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Abstract
In this article, we study the existence of mild solutions for a new class of impulsive
stochastic partial neutral functional integro-differential equations with infinite delay
and non-instantaneous impulses in separable Hilbert spaces. The new results are
obtained by using the Hausdorff measure of noncompactness, and the theory of
analytic resolvent operators and fractional power of closed operators with the fixed
point theorems. An example is also given to illustrate the obtained theory.
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1 Introduction
The study of impulsive functional differential and integro-differential systems is linked to
their utility in simulating processes and phenomena subject to short-time perturbations
during their evolution. The perturbations are performed discretely and their duration is
negligible in comparison with the total duration of the processes and phenomena. Now
impulsive partial neutral functional differential and integro-differential systems have be-
come an important object of investigation in recent years stimulated by their numerous
applications to problems arising in mechanics, electrical engineering, medicine, biology,
ecology, etc. With regard to this matter, we refer the reader to [–] and the references
therein.

Stochastic differential equations have attracted great interest due to their applications
in characterizing many problems in physics, biology, mechanics, and so on; see []. There
are many publications in the qualitative properties of solutions for these equations (see
[–] and the references therein). As the generalization of classic impulsive differential
equations, impulsive partial stochastic differential and integro-differential equations have
been extensively studied in Hilbert spaces. For example, Sakthivel and Luo [] stud-
ied the existence and asymptotic stability in the pth moment of mild solutions to im-
pulsive stochastic partial differential equations with and without infinite delays through
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fixed point theory. Anguraj and Vinodkumar [] investigated the existence, uniqueness,
and stability of mild solutions of impulsive stochastic semilinear neutral functional dif-
ferential equations without a Lipschitz condition and with a Lipschitz condition. Hu and
Ren [] proved the existence of mild solutions for a class of impulsive neutral stochastic
functional integro-differential equations with infinite delays. Lin et al. [] discussed the
existence of mild solutions for a class of neutral impulsive stochastic integro-differential
equations with infinite delays and analytic resolvent operators. In [], the authors studied
the existence of mild solutions for a class of impulsive partial neutral stochastic integro-
differential equation with state-dependent delay. Further, Sakthivel et al. [] were con-
cerned with the existence of mild solutions for the fractional impulsive stochastic differ-
ential equations with infinite delay in Hilbert spaces. Yan and Zhang [] obtained the
existence and asymptotic stability of solutions to fractional impulsive neutral stochastic
partial integro-differential equations with state-dependent delay. Balasubramaniam et al.
[] discussed the local and global existence of mild solutions studied for impulsive frac-
tional semilinear stochastic differential equations with a nonlocal condition in a Hilbert
space. Ren et al. [] proved the existence and uniqueness of the mild solution for impul-
sive neutral stochastic functional integro-differential equations with infinite delay driven
by fBm.

In fact, for these abstract impulsive stochastic partial differential and integro-differential
equations one considers basically problems for which the impulses are abrupt and in-
stantaneous. However, many impulsive systems arising from realistic models can be de-
scribed as partial differential equations and integro-differential with non-instantaneous
impulses. The significance of the study of these equations lies in its diverse fields of ap-
plications such as in the theory of stage by stage rocket combustion, maintaining hemo-
dynamical equilibrium (see []). Recently, Hernández and O’Regan [] introduced a new
class of first order abstract impulsive differential equations for which the impulses are
not instantaneous. In the model, the impulses start abruptly at the points ti and their ac-
tion continues on a finite time interval [ti, si]. This is a situation with an impulsive action
which starts abruptly and stays active on a finite time interval. Pierri et al. [] studied
the existence of solutions for a class of first order semilinear abstract impulsive differen-
tial equations with non-instantaneous impulses by using the theory of analytic semigroup
and fractional power of closed operators. Gautam and Dabas [] established the exis-
tence, uniqueness, and continuous dependence results of mild solution fractional func-
tional integro-differential equations with non-instantaneous impulse. Yu and Wang []
discussed the existence of mild solutions for periodic boundary value problems with non-
instantaneous impulse on Banach spaces. Fu et al. [] were concerned with the exis-
tence of mild solutions for Cauchy and nonlocal problems of impulsive fractional evolu-
tion equations for which the impulses are not instantaneous. Many control systems arising
from realistic models can be described as stochastic systems with non-instantaneous im-
pulses. So it is natural to extend the concept of the existence to dynamical systems repre-
sented by these impulsive systems. Yan and Lu [] discussed a class of fractional impul-
sive partial stochastic integro-differential equations with non-instantaneous impulses in
Hilbert spaces under the Lipschitz conditions. In this paper we consider the existence of a
new class of impulsive stochastic partial neutral functional integro-differential equations
with infinite delay and non-instantaneous impulses of the form in Hilbert spaces of the
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form

d
[
x(t) – G(t, xt)

]
= A
[

x(t) +
∫ t


h(t – s)x(s) ds

]
dt + f (t, xt) dt + F(t, xt) dw(t),

t ∈ (si, ti+], i = , , . . . , N , (.)

x = ϕ ∈ B, (.)

x(t) = gi(t, xt), t ∈ (ti, si], i = , . . . , N , (.)

where the state x(·) takes values in a separable real Hilbert space H with inner product
(·, ·) and norm ‖ · ‖, and A is the infinitesimal generator of an analytic resolvent op-
erator {R(t)}t≥ in H . The history xt : (–∞, ] → H , xt(θ ) = x(t + θ ), belongs to some
abstract phase space B defined axiomatically in Section . Let K be another separable
Hilbert space with inner product (·, ·)K and norm ‖ · ‖K . Suppose {w(t) : t ≥ } is a given
K-valued Brownian motion or Wiener process with a finite trace nuclear covariance op-
erator Q >  defined on a complete probability space (�,F , P) equipped with a normal
filtration {Ft}t≥, which is generated by the Wiener process w. h(t), t ∈ [, b], and is a
bounded linear operator, and let  = t = s < t ≤ s ≤ t < · · · < tN– ≤ sN ≤ tN ≤ tN+ = b,
be prefixed numbers, gi ∈ C((ti, si] × B; H) for all i = , . . . , N , and G, f , F are given
functions to be specified later. The initial data {ϕ(t) : –∞ < t ≤ } is an F-adapted,
B-valued random variable independent of the Wiener process w with finite second mo-
ment.

