
μζ , vμ) + α(∇u,∇vμ) – α(∇

μun–
μ ,∇vμ),

(k + α)ā(φn
μ, Sμ) + c̄(u, T , Sμ) – c̄(un–

μ , Tn
μ, Sμ)

= α(∇T ,∇Sμ) – α(∇
μTn–

μ ,∇Sμ),

(.)

for all (vμ, qμ, Sμ) ∈ Xμ × Mμ × Wμ. Taking vμ ∈ Vμ and qμ = , we get for any λμ ∈ Mμ

(Pr +α)
(∇en

μ,∇vμ

)
+ c(u, u, vμ) – c

(
un–

μ , un
μ, vμ

)
– (∇ · vμ, p – λμ)

= Pr Ra
(
φn

μζ , vμ

)
+ α(∇u,∇vμ) – α

(∇
μun–

μ ,∇vμ

)
. (.)

Splitting en
μ = ρ – ξn

μ into ρ = u – ū and ξn
μ = un

μ – ū, ū is an approximation of u in Vμ,
splitting φn

μ = ρ – εn
μ with ρ = T – T̄ and εn

μ = Tn
μ – T̄ , T̄ is an approximation of T in Wμ,

noting that

c(u, u, vμ) – c
(
un–

μ , un
μ, vμ

)

= c
(
u, u – un

μ + un
μ, vμ

)
– c

(
un–

μ , un
μ, vμ

)

= c
(
u, en

μ, vμ

)
+ c

(
en
μ, un

μ, vμ

)
+ c

(
un

μ – un–
μ , un

μ, vμ

)

= c(u,ρ, vμ) – c
(
u, ξn

μ, vμ

)
+ c

(
ρ, un

μ, vμ

)

– c
(
ξn
μ, un

μ, vμ

)
+ c

(
un

μ – un–
μ , un

μ, vμ

)
. (.)

In the same way, we have

c̄(u, T , Sμ) – c̄
(
un–

μ , Tn
μ, Sμ

)

= c̄(u,ρ, Sμ) – c̄
(
u, εn

μ, Sμ

)
+ c̄

(
en
μ, Tn

μ, Sμ

)
+ c̄

(
un

μ – un–
μ , Tn

μ, Sμ

)
. (.)

From the second equation of (.), one finds

(k + α)
(∇εn

μ,∇Sμ

)
= (k + α)(∇ρ,∇Sμ) + c̄(u, T , Sμ) – c̄

(
u, Tn

μ, Sμ

)

+ α
(∇

μTn–
μ ,∇Sμ

)
– α(∇T ,∇Sμ).

We take Sμ = εn
μ using (.) to obtain

(k + α)
(∇εn

μ,∇εn
μ

)
= (k + α)

(∇ρ,∇εn
μ

)
+ c̄

(
u,ρ, εn

μ

)
+ c̄

(
en
μ, Tn

μ, εn
μ

)

+ c̄
(
un

μ – un–
μ , Tn

μ, εn
μ

)
+ α

(∇
μTn–

μ ,∇εn
μ

)
– α

(∇T ,∇εn
μ

)
.

Thanks to Theorem ., (.) and Theorem . we derive that

(k + α)
∥
∥∇εn

μ

∥
∥

 ≤ (k + α + NA)‖∇ρ‖ + NB
∥
∥∇en

μ

∥
∥



+ NB
∥
∥∇(

un
μ – un–

μ

)∥
∥

 + αB.
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With the help of the triangle inequality one finds

(k + α)
∥
∥∇φn

μ

∥
∥

 ≤ (k + α + NA)‖∇ρ‖ + NB
∥
∥∇en

μ

∥
∥



+ NB
∥
∥∇(

un
μ – un–

μ

)∥
∥

 + αB.

We can get the error estimation (.) for T – Tn
μ by taking the infimum over Wμ.

Now let us to prove (.). The applications of (.) and (.) lead to

(Pr +α)
(∇ξn

μ,∇vμ

)
= (Pr +α)(∇ρ,∇vμ) + c(u,ρ, vμ) – c

(
u, ξn

μ, vμ

)
+ c

(
ρ, un

μ, vμ

)

– c
(
ξn
μ, un

μ, vμ

)
+ c

(
un

μ – un–
μ , un

μ, vμ

)
– Pr Ra

(
φn

μζ , vμ

)

– α(∇u,∇vμ) + α
(∇

μun–
μ ,∇vμ

)
– (∇ · vμ, p – λμ).