The authors [–] supposed that the impulsive systems with the compactness as-
sumption on associated operators and the nonlinear function is a Lipschitz function or
is completely continuous. However, the above conditions are stronger restrictions, which
are not satisfied usually in many practical problems [, ]. We can use a measure of non-
compactness to remove the assumptions for the compactness of the operator and Lipschitz
continuity of the nonlinear item. To the best of our knowledge, there are no relevant re-
ports on the impulsive stochastic differential equations with non-instantaneous impulses
via the techniques of the measure of noncompactness. This is one of our motivations.

In this article, we shall study the existence of mild solutions of (.)-(.) by using the
Hausdorff measure of noncompactness, the Darbo fixed point theorem, Darbo-Sadovskii
fixed point theorem with the theory of analytic resolvent operators and fractional power
of closed operators. We do not assume {R(t), t ≥ } is a compact semigroup, and in-
stead we assume that f , F satisfy a compactness condition involving the Hausdorff mea-
sure of noncompactness. Thus the compactness of R(t) or f , F and the Lipschitz con-
dition of f , F are the special cases of our conditions. The known results appearing in
[–] are generalized to the impulsive stochastic systems settings and the case of in-
finite delay without the assumptions of compactness. The nonlinear integro-differential
equation with resolvent operators serves as an abstract formulation of partial integro-
differential equations which arises in many physical phenomena [–]. The resol-
vent operator is similar to the semigroup operator for abstract differential equations in
Banach spaces. However, the resolvent operator does not satisfy the semigroup prop-
erties. Our main results can be seen as a generalization of the work in [–] and
the above mentioned equations with non-instantaneous impulses. Moreover, motivated
by the results, we see the direct issues which require further study. For instance, we
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will investigate the qualitative properties of solutions for a new class of impulsive par-
tial stochastic differential systems with non-instantaneous impulses by using resolvent
operators, such as controllability, approximate controllability, optimal control, and sta-
bility. Also, we will address the study of the existence and qualitative analysis of solu-
tions of impulsive partial stochastic differential inclusions with non-instantaneous im-
pulses.

The rest of this paper is organized as follows. In Section , we introduce some notations
and necessary preliminaries. In Section , we give our main results. In Section , an ex-
ample is given to illustrate our results. Finally, concluding remarks are given in Section .

2 Preliminaries
Let (�,F , P) be a complete probability space equipped with a normal filtration Ft , t ∈
[, b]. Let H and K be separable Hilbert spaces, L(K , H) be the space of linear operators
mapping K into H , and L(K , H) be the space of bounded linear operators mapping K into
H equipped with the usual norm ‖ · ‖H , L(H) denote the Hilbert space of bounded lin-
ear operators from H to H , and w be a Q-Weiner process on (�,Fb, P) with the covari-
ance operator Q such that Tr Q < ∞. We assume that there exists a complete orthonormal
system {en}∞n= in K , a bounded sequence of nonnegative real numbers {λn}∞n= such that
Qen = λnen, and a sequence βn of independent Brownian motions such that

〈
w(t), e

〉
=

∞∑

n=

√
λn〈en, e〉βn(t), e ∈ K , t ∈ [, b],

and Ft = Fw
t , where Fw

t is the σ -algebra generated by {w(s) :  ≤ s ≤ t}. Let L
 =

L(Q/K ; H) be the space of all Hilbert-Schmidt operators from Q/K to H with the inner
product (ψ , θ̃ )L


= Tr(ψQθ̃∗).

The collection of all strongly measurable, square integrable, H-valued random variables,
denoted by L(�, H), is a Banach space equipped with norm ‖x(·)‖L = (E‖x(·, w)‖) 

 ,
where the expectation, E, is defined by Ex =

∫
�

x(w) dP. Let C([, b], L(�, H)) be the
Banach space of all continuous maps from J into L(�, H) satisfying the condition
sup≤t≤b E‖x(t)‖ < ∞. Let L

(�, H) denote the family of all F-measurable, H-valued
random variables x(). The notation, Br(x, H) stands for the closed ball with center at x
and radius r >  in H .

In this paper, we assume that the phase space (B,‖ · ‖B) is a seminormed linear space of
F-measurable functions mapping (–∞, ] into H , satisfying the following fundamental
axioms due to Hale and Kato (see, e.g., []).

(A) If x : (–∞,σ + b] → H , b > , is such that x|[σ ,σ+b] ∈ C([σ ,σ + b], H) and xσ ∈ B,
then for every t ∈ [σ ,σ + b] the following conditions hold:

(i) xt is in B;
(ii) ‖x(t)‖ ≤ H̃‖xt‖B ;

(iii) ‖xt‖B ≤ K(t – σ ) sup{‖x(s)‖ : σ ≤ s ≤ t} + M(t – σ )‖xσ‖B , where H̃ >  is a
constant; K , M : [,∞) → [,∞), K is continuous and M is locally bounded,
and H̃ , K , M are independent of x(·).

(B) For the function x(·) in (A), the function t → xt is continuous from [σ ,σ + b] into B.
(C) The space B is complete.
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Remark . ([]) Let ϕ ∈ B and t ≤ . The notation ϕt represents the function defined
by ϕt = ϕ(t + θ ). Consequently, if the function x(·) in axiom (A) is such that x = ϕ, then
xt = ϕt . We observe that ϕt is well defined for t <  since the domain of ϕ is (–∞, ].