Taking vμ = ξn
μ , we get

(Pr +α)
(∇ξn

μ,∇ξn
μ

)

= (Pr +α)
(∇ρ,∇ξn

μ

)
+ c

(
u,ρ, ξn

μ

)
+ c

(
ρ, un

μ, ξn
μ

)
– c

(
ξn
μ, un

μ, ξn
μ

)

+ c
(
un

μ – un–
μ , un

μ, ξn
μ

)
– Pr Ra

(
φn

μζ , ξn
μ

)
– α

(∇u,∇ξn
μ

)

+ α
(∇

μun–
μ ,∇ξn

μ

)
–

(∇ · ξn
μ, p – λμ

)
.

Thus

(Pr +α)
∥
∥∇ξn

μ

∥
∥



≤ (
Pr +α + N‖∇u‖ + N

∥
∥∇un

μ

∥
∥



)‖∇ρ‖ + N
∥
∥∇un

μ

∥
∥



∥
∥∇(

un
μ – un–

μ

)∥
∥



+ Pr Ra
∥
∥∇φn

μ

∥
∥

 + α‖∇u‖ + α
∥
∥∇

μun–
μ

∥
∥



+ N
∥
∥∇un

μ

∥
∥



∥
∥∇ξn

μ

∥
∥

 +
√

d‖p – λμ‖.

Making use of Theorem . and Theorem ., we obtain

(Pr +α)
∥
∥∇ξn

μ

∥
∥

 ≤ (Pr +α + NA)‖∇ρ‖ + NA
∥
∥∇(

un
μ – un–

μ

)∥
∥



+ Pr Ra
∥
∥∇φn

μ

∥
∥

 + αA + NA
∥
∥∇ξn

μ

∥
∥

 +
√

d‖p – λμ‖. (.)

To complete the proof, the bound (.) is inserted into the one of (.), this gives

(Pr +α)
∥
∥∇ξn

μ

∥
∥



≤ (Pr +α + NA)‖∇ρ‖ + NA
∥
∥∇(

un
μ – un–

μ

)∥
∥

 + αA + NA
∥
∥∇ξn

μ

∥
∥



+
√

d‖p – λμ‖ + Pr Ra

[
k + α + NA

k + α
inf

T̄∈Wμ

∥
∥∇(T – T̄)

∥
∥



+
NB

k + α

∥
∥∇(

u – un
μ

)∥
∥

 +
N B

k + α

∥
∥∇(

un
μ – un–

μ

)∥
∥

 +
αB
k + α

]

,
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thus
(

Pr +α – NA –
Pr Ra NB

k + α

)
∥
∥∇ξn

μ

∥
∥



≤
(

Pr +α + NA +
Pr Ra NB

k + α

)

‖∇ρ‖ +
(

NA +
Pr Ra NB

k + α

)
∥
∥∇(

un
μ – un–

μ

)∥
∥



+ αA +
√

d‖p – λμ‖

+
Pr Ra(k + α + NA)

k + α
inf

T̄∈Wμ

∥
∥∇(T – T̄)

∥
∥

 +
 Pr RaαB

k + α
. (.)

Under the condition of (.) we find that




Pr
∥
∥∇en

μ

∥
∥

 ≤ 


Pr
(‖∇ρ‖ +

∥
∥∇ξn

μ

∥
∥



)

≤
(




Pr +α + NA +
Pr Ra NB

k + α

)

‖∇ρ‖ +
√

d‖p – λμ‖

+ αA +
 Pr RaαB

k + α
+

(

NA +
Pr Ra NB

k + α

)
∥
∥∇(

un
μ – un–

μ

)∥
∥



+
Pr Ra(k + α + NA)

k + α
inf

T̄∈Wμ

∥
∥∇(T – T̄)

∥
∥

. (.)

Taking the infimum over ū ∈ Vμ, λμ ∈ Mμ, and using (.), we get the required result
(.).

Now, we present the convergence of p – pn
μ. Letting λμ be an approximation of p in Mμ

and setting p – pn
μ = (p – λμ) – (pn

μ – λμ), from the first equation of (.) and (.) we get

(∇ · vμ, pn
μ – λμ

)

= (∇ · vμ, p – λμ) – (Pr +α)
(∇en

μ,∇vμ

)
– c

(
u, en

μ, vμ

)
– c

(
en
μ, un

μ, uμ

)

– c
(
un

μ – un–
μ , un

μ, vμ

)
+ α(∇u,∇vμ) – α

(∇
μun–

μ ,∇vμ

)
+ Pr Ra

(
φn

μζ , vμ

)

≤ [√
d‖p – λμ‖ +

(
Pr +α + N‖∇u‖ + N

∥
∥∇un

μ

∥
∥



)∥
∥∇en

μ

∥
∥

 + Pr Ra
∥
∥∇φn

μ

∥
∥



+ N
∥
∥∇un

μ

∥
∥



∥
∥∇(

un
μ – un–

μ

)∥
∥

 + α
(‖∇u‖ +

∥
∥∇un–

μ

∥
∥



)]‖∇vμ‖,

which together with the inf-sup condition and the bounds of ‖∇u‖, ‖∇un–
μ ‖, ‖∇un

μ‖

yields

β
∥
∥pn

μ – λμ

∥
∥



≤ √
d‖p – λμ‖ +

(
Pr +α + N‖∇u‖ + N

∥
∥∇un

μ

∥
∥



)∥
∥∇en

μ

∥
∥



+ N
∥
∥∇un

μ

∥
∥



∥
∥∇(

un
μ – un–

μ

)∥
∥

 + α
(‖∇u‖ +

∥
∥∇un–

μ

∥
∥



)
+ Pr Ra

∥
∥∇φn

μ

∥
∥



≤ √
d‖p – λμ‖ + (Pr +α + NA)

∥
∥∇(

u – un
μ

)∥
∥



+ NA
∥
∥∇(

un
μ – un–

μ

)∥
∥

 + αA + Pr Ra
∥
∥∇(

T – Tn
μ

)∥
∥

.

Using the triangle inequality and taking the infimum over λμ ∈ Mμ, we finish the proof.
�
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Corollary . Under the condition of Theorem ., the solution (un
μ, pn

μ, Tn
μ) ∈ Xμ × Mμ ×

Wμ defined by (.) satisfies

∥
∥∇(

u – un
μ

)∥
∥

 +
∥
∥p – pn

μ

∥
∥

 +
∥
∥∇(

T – Tn
μ

)∥
∥



≤ cμs + Cα + Cα + C
∥
∥∇(

un
μ – un–

μ

)∥
∥

.

Remark . Corollary . shows that to ensure a good approximation, the variational
multiscale Oseen iterations should converge sufficiently. Moreover, the estimator suggests
the choice of the stabilization parameters α = O(μs) and α = O(μs) which ensure optimal
convergence.

4 Two-grid variational multiscale method
Combining two-grid discretization strategy with the variational multiscale Oseen iterative
method presented in the previous section, we develop the two-grid variational multiscale
Oseen iterative method as follows.

Step . Find a coarse grid iterative solution (um
H , pm

H , Tm
H ) ∈ XH × MH × WH such that

⎧
⎪⎨

⎪⎩

(Pr +α)a(um
H , vH) + c(um–

H , um
H , vH ) + b(vH , pm

H ) – b(um
H , qH )

= Pr Ra(Tm
H ζ , vH ) + (γ, vH ) + α(∇

Hum–
H ,∇vH ),

(k + α)ā(Tm
H , SH ) + c̄(um–

H , Tm
H , SH ) = (γ, SH ) + α(∇

H Tm–
H ,∇SH ),

for all (vH , qH , SH) ∈ XH × MH × WH , n = , , . . . , m, and u
H = , T

H = .
Step . Find a fine grid solution (umh, pmh, Tmh) ∈ Xh × Mh × Wh such that for all

(vh, qh, Sh) ∈ Xh × Mh × Wh

⎧
⎪⎨

⎪⎩

Pr a(umh, vh) + c(um
H , umh, vh) + c(umh, um

H , vh) + b(vh, pmh) – b(umh, qh)
= Pr Ra(Tmhζ , vh) + (γ, vh) + c(um

H , um
H , vh),

kā(Tmh, Sh) + c̄(um
H , Tmh, Sh) + c̄(umh, Tm

H , Sh) = (γ, Sh) + c̄(um
H , Tm

H , Sh).
(.)

Remark . In our two-grid method, stabilization is only employed for the coarse grid
nonlinear problem, while the fine grid linear problem is a standard one-step Newton lin-
earization. Therefore, Pr, Ra, k should be in the range such that the standard linear prob-
lem on the fine grid is nonsingular and solvable.