Remark . ([]) In retarded functional differential equations without impulses, the ax-
ioms of the abstract phase space B include the continuity of the function t → xt . Due to
the impulsive effect, this property is not satisfied in impulsive delay systems and, for this
reason, has been eliminated in our abstract description of B.

The next result is a consequence of the phase space axioms.

Lemma . (Compare with []) Let x : (–∞, b] → H be an Ft-adapted measurable pro-
cess such that the F-adapted process x = ϕ(t) ∈ L

(�,B) and x|[,b] ∈PC([, b], H), then

‖xs‖B ≤ MbE‖ϕ‖B + Kb sup
≤s≤b

E
∥∥x(s)

∥∥,

where Kb = sup{K(t) :  ≤ t ≤ b}, Mb = sup{M(t) :  ≤ t ≤ b}.

We introduce the space PC formed by all Ft-adapted measurable, H-valued stochastic
processes {x(t) : t ∈ [, b]} such that x is continuous at t �= ti, x(ti) = x(t–

i ) and x(t+
i ) exist for

all i = , . . . , N . In this paper, we always assume that PC is endowed with the norm

‖x‖PC =
(

sup
≤t≤b

E
∥∥x(t)

∥∥
) 

 .

Then (PC,‖ · ‖PC) is a Banach space. The notation Br(x, H) stands for the closed ball with
center at x and radius r >  in H .

Lemma . ([, ]) A family of bounded linear operators R(t) ∈ L(H) is called a resolvent
operator for

dx
dt

= A
[

x(t) +
∫ t


h(t – s)x(s) ds

]
,

if
(i) R() = I the identity operator on H ;

(ii) for all x ∈ H , R(t)x is continuous for t ∈ [, b];
(iii) R(t) ∈ L(X), t ∈ J , where X is the Banach space formed from D(R) endowed with the

graph norm. For y ∈ X , R(·)y ∈ C(J , H) ∩ C(J , X) and

dx
dt

R(t)y = A
[

R(t)y +
∫ t


h(t – s)R(s)y ds

]

= R(t)Ay +
∫ t


R(t – s)Ah(s)y ds, t ∈ J .

Let  ∈ ρ(A), Then it is possible to define the fractional power (–A)α for  < α ≤ , as a
closed linear operator on its domain D((–A)α) with inverse (–A)–α . Furthermore, the sub-
space D((–A)α) is dense in H and the expression ‖x‖α = ‖(–A)αx‖ for x ∈ D((–A)α). De-
fines a norm on D((–A)α). Hereafter we denote by Hα the Banach space D((–A)α) normed
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with ‖ · ‖α . Then, for each  < α ≤ , Hα is a Banach space. Furthermore, the following
properties are well known.

Lemma . ([]) The following properties hold:
(i) If  < β < α ≤ , then Hα ⊂ Hβ and the embedding is compact whenever the resolvent

operator of A is compact.
(ii) For each  < α ≤ , there exists a positive constant Mα such that

∥
∥(–A)αR(t)

∥
∥≤ Mα

tα
.

Definition . AnFt-adapted stochastic process x : (–∞, b] → H is called a mild solution
of the system (.)-(.) if x = ϕ ∈ B satisfying x ∈ L

(�, H), x|[,b] ∈ PC, for each t ∈
[, b], the function AR(t – s)G(s, xs), s ∈ [, t) is integrable and x(t) = gj(t, x(t)) for all t ∈
(tj, sj], j = , . . . , N , and

x(t) = R(t)
[
ϕ() – G(,ϕ)

]
+ G(t, xt) +

∫ t


AR(t – s)G(s, xs) ds

+
∫ t


AR(t – s)

∫ s


h(s – τ )G(τ , xτ ) dτ ds +

∫ t


R(t – s)f (s, xs) ds

+
∫ t


R(t – s)F(s, xs) dw(s)

for all t ∈ [, t] and

x(t) = R(t – si)
[
gi
(
si, x(si)

)
– G(si, xsi )

]
+ G(t, xt) +

∫ t

si

AR(t – s)G(s, xs) ds

+
∫ t

si

AR(t – s)
∫ s

si

h(s – τ )G(τ , xτ ) dτ ds +
∫ t

si

R(t – s)f (s, xs) ds

+
∫ t

si

R(t – s)F(s, xs) dw(s)

for all t ∈ (si, ti+], i = , . . . , N .

Now, we introduce the Hausdorff measure of noncompactness χY defined by

χY (B) = inf{ε > ; B has a finite ε-net in H}

for a bounded set B in any Hilbert space Y . Some basic properties of χY (·) are given in the
following lemma.

Lemma . ([]) Let Y be a real Hilbert space and B, C ⊆ Y be bounded, and the following
properties are satisfied:

() B is pre-compact if and only if χY (B) = ;
() χY (B) = χY (B) = χY (conv B), where B and conv B are the closure and the convex hull

of B, respectively;
() χY (B) ≤ χY (C) when B ⊆ C;
() χY (B + C) ≤ χY (B) + χY (C) where B + C = {x + y : x ∈ B, y ∈ C};
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() χY (B ∪ C) = max{χY (B),χY (C)};
() χY (λB) ≤ |λ|χY (B) for any λ ∈R;
() if the map � : D(�) ⊆ Y → Z is Lipschitz continuous with constant κ then

χZ(�B) ≤ κχY (B) for any bounded subset B ⊆ D(�), where Z is a Banach space;
() if {Wn}∞n= is a decreasing sequence of bounded closed nonempty subset of Y and

limn→∞ χY (Wn) = , then
⋂∞

n= Wn is nonempty and compact in Y .

Definition . ([]) The map � : W ⊆ Y → Y is said to be a χY -contraction if there
exists a positive constant κ <  such that χY (�(C)) ≤ κχY (C) for any bounded close subset
C ⊆ W where Y is a Banach space.