Remark . The numerical algorithm (.) is a full linearization problem based on the
Newton iterative scheme. Similarly, based on the Oseen iterative scheme, we can develop
the following partial linearization problem: Find a fine grid solution (umh, pmh, Tmh) ∈ Xh ×
Mh × Wh such that for all (vh, qh, Sh) ∈ Xh × Mh × Wh

⎧
⎪⎨

⎪⎩

Pr a(umh, vh) + c(um
H , umh, vh) + b(vh, pmh) – b(umh, qh)

= Pr Ra(Tmhζ , vh) + (γ, vh),
kā(Tmh, Sh) + c̄(um

H , Tmh, Sh) = (γ, Sh).
(.)

Theorem . Assume (ũ,λh, T̃) be an approximation of (u, p, T) in Xh × Mh × Wh,
under the conditions of Theorem . and 

 Pr –NA – k– Pr Ra NB > . The solution
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(umh, pmh, Tmh) defined by scheme (.) satisfies




Pr
∥
∥∇(u – umh)

∥
∥



≤ C(β)
(




Pr +NA + Pr Ra k–NB
)

inf
ũ∈Xh

∥
∥∇(u – ũ)

∥
∥



+
√

d inf
λh∈Mh

‖p – λh‖

+
(
N

∥
∥∇(

u – um
H
)∥
∥

 + Pr Ra k–N
∥
∥∇(

T – Tm
H

)∥
∥



)∥
∥∇(

u – um
H
)∥
∥



+ Pr Ra k–(k + NA + N
∥
∥∇(

u – um
H
)∥
∥



)
inf

T̃∈Wh

∥
∥∇(T – T̃)

∥
∥

, (.)

‖p – pmh‖ ≤
(

 +
√

d
β

)

inf
λh∈Mh

‖p – λh‖ +

β

(Pr +NA)
∥
∥∇(u – umh)

∥
∥



+
N

β

∥
∥∇(

u – um
H
)∥
∥

 +
Pr Ra

β

∥
∥∇(T – Tmh)

∥
∥

, (.)

∥
∥∇(T – Tmh)

∥
∥



≤ k–(k + NA + N
∥
∥∇(

u – um
H
)∥
∥



)
inf

T̃∈Wh

∥
∥∇(T – T̃)

∥
∥



+ k–NB
∥
∥∇(u – umh)

∥
∥

 + k–N
∥
∥∇(

u – um
H
)∥
∥



∥
∥∇(

T – Tm
H

)∥
∥

. (.)

Proof Setting (em,ηm,φm) = (u – umh, p – pmh, T – Tmh) and subtracting (.) from (.), for
all (vh, qh, Sh) ∈ Xh × Mh × Wh we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pr(∇em,∇vh) + c(u, u, vh) – c(um
H , umh, vh) – c(umh, um

H , vh) – (∇ · vh, p – pmh)
+ (∇ · em, qh) = Pr Ra(φmζ , vh) – c(um

H , um
H , vh),

k(∇φm,∇Sh) + c̄(u, T , Sh) – c̄(um
H , Tmh, Sh) – c̄(umh, Tm

H , Sh)
= –c̄(um

H , Tm
H , Sh).

(.)

The remainder of the proof follows that of Theorem .. Let (ũ,λh, T̃) be an approximation
of (u, p, T). By limiting vh ∈ Vh, splitting em = χ – ϕh with χ = u – ũ, ϕh = umh – ũ, and
splitting φm = χ – ψh with χ = T – T̃ , ψh = Tmh – T̃ , the trilinear terms transform into

c(u, u, vh) – c
(
um

H , umh, vh
)

– c
(
umh, um

H , vh
)

+ c
(
um

H , um
H , vh

)

= c
((

u – um
H
)

+ um
H , u, vh

)
– c

(
um

H , umh, vh
)

+ c
(
u – umh, um

H , vh
)

– c
(
u – um

H , um
H , vh

)

= c
(
em, um

H , vh
)

+ c
(
um

H , em, vh
)

+ c
(
u – um

H , u – um
H , vh

)
. (.)