In this paper we denote by χC the Hausdorff measure of noncompactness of C([, b], H)
and by χPC the Hausdorff measure of noncompactness of PC . To discuss the existence we
need the following results.

Lemma . ([]) If W ⊂ C([a, b]) is bounded, then χ (W (t)) ≤ χC(W ), for any t ∈ [a, b],
where W (t) = {u(t) : u ∈ W ⊆ X}. Furthermore, if W is equicontinuous on [a, b], then W (t)
is continuous for t ∈ [a, b], and χC(W ) = sup{W (t) : t ∈ [a, b]}.

Lemma . ([]) If W ⊂ C([a, b], H) is bounded and equicontinuous, then χ (W (t))
is continuous for t ∈ [a, b], and χ (

∫ t
a W (s) ds) ≤ ∫ t

a χ (W (s)) ds for all t ∈ [a, b], where
∫ t

a W (s) ds = {∫ t
a x(s) ds : x ∈ W }.

Obviously, the following lemma holds.

Lemma . If W ⊂ PC([, b], H) is bounded, then χ (W (t)) ≤ χPC(W ), for any t ∈ [, b],
where W (t) = {u(t) : u ∈ W ⊆ H}. Furthermore, if W is piecewise equicontinuous on [, b],
then W (t) is continuous for t ∈ [, b], and χPC(W ) = sup{W (t) : t ∈ [, b]}.

Proof Let W ⊂ PC , and W = (
⋃N

i= Wi) ∪ (
⋃N

i= Ui), where Wi ⊂ C(J i, X), J i = [si, ti+], i =
, , . . . , N , and Ui ⊂ C(Ii, X), Ii = [ti, si], i = , . . . , N . Using Lemmas . and ., we have

χ
(
W (t)

)
= χ

(( N⋃

i=

Wi(t)

)

∪
( N⋃

i=

Ui(t)

))

= max
{
max

{
χ
(
Wi(t)

)
: i = , , . . . , N

}
, max

{
χ
(
Ui(t)

)
: i = , . . . , N

}}

≤ max
{
max

{
χC(Wi) : i = , , . . . , N

}
, max

{
χC(Ui) : i = , . . . , N

}}

= max
{
max

{
χPC(Wi) : i = , , . . . , N

}
, max

{
χPC(Ui) : i = , . . . , N

}}

= max

{

χPC

( N⋃

i=

Wi

)

,χPC

( N⋃

i=

Ui

)}

= χPC

(( N⋃

i=

Wi

)

∪
( N⋃

i=

Ui

))

= χPC(W ).
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From Lemma ., if W is piecewise equicontinuous on [, b], then W (t) is continuous for
t ∈ [, b]. In addition, we have

χPC(W ) = max
{
max

{
χPC(Wi) : i = , , . . . , N

}
, max

{
χPC(Ui) : i = , . . . , N

}}

= max
{
max

{
sup
{
χ
(
Wi(t)

)
, t ∈ J i : i = , , . . . , N

}}
,

max
{
sup
{
χ
(
Ui(t)

)
, t ∈ Ii : i = , . . . , N

}}}

= max
{
sup
{
χ
(
W (t)

)
, t ∈ [, b]

}}
= sup

{
χ
(
W (t)

)
, t ∈ [, b]

}
. �

Lemma . (Darbo []) If W ⊆ Y is closed and convex and  ∈ W , the continuous map
� : W → W is a χY -contraction, if the set {x ∈ W : x = λ�x} is bounded for  < λ < , then
the map � has at least one fixed point in W .

Lemma . (Darbo-Sadovskii []) If W ⊆ Y is bounded closed and convex, the contin-
uous map � : W → W is a χY -contraction, then the map � has at least one fixed point
in W .

3 Main results
In this section we shall present and prove our main results. For some α ∈ (, ), let us list
the following hypotheses.

(H) The analytic resolvent operator R(t) generated by A, and there exist constants M,
M such that ‖R(t)‖L(H) ≤ M, ‖h(t)‖L(H) ≤ M for every t ≥ .

(H) There exist positive constants β ∈ ( 
 , ), L, L, L such that the function G is

Hβ -valued, (–A)βG is continuous and

E
∥∥(–A)βG(t,ψ) – (–A)βG(t,ψ)

∥∥ ≤ L‖ψ – ψ‖
B , t ∈ [, b],ψ,ψ ∈ B,

E
∥∥(–A)βG(t,ψ)

∥∥ ≤ L‖ψ‖
B + L, t ∈ [, b],ψ ∈ B.

(H) The function f : [, b] ×B → H satisfies the following conditions:
(i) For each t ∈ [, b], the function f (t, ·) : B → H is continuous and for each

x ∈ B, the function f (·,ψ) : [, b] → H is strongly measurable.
(ii) There exist an integrable function mf : [, b] → [,∞) and a continuous

nondecreasing function �f : [,∞) → (,∞) such that

E
∥∥f (t,ψ)

∥∥ ≤ mf (t)�f
(‖ψ‖

B
)
, t ∈ [, b],ψ ∈ B.

(iii) There exists an integrable function ζf : [, b] → [,∞) such that, for each
bounded D ⊂ B,

χ
(
f (t, D)

)≤ ζf (t) sup
–∞<θ≤

χ
(
D(θ )

)

for a.e. t ∈ [, b], where D(θ ) = {u(θ ) : u ∈ D}.
(H) The function F : [, b] ×B → L(K , H) satisfies the following conditions:

(i) For each t ∈ [, b], the function F(t, ·) : B → L(K , H) is continuous and for
each x ∈ B, the function F(·,ψ) : [, b] → L(K , H) is strongly measurable.
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(ii) There exist an integrable function mF : [, b] → [,∞) and a continuous
nondecreasing function �F : [,∞) → (,∞) such that

E
∥∥F(t,ψ)

∥∥ ≤ mF (t)�F
(‖ψ‖

B
)
, t ∈ [, b],ψ ∈ B.

(iii) There exists a square integrable function ζF : [, b] → [,∞) such that, for
each bounded D ⊂ B,

χ
(
F(t, D)

)≤ ζF (t) sup
–∞<θ≤

χ
(
D(θ )

)

for a.e. t ∈ [, b], where D(θ ) = {u(θ ) : u ∈ D}.
(H) The functions gi : (ti, si] ×B → H , i = , . . . , N , are continuous, and they satisfy the

following conditions:
(i) There exist constants ci, di > , i = , . . . , N , such that

E
∥
∥gi(t,ψ)

∥
∥ ≤ ci‖ψ‖

B + di, t ∈ (ti, si],ψ ∈ B.

(ii) There exist constants γi >  such that, for each bounded D ⊂ B,

χ
(
gi(t, D)

)≤ γi sup
–∞<θ≤

χ
(
D(θ )

)

for a.e. t ∈ (ti, si], i = , . . . , N , where D(θ ) = {u(θ ) : u ∈ D}, and

max
≤i≤N

{
Kb

(
L
[(

 + M)∥∥(–A)–β
∥
∥ + M

–β

(
 + M

 b) bβ

β – 

]) 


+ (M + )γi + M
∫ b


ζf (s) ds + M

(
Tr(Q)

∫ b


ζ 

F (s) ds
) 


}

< . (.)

(H) For every bounded set � ⊂ B, the set {t → gi(t, xt) : xt ∈ �}, i = , . . . , N , is
equicontinuous in B.

Theorem . If the assumptions (H)-(H) are satisfied, then the system (.)-(.) has at
least one mild solution on [, b], provided that

∫ ∞




�f (s) + �F (s)

ds = ∞ (.)

and

max
≤i≤N

{
K

b

((
 + M)ci +

[(
 + M)∥∥(–A)–β

∥
∥

+ M
–β

(
 + M

 b) bβ

β – 

]
L

)}
< . (.)

Proof We introduce the space Bb of all functions x : (–∞, b] → H such that x ∈ B and
the restriction x|[,b] ∈PC. Let ‖ · ‖b be a seminorm in Bb defined by

‖x‖b = ‖x‖B +
(

sup
≤t≤b

E
∥
∥x(t)

∥
∥
) 

 , x ∈ Bb.
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We consider the operator � : Bb → Bb defined by

(�x)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(t), t ∈ (–∞, ],
R(t)[ϕ() – G(,ϕ)] + G(t, xt)

+
∫ t

 AR(t – s)G(s, xs) ds
+
∫ t

 AR(t – s)
∫ s

 h(s – τ )G(τ , xτ ) dτ ds
+
∫ t

 R(t – s)f (s, xs) ds
+
∫ t

 R(t – s)F(s, xs) dw(s), t ∈ [, t], i = ,
gi(t, xt), t ∈ (ti, si], i ≥ ,
R(t – si)[gi(si, xsi ) – G(si, xsi )] + G(t, xt)

+
∫ t

si
AR(t – s)G(s, xs) ds

+
∫ t

si
AR(t – s)

∫ s
 h(s – τ )G(τ , xτ ) dτ ds

+
∫ t

si
R(t – s)f (s, xs) ds

+
∫ t

si
R(t – s)F(s, xs) dw(s), t ∈ (si, ti+], i ≥ .

From Lemma . and (H), the following inequality holds:

E
∥
∥∥
∥

∫ t

si

AR(t – s)G(s, xs) ds
∥
∥∥
∥



≤ b
∫ t

si

∥∥(–A)–βR(t – s)
∥∥E
∥∥(–A)βG(s, xs)

∥∥ ds

≤ bM
–β

∫ t

si

(t – s)–(–β)(L‖xs‖
B + L

)
ds

≤ M
–β

bβ

β – 

(
L sup

s∈[,b]
‖xs‖

B + L

)
.

Then from the Bochner theorem, it follows that ASα(t – s)G(s, xs) is integrable on (si, t),
i = , , . . . , N .

For ϕ ∈ B, we define ϕ̃ by

ϕ̃(t) =

{
ϕ(t), –∞ < t ≤ ,
R(t)ϕ(),  ≤ t ≤ b,

then ϕ̃ ∈ Bb. Set x(t) = y(t) + ϕ̃(t), –∞ < t ≤ b. It is clear that x satisfies Definition . if and
only if y satisfies y =  and

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–R(t)G(,ϕ) + G(t, yt + ϕ̃t)
+
∫ t

 AR(t – s)G(s, ys + ϕ̃s) ds
+
∫ t

 AR(t – s)
∫ s

 h(s – τ )G(τ , yτ + ϕ̃τ ) dτ ds
+
∫ t

 R(t – s)f (s, ys + ϕ̃s) ds
+
∫ t

 R(t – s)F(s, ys + ϕ̃s) dw(s), t ∈ [, t], i = ,
gi(t, yt + ϕ̃t), t ∈ (ti, si], i ≥ ,
R(t – si)[gi(si, ysi + ϕ̃si ) – G(si, ysi + ϕ̃si )]

+ G(t, yt + ϕ̃t) +
∫ t

si
AR(t – s)G(s, ys + ϕ̃s) ds

+
∫ t

si
AR(t – s)

∫ s
 h(s – τ )G(τ , yτ + ϕ̃τ ) dτ ds

+
∫ t

si
R(t – s)f (s, ys + ϕ̃s) ds

+
∫ t

si
R(t – s)F(s, ys + ϕ̃s) dw(s), t ∈ [si, ti+], i ≥ .
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Let B
b = {y ∈ Bb : y =  ∈ B}. For any y ∈ B

b ,

‖y‖b = ‖y‖B +
(

sup
≤t≤b

E
∥∥y(t)

∥∥
) 

 =
(

sup
≤t≤b

E
∥∥y(t)

∥∥
) 

 . (.)