In the same way, one finds

c̄(u, T , Sh) – c̄
(
um

H , Tmh, Sh
)

– c̄
(
umh, Tm

H , Sh
)

+ c̄
(
um

H , Tm
H , Sh

)

= c̄(u,φm, Sh) – c̄
(
u – um

H ,φm, Sh
)

+ c̄
(
em, Tm

H , Sh
)

+ c̄
(
u – um

H , T – Tm
H , Sh

)
. (.)
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Inserting (.) and (.) into (.) we get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pr(∇em,∇vh) + c(em, um
H , vh) + c(um

H , em, vh) + c(u – um
H , u – um

H , vh)
– (∇ · vh, p – pmh) + (∇ · em, qh) = Pr Ra(φmζ , vh),

k(∇φm,∇Sh) + c̄(u,φm, Sh) – c̄(u – um
H ,φm, Sh) + c̄(em, Tm

H , Sh)
+ c̄(u – um

H , T – Tm
H , Sh) = .

(.)

Setting Sh = ψh, the second equation of (.) can be written as

k(∇ψh,∇ψh)

= k(∇χ,∇ψh) + c̄(u,φm,ψh) – c̄
(
u – um

H ,φm,ψh
)

+ c̄
(
em, Tm

H ,ψh
)

+ c̄
(
u – um

H , T – Tm
H ,ψh

)

= k(∇χ,∇ψh) + c̄(u,χ,ψh) – c̄
(
u – um

H ,χ,ψh
)

+ c̄
(
em, Tm

H ,ψh
)

+ c̄
(
u – um

H , T – Tm
H ,ψh

)
,

as a consequence we derive that

k‖∇ψh‖ ≤ (
k + N‖∇u‖ + N

∥
∥∇(

u – um
H
)∥
∥



)‖∇χ‖ + N
∥
∥∇Tm

H
∥
∥

‖∇em‖

+ N
∥
∥∇(

u – um
H
)∥
∥



∥
∥∇(

T – Tm
H

)∥
∥



≤ (
k + NA + N

∥
∥∇(

u – um
H
)∥
∥



)‖∇χ‖ + NB‖∇em‖

+ N
∥
∥∇(

u – um
H
)∥
∥



∥
∥∇(

T – Tm
H

)∥
∥

. (.)

Applying the triangle inequality, and taking the infimum over Wh, we obtain the proof
(.).

Now, we present the error for u – umh. Setting vh ∈ Vh and qh = , the first equation of
(.) can be written as

Pr(∇ϕh,∇vh) = Pr(∇χ,∇vh) + c
(
em, um

H , vh
)

+ c
(
um

H , em, vh
)

+ c
(
u – um

H , u – um
H , vh

)
– (∇ · vh, p – λh) – Pr Ra(φmζ , vh).

Taking vh = ϕh, which leads to

Pr(∇ϕh,∇ϕh) = Pr(∇χ,∇ϕh) + c
(
em, um

H ,ϕh
)

+ c
(
um

H ,χ,ϕh
)

+ c
(
u – um

H , u – um
H ,ϕh

)
– (∇ · ϕh, p – λh) – Pr Ra(φmζ ,ϕh).

Using Theorem . we obtain

Pr‖∇ϕh‖ ≤ (
Pr +N

∥
∥∇um

H
∥
∥



)‖∇χ‖ + N
∥
∥∇(

u – um
H
)∥
∥



+ Pr Ra‖∇φm‖ +
√

d‖p – λh‖ + N
∥
∥∇um

H
∥
∥

‖∇ϕh‖

≤ (Pr +NA)‖∇χ‖ + N
∥
∥∇(

u – um
H
)∥
∥



+ Pr Ra‖∇φm‖ +
√

d‖p – λh‖ + NA‖∇ϕh‖. (.)
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Inserting (.) into (.) to derive that

Pr‖∇ϕh‖ ≤ (Pr +NA)‖∇χ‖ + N
∥
∥∇(

u – um
H
)∥
∥

 +
√

d‖p – λh‖ + NA‖∇ϕh‖

+ Pr Ra
[

k–(k + NA + N
∥
∥∇(

u – um
H
)∥
∥



)
inf

T̃∈Wh

∥
∥∇(T – T̃)

∥
∥



+ k–NB
∥
∥∇(u – umh)

∥
∥

 + k–N
∥
∥∇(

u – um
H
)∥
∥



∥
∥∇(

T – Tm
H

)∥
∥



]

≤ (
Pr +NA + k– Pr Ra NB

)‖∇χ‖ + N
∥
∥∇(

u – um
H
)∥
∥

 +
√

d‖p – λh‖

+
(
NA + k– Pr Ra NB

)‖∇ϕh‖

+ k– Pr Ra N
∥
∥∇(

u – um
H
)∥
∥



∥
∥∇(

T – Tm
H

)∥
∥



+ k– Pr Ra
(
k + NA + N

∥
∥∇(

u – um
H
)∥
∥



)
inf

T̃∈Wh

∥
∥∇(T – T̃)

∥
∥

.