By (.), it follows that (B
b ,‖·‖b) is a Banach space. For y ∈ Br(,B

b ) = {y ∈ B
b : E‖y‖ ≤ r},

from Lemma ., we have

‖yt + ϕ̃t‖
B ≤ 

(‖yt‖
B + ‖ϕ̃t‖

B
)

≤ 
[

K
b E
(

sup
≤s≤b

∥∥y(s)
∥∥
)

+ M
bE‖y‖

B + K
b E
(

sup
≤s≤b

∥∥ϕ̃(s)
∥∥
)

+ M
b‖ϕ̃‖

B

]

≤ 
[

K
b sup

≤s≤b
E
∥∥y(s)

∥∥ + K
b ME

∥∥ϕ()
∥∥ + M

b‖ϕ‖
B

]

≤ 
[
K

b r +
(
K

b MH̃ + M
b
)‖ϕ‖

B
]

= r∗, t ∈ [, b]. (.)

Define the map �̄ : B
b → B

b defined by (�̄y)(t) = , t ∈ (–∞, ] and

(�̄y)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–R(t)G(,ϕ) + G(t, yt + ϕ̃t)
+
∫ t

 AR(t – s)G(s, ys + ϕ̃s) ds
+
∫ t

 AR(t – s)
∫ s

 h(s – τ )G(τ , yτ + ϕ̃τ ) dτ ds
+
∫ t

 R(t – s)f (s, ys + ϕ̃s) ds
+
∫ t

 R(t – s)F(s, ys + ϕ̃s) dw(s), t ∈ [, t], i = ,
gi(t, yt + ϕ̃t), t ∈ (ti, si], i ≥ ,
R(t – si)[gi(si, ysi + ϕ̃si ) – G(si, ysi + ϕ̃si )]

+ G(t, yt + ϕ̃t) +
∫ t

si
AR(t – s)G(s, ys + ϕ̃s) ds

+
∫ t

si
AR(t – s)

∫ s
 h(s – τ )G(τ , yτ + ϕ̃τ ) dτ ds

+
∫ t

si
R(t – s)f (s, ys + ϕ̃s) ds

+
∫ t

si
R(t – s)F(s, ys + ϕ̃s) dw(s), t ∈ [si, ti+], i ≥ .

Obviously, the operator � has a fixed point if and only if operator �̄ has a fixed point,
to prove it we shall employ Lemma .. For better readability, we break the proof into a
sequence of steps.

Step . For  < λ < , set {y ∈PC : y = λ�̄y} is bounded.
Let yλ be a solution of y = λ�̄y for  < λ < . Using Lemma ., we obtain, for all t ∈ [, b],

sup
≤s≤t

‖yλt + ϕ̃t‖
B ≤ 

[
K

b E‖yλ‖
t +
(
K

b MH̃ + M
b
)‖ϕ‖

B
]
,

where ‖yλ‖t = sup≤s≤t ‖yλ(s)‖. Consider the function vλ defined by

vλ(t) = 
[
K

b E‖yλ‖
t +
(
K

b MH̃ + M
b
)‖ϕ‖

B
]
,  ≤ t ≤ b.

Then, by (H)-(H), from the above equation, we have, for t ∈ [, t],

E
∥∥yλ(t)

∥∥ ≤ E
∥∥R(t)G(,ϕ)

∥∥ + E
∥∥G(t, yλt + ϕ̃t)

∥∥

+ E
∥∥
∥∥

∫ t


AR(t – s)G(s, yλs + ϕ̃s) ds

∥∥
∥∥
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+ E
∥
∥∥
∥

∫ t


AR(t – s)

∫ s


h(s – τ )G(τ , yλτ + ϕ̃τ ) dτ ds

∥
∥∥
∥



+ E
∥
∥∥
∥

∫ t


R(t – s)f (s, yλs + ϕ̃s) ds

∥
∥∥
∥



+ E
∥
∥∥∥

∫ t


R(t – s)F(s, yλs + ϕ̃s) dw(s)

∥
∥∥∥



≤ M∥∥(–A)–β
∥∥(L‖ϕ‖

B + L
)

+
∥∥(–A)–β

∥∥(Lvλ(t) + L
)

+ M
–β t

∫ t


(t – s)–(–β)(Lvλ(s) + L

)
ds

+ M
–βM

 t


∫ t


(t – s)–(–β)

∫ s



(
Lvλ(τ ) + L

)
dτ ds

+ Mt

∫ t


mf (s)�f

(
vλ(s)

)
ds

+ M Tr(Q)
∫ t


mF (s)�F

(
vλ(s)

)
ds.

For any t ∈ (ti, si], i = , . . . , N , we have

E
∥
∥yλ(t)

∥
∥ = E

∥
∥gi(t, yt + ϕ̃t)

∥
∥ ≤ civλ(t) + di.

Similarly, for any t ∈ (si, ti+], i = , . . . , N , we have

E
∥∥yλ(t)

∥∥ ≤ E
∥∥R(t – si)

[
gi(si, yλsi + ϕ̃si ) – G(si, yλsi + ϕ̃si )

]∥∥

+ E
∥
∥G(t, yλt + ϕ̃t)

∥
∥ + E

∥∥
∥∥

∫ t

si

AR(t – s)G(s, yλs + ϕ̃s) ds
∥∥
∥∥



+ E
∥∥
∥∥

∫ t

si

AR(t – s)
∫ s


h(s – τ )G(τ , yλτ + ϕ̃τ ) dτ ds

∥∥
∥∥



+ E
∥∥
∥∥

∫ t

si

R(t – s)f (s, yλs + ϕ̃s) ds
∥∥
∥∥



+ E
∥∥
∥∥

∫ t

si

R(t – s)F(s, yλs + ϕ̃s) dw(s)
∥∥
∥∥



≤ M[civλ(si) + di +
∥∥(–A)–β

∥∥(Lvλ(si) + L
)]

+ 
∥∥(–A)–β

∥∥(Lvλ(t) + L
)

+ M
–β (ti+ – si)

∫ t

si

(t – s)–(–β)(Lvλ(s) + L
)

ds

+ M
–βM

 (ti+ – si)
∫ t


(t – s)–(–β)

∫ s

si

(
Lvλ(τ ) + L

)
dτ ds

+ M(ti+ – si)
∫ t

si

mf (s)�f
(
vλ(s)

)
ds

+ M Tr(Q)
∫ t

si

mF (s)�F
(
vλ(s)

)
ds.
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Then, for all t ∈ [, b], we have

E
∥
∥yλ(t)

∥
∥ ≤ M∗ + civλ(t) + M[civλ(t) +

∥
∥(–A)–β

∥
∥Lvλ(t)

]

+ 
∥∥(–A)–β

∥∥Lvλ(t)

+ M
–βb

∫ t


(t – s)–(–β)Lvλ(s) ds

+ M
–βM

 b
∫ t


(t – s)–(–β)

∫ s


Lvλ(τ ) dτ ds

+ Mb
∫ t


mf (s)�f

(
vλ(s)

)
ds

+ M Tr(Q)
∫ t


mF (s)�F

(
vλ(s)

)
ds,

where

M∗ = max
≤i<N

{
M∥∥(–A)–β

∥
∥(L‖ϕ‖

B + L
)

+
(
 + M)di

+
[
(
 + M)∥∥(–A)–β

∥∥ + M
–β

(
 + M

 b) bβ

β – 

]
L

}
.

It is easy to see that

vλ(t) ≤ 
[
K

b M∗ +
(
K

b MH̃ + M
b
)‖ϕ‖

B
]

+ K
b

(
(
 + M)ci

+
[(

 + M)∥∥(–A)–β
∥
∥ + M

–β

(
 + M

 b) bβ

β – 

]
L

)
vλ(t)

+ K
b Mb

∫ t


mf (s)�f

(
vλ(s)

)
ds

+ K
b M Tr(Q)

∫ t


mF (s)�F

(
vλ(s)

)
ds.

By (.), we have

L∗ = max
≤i≤N

{
K

b

((
 + M)ci +

[(
 + M)∥∥(–A)–β

∥
∥

+ M
–β

(
 + M

 b) bβ

β – 

]
L

)}
< ,

and hence

vλ(t) ≤ [K
b M∗ + (K

b MH̃ + M
b)‖ϕ‖

B]
 – L∗

+
K

b Mb
 – L∗

∫ t


mf (s)�f

(
vλ(s)

)
ds

+
K

b M Tr(Q)
 – L∗

∫ t


mF (s)�F

(
vλ(s)

)
ds.
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Denoting by ηλ(t) the right-hand side of the above inequality, we have vλ(t) ≤ ηλ(t) for all
t ∈ [, b], and

ηλ() =
[K

b M∗ + (K
b MH̃ + M

b)‖ϕ‖
B]

 – L∗ ,

η′
λ(t) ≤ K

b Mb
 – L∗ mf (t)�f

(
ηλ(t)

)
+

K
b M Tr(Q)
 – L∗ mF (t)�F

(
ηλ(t)

)

≤ max

{
K

b Mb
 – L∗ mf (t),

K
b M Tr(Q)
 – L∗ mF (t)

}[
�f
(
ηλ(t)

)
+ �F

(
ηλ(t)

)]
.

This implies that

∫ ηλ(t)

ηλ()

ds
�f (s) + �F (s)

≤
∫ b


max

{
K

b Mb
 – L∗ mf (t),

K
b M Tr(Q)
 – L∗ mF (t)

}
dt < ∞.

Using (.), this inequality shows that the functions ηλ(t) are bounded on [, b]. Thus, the
functions vλ(t) are bounded on [, b], and yλ(·) are bounded on [, b].

Step . �̄ : B
b → B

b is continuous.
Let {y(n)}∞n= ⊆ B

b with y(n) → y (n → ∞) in B
b . Then there is a number r >  such that

‖y(n)(t)‖ ≤ r for all n and a.e. t ∈ [, b], so y(n) ∈ Br(,B
b ) and y ∈ Br(,B

b ). Again, similarly
to (.), we have ‖y(n)

t + ϕ̃t‖B ≤ r∗, t ∈ [, b]. Furthermore, from axiom (A), we know that

∥∥y(n)
t – yt

∥∥
B ≤ K(t) sup

{∥∥yn(s) – y(s)
∥∥ :  ≤ s ≤ t

}
+ M(t)

∥∥y(n)
 – y

∥∥
B

= K(t) sup
{∥∥yn(s) – y(s)

∥
∥ :  ≤ s ≤ t

}

≤ Kb
∥∥yn – y

∥∥
b →  (n → ∞), t ∈ [, b].

Thus, by (H) and (H), we see that, for t ∈ [, b],

f
(
t, y(n)

t + ϕ̃t
)→ f (t, yt + ϕ̃t) as n → ∞,

F
(
t, y(n)

t + ϕ̃t
)→ F(t, yt + ϕ̃t) as n → ∞

for each t ∈ [, b], and since

E
∥∥f
(
t, y(n)

t + ϕ̃t
)

– f (t, yt + ϕ̃t)
∥∥ ≤ �f

(
r∗)mf (t),

E
∥∥F
(
t, y(n)

t + ϕ̃t
)

– F(t, yt + ϕ̃t)
∥∥ ≤ �F

(
r∗)mF (t).