Under the assumption of Theorem . one finds




Pr‖∇ϕh‖ ≤ (
Pr +NA + k– Pr Ra NB

)‖∇χ‖ + N
∥
∥∇(

u – um
H
)∥
∥



+
√

d‖p – λh‖ + k– Pr Ra N
∥
∥∇(

u – um
H
)∥
∥



∥
∥∇(

T – Tm
H

)∥
∥



+ k– Pr Ra
(
k + NA + N

∥
∥∇(

u – um
H
)∥
∥



)
inf

T̃∈Wh

∥
∥∇(T – T̃)

∥
∥

.

Thanks to the triangle inequality and (.), and taking the infimum over (ũ,λh) ∈ Xh ×Mh,
we finish the proof of (.).

Finally, we take qh =  in the first equation of (.) to derive that

(∇ · vh, pmh – λh)

= (∇ · vh, p – λh) – Pr(∇em,∇vh) – c
(
em, um

H , vh
)

– c
(
um

H , em, vh
)

– c
(
u – um

H , u – um
H , vh

)
+ Pr Ra(φmζ , vh)

≤ [√
d‖p – λh‖ +

(
Pr +N

∥
∥∇um

H
∥
∥



)‖∇em‖ + N
∥
∥∇(

u – um
H
)∥
∥



+ Pr Ra‖∇φh‖
]‖∇vh‖,

which combining (.) with Theorem . yields

β‖pmh – λh‖ ≤ √
d‖p – λh‖ + (Pr +NA)‖∇em‖

+ N
∥
∥∇(

u – um
H
)∥
∥

 + Pr Ra‖∇φh‖,

by using ‖p – pmh‖ ≤ ‖pmh – λh‖ + ‖p – λh‖ we have

‖p – pmh‖ ≤
(

 +
√

d
β

)

‖p – λh‖ +

β

(Pr +NA)
∥
∥∇(u – umh)

∥
∥



+
N

β

∥
∥∇(

u – um
H
)∥
∥

 +
Pr Ra

β

∥
∥∇(T – Tmh)

∥
∥

.

We derive the error estimation (.) by taking the infimum over λh ∈ Mh. �
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5 Numerical experiments
In order to gain insights on the established theoretical results of one-grid and two-grid
variational multiscale methods for the natural convection problem in Sections  and ,
we present two numerical examples in this section. Our main interests are to verify the
orders of convergence and compare the performances of different numerical schemes. For
comparison, the numerical results of the standard Galerkin FEM (.) are also provided. In
all experiments, the steady natural convection problem is defined on a convex domain � =
[, ] × [, ] and the variational multiscale parameters α = α = .h. The mesh consists
of triangular elements that are obtained by dividing � into subsquares of equal size and
then drawing the diagonal in each sub-square. The software FreeFEM++, developed by
Hecht et al. [], is used in our experiments and the linear solver UMFPACK is adopted
in our program. All numerical experiments reported in this paper were performed on a
PC with a core process (i-M) and GB of random access memory.

5.1 An analytical solution: convergence validation
In this test our purpose is to verify the theoretical results of Theorems ., ., and .
which have been established in Sections  and , respectively. The model parameters Pr,
Ra, and k are simply set to , the functions γ and γ are given by the following exact
solution:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u = x(x – )y(y – )(y – ),
u = –x(x – )(x – )y(y – ),
p = (x – )(y – ),
T = x(x – )y(y – )(y – ) – x(x – )(x – )y(y – ),

where the components of u are denoted by u and u for convenience.
In order to show the prominent features of the two-grid variational multiscale Oseen

iterative scheme (.), we compare the numerical results of one-grid variational multi-
scale scheme (.) and the standard Galerkin FEM (.). We consider the second order
discretization, where the Taylor-Hood element is applied to approximate the velocity and
pressure; the piecewise quadratic element is used to simulate the temperature. In this case,
the orders of convergence of velocity in H norm, pressure in L norm, and temperature
in H norm should be . In the following test, we will verify these orders of convergence.
‖ · ‖ denotes the L-norm and ‖∇ · ‖ is the H-semi-norm.

In Table , we show the relative errors of the standard Galerkin FEM (.) between the
exact solution and the numerical approximations. As observed from Table , the contrac-
tion factors of errors ‖∇(u–uh)‖

‖∇u‖
, ‖∇(T–Th)‖

‖∇T‖
, and ‖p–ph‖

‖p‖
become smaller and smaller as the

mesh is refined, and the orders of these relative errors are around 
 as the mesh is refined

once.
In contrast, we show the errors between the exact solution and the numerical solutions

of both one-grid and two-grid variational multiscale Oseen iterative schemes (.) and
(.) in Tables -, respectively. We observe almost no differences when comparing the
errors in Tables - with the same mesh sizes h = 

 , 
 , 

 , 
 , 

 , 
 with H =

√
h. From

these data we can see that the one-grid and two-grid variational multiscale schemes retain
the same order of accuracy with second order discretization as the standard Galerkin FEM.

Finally, we compare the CPU time among different algorithms in Tables -. From these
tables, we can see that the two-grid variational multiscale Oseen iterative method (.)
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]

Table 1 The errors of standard Galerkin FEM (2.8) for the steady natural convection equations

1/h ‖∇(u–uh)‖0
‖∇u‖0

Rate ‖p–ph‖0
‖p‖0

Rate ‖∇(T–Th)‖0
‖∇T‖0

Rate CPU(S)

4 0.166184 - 0.0485766 - 0.0962482 - 0.066
9 0.0354715 1.90444 0.00956673 2.00369 0.0211698 1.86743 0.305
16 0.0114207 1.96978 0.00302598 2.00057 0.00682614 1.96713 0.977
25 0.00470301 1.98792 0.00123938 2.00012 0.0028114 1.98789 2.503
36 0.00227273 1.99434 0.000597686 2.00003 0.00135839 1.99453 5.081
49 0.00122789 1.99702 0.000322615 2.00001 0.000733861 1.99718 9.981

Table 2 The errors of variational multiscale method (3.7) for the steady natural convection
equations

1/h ‖∇(u–uh)‖0
‖∇u‖0

Rate ‖p–ph‖0
‖p‖0

Rate ‖∇(T–Th)‖0
‖∇T‖0

Rate CPU(S)

4 0.166197 - 0.0485818 - 0.0962482 - 0.08
9 0.0354721 1.90451 0.009566804 2.0038 0.0211698 1.86743 0.283
16 0.0114203 1.96981 0.00302599 2.00059 0.00682614 1.96713 0.901
25 0.00470303 1.98793 0.00123938 2.00012 0.0028114 1.98789 2.207
36 0.00227273 1.99434 0.000597686 2.00003 0.00135839 1.99453 4.682
49 0.00122789 1.99703 0.000322615 2.00001 0.000733861 1.99718 8.804

Table 3 The errors of two-grid variational multiscale method (4.1) for the steady natural
convection equations

1/H 1/h ‖∇(u–uh)‖0
‖∇u‖0

Rate ‖p–ph‖0
‖p‖0

Rate ‖∇(T–Th)‖0
‖∇T‖0

Rate CPU(S)

2 4 0.166184 - 0.0485766 - 0.0962505 - 0.044
3 9 0.0354715 1.90444 0.00956675 2.00369 0.0211715 1.86736 0.143
4 16 0.0114202 1.96978 0.00302598 2.00057 0.00682667 1.96713 0.393
5 25 0.00470301 1.98792 0.00123938 2.00012 0.00281136 1.98788 0.915
6 36 0.00227273 1.99434 0.000597686 2.00003 0.0013585 1.99451 1.834
7 49 0.00122789 1.99702 0.000322615 2.00001 0.000733929 1.99716 3.390

uses less time than the numerical schemes (.) and (.). From the above tables, we can
see that the two-grid variational multiscale Oseen iterative method shows a good perfor-
mance for the steady natural convection equations due to this scheme not only keeping a
good accuracy but also taking the least computational cost.

5.2 Thermal driven cavity problem
The problem of thermal driven cavity is used as a suitable benchmark for testing the nat-
ural convection problem in the literature. The simplicity of the geometry and the clear
boundary conditions make this test attractive. The domain consists of a square cavity with
differentially heated vertical walls where the right and left walls are kept at Tr and Tl , re-
spectively, with Tr > Tl . The remaining walls are insulated and there is no heat transfer
through them. The boundary conditions are no-slip boundary conditions for the veloc-
ity at four walls (u = ) and Dirichlet boundary conditions for the temperature at vertical
walls. As the horizontal walls are adiabatic, we employ ∂T

∂n = . Figure  shows the physical
domain of the thermal driven cavity flow problem. In this test, we follow the parameters
set by Cibik and Kaya in [] and take k = , b = , Tl = , and Tr = . While we consider the
air as the cavity filling fluid in our model, we take the fixed value Pr = .. We perform
our computations for a Rayleigh number varying from  to . The performance of the
two-grid variational multiscale method (.) is compared with the famous benchmark so-
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Figure 1 The physical domain with its boundary conditions.

lution of [] and some other authors such as Cibik and Kaya [], Manzari [], and Wan
et al. []. We also present the results of the standard Galekrkin FEM (.) where we keep
the same mesh sizes for the two-grid variational multiscale method (.) and the one-grid
variational multiscale method (.). Numerical simulations are obtained on the uniform
grid  × . The mesh sizes of two-grid algorithms are H = 

 and h = 
 .

We start our illustrations by giving peak values of the vertical velocity at y = . and the
horizontal velocity at x = .. Table  summarizes the maximum vertical velocity values at
mid-height and at mid-width for different Rayleigh numbers. We use SGFEM, OGVMM,
TGVMM to denote standard Galerkin FEM, one-grid, and two-grid variational multiscale
methods, respectively. For quantitative assessment, we include those velocity values ob-
tained by [, , , ]. As can be observed, as the Rayleigh number takes values  to
, the results of two-grid variational multiscale Oseen iterative method are in excellent
agreement with the benchmark data even at coarser grid H = 

 .
Next, we present the vertical and horizontal velocity at the mid-height and mid-width in

Figure . It is obvious that as the Rayleigh numbers increase, the differences in the profiles
provided in Figure  are getting larger. These profiles are also comparable with a similar
one in [, ]. Combining with Table , we can see that the two-grid variational multiscale
Oseen iterative method is in good agreement with [, , , ].

Finally, we show the isotherms and streamlines of natural convection problem with the
two-grid variational multiscale Oseen iterative scheme (.) at different Rayleigh numbers.
We present these patterns in Figures  and . It is clear from the streamline pattern that,
as the Rayleigh number increases, the circular vortex at the cavity center begins to deform
into an ellipse and then breaks up into two vortices tending to approach to the corners of
differentially heated sides of the cavity. Therefore, we can conclude that the flow is faster
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Table 4 Comparisons of maximum velocity at y = 0.5 and x = 0.5 with different methods
(h = 1

64 , H = 1
8 )

SGFEM OGVMM TGVMM Ref. [8] Ref. [5] Ref. [24] Ref. [25]

Ra = 103

x = 0.5 3.6487 3.64869 3.64902 3.68 - 3.65 3.489
y = 0.5 3.69729 3.69777 3.69732 3.73 - 3.70 3.686

Ra = 104

x = 0.5 16.18 16.1815 16.1928 16.10 15.90 16.18 16.122
y = 0.5 19.6244 19.6317 19.6381 19.90 19.91 19.51 19.79

Ra = 105

x = 0.5 34.7186 34.8201 34.7183 34.00 33.51 34.81 33.39
y = 0.5 68.4705 68.5433 68.5738 70.00 70.60 68.22 70.63

(a) (b)

Figure 2 Comparison of velocity at the mid-width with different Rayleigh numbers. (a) vertical velocity,
(b) horizontal velocity.

(a) (b) (c) (d)

Figure 3 The streamlines of two level variational multiscale method for natural convection problem.
(a) Ra = 103, (b) Ra = 104, (c) Ra = 105, (d) Ra = 5× 105.

as the thermal convection is concentrated. With the increase of Rayleigh numbers, the
parallel behavior of temperature isolines is distorted as these lines seem to have a flat
behavior in the central part of the region. Near the sides of the cavity, isolines tend to be
vertical only. The temperature slopes with Ra =  ×  at the corners of the differentially
heated sides are more immersed than the case of lower Rayleigh number. We note that
these graphics are also perfectly comparable with the ones given in the investigations of
[, , , ]. Both the data and the graphics show the efficiency and effectiveness of the
two-grid variational multiscale method.
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(a) (b) (c) (d)

Figure 4 The isotherms of two level variational multiscale method for natural convection problem.
(a) Ra = 103, (b) Ra = 104, (c) Ra = 105, (d) Ra = 5× 105.
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