In view of (H)-(H) and by the dominated convergence theorem we have, for t ∈ [, t],

E
∥∥(�̄y(n))(t) – (�̄y)(t)

∥∥

≤ 
∥∥(–A)–β

∥∥E
∥∥(–A)βG

(
t, y(n)

t + ϕ̃t
)

– (–A)βG(t, yt + ϕ̃t)
∥∥

+ M
–β t

∫ t


(t – s)–(–β)E

∥∥(–A)βG
(
s, y(n)

s + ϕ̃s
)

– (–A)βG(s, ys + ϕ̃s)
∥∥ ds

+ M
–βM

 t


∫ t


(t – s)–(–β)

∫ s


E
∥
∥(–A)βG

(
τ , y(n)

τ + ϕ̃τ

)
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– (–A)βG(τ , yτ + ϕ̃τ )
∥∥ dτ ds

+ Mt

∫ t


E
∥∥f
(
s, y(n)

s + ϕ̃s
)

– f (s, ys + ϕ̃s)
∥∥ ds

+ M Tr(Q)
∫ t


E
∥
∥F
(
s, y(n)

s + ϕ̃s
)

– F(s, ys + ϕ̃s)
∥
∥ ds →  as n → ∞.

For any t ∈ (ti, si], i = , . . . , N , we have

E
∥
∥(�̄y(n))(t) – (�̄y)(t)

∥
∥ = E

∥
∥gi
(
t, y(n)

t + ϕ̃t
)

– gi(t, yt + ϕ̃t)
∥
∥ →  as n → ∞.

Similarly, for any t ∈ (si, ti+], i = , . . . , N , we have

E
∥
∥(�̄y(n))(t) – (�̄y)(t)

∥
∥

≤ M
[
E
∥
∥gi
(
si, y(n)

si
+ ϕ̃si

)
– gi(si, ysi + ϕ̃si )

∥
∥

+
∥
∥(–A)–β

∥
∥E
∥
∥(–A)βG

(
si, y(n)

si
+ ϕ̃si

)
– (–A)βG(si, ysi + ϕ̃si )

∥
∥]

+ 
∥∥(–A)–β

∥∥E
∥∥(–A)βG

(
t, y(n)

t + ϕ̃t
)

– (–A)βG(t, yt + ϕ̃t)
∥∥

+ M
–β (ti+ – si)

∫ t

si

(t – s)–(–β)E
∥
∥(–A)βG

(
s, y(n)

s + ϕ̃s
)

– (–A)βG(s, ys + ϕ̃s)
∥∥ ds

+ M
–βM

 (ti+ – si)
∫ t

si

(t – s)–(–β)
∫ s


E
∥∥(–A)βG

(
τ , y(n)

τ + ϕ̃τ

)

– (–A)βG(τ , yτ + ϕ̃τ )
∥
∥ dτ ds

+ M(ti+ – si)
∫ t

si

E
∥
∥f
(
s, y(n)

s + ϕ̃s
)

– f (s, ys + ϕ̃s)
∥
∥ ds

+ M Tr(Q)
∫ t

si

E
∥
∥F
(
s, y(n)

s + ϕ̃s
)

– F(s, ys + ϕ̃s)
∥
∥ ds →  as n → ∞.

Then

∥∥�̄y(n) – �̄y
∥∥

b →  as n → ∞.

Thus �̄ is continuous.
Step . �̄ maps bounded sets into bounded sets in B

b .
Indeed, it is enough to show that there exists a positive constant L such that each y ∈

Br(,B
b ), one has E‖�̄y‖ ≤L. For t ∈ [, t], we have

E
∥
∥(�̄y)(t)

∥
∥ ≤ M∥∥(–A)–β

∥
∥(L‖ϕ‖

B + L
)

+
∥
∥(–A)–β

∥
∥(L‖yt + ϕ̃t‖

B + L
)

+ M
–β t

∫ t


(t – s)–(–β)(L‖ys + ϕ̃s‖

B + L
)

ds

+ M
–βM

 t


∫ t


(t – s)–(–β)

∫ s



(
L‖yτ + ϕ̃τ‖

B + L
)

dτ ds

+ Mt

∫ t


mf (s)�f

(‖ys + ϕ̃s‖
B
)

ds
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+ M Tr(Q)
∫ t


mF (s)�F

(‖ys + ϕ̃s‖
B
)

ds

≤ M∥∥(–A)–β
∥∥(L‖ϕ‖

B + L
)

+
∥∥(–A)–β

∥∥(Lr∗ + L
)

+ M
–β

(
 + M

 t

) tβ


β – 

(
Lr∗ + L

)

+ Mt�f
(
r∗)
∫ t


mf (s) ds + M Tr(Q)�F

(
r∗)
∫ t


mF (s) ds := L.

For any t ∈ (ti, si], i = , . . . , N , we have

E
∥∥(�̄y)(t)

∥∥ ≤ ci‖yt + ϕ̃t‖
B + di ≤ cir∗ + di := Ki.

Similarly, for any t ∈ (si, ti+], i = , . . . , N , we have

E
∥
∥(�̄y)(t)

∥
∥ ≤ M[ci‖ysi + ϕ̃si‖

B + di +
∥
∥(–A)–β

∥
∥(L‖ysi + ϕ̃si‖

B + L
)]

+ 
∥∥(–A)–β

∥∥(L‖yt + ϕ̃t‖
B + L

)

+ M
–β (ti+ – si)

∫ t

si

(t – s)–(–β)(L‖ys + ϕ̃s‖
B + L

)
ds

+ M
–βM

 (ti+ – si)
∫ t


(t – s)–(–β)

∫ s

si

(
L‖yτ + ϕ̃τ‖

B + L
)

dτ ds

+ M(ti+ – si)
∫ t

si

mf (s)�f
(‖ys + ϕ̃s‖

B
)

ds

+ M Tr(Q)
∫ t

si

mF (s)�F
(‖ys + ϕ̃s‖

B
)

ds

≤ M[cir∗ + di +
∥∥(–A)–β

∥∥(Lr∗ + L
)]

+ 
∥
∥(–A)–β

∥
∥(Lr∗ + L

)

+ M
–β

(
 + M

 (ti+ – si)) (ti+ – si)β

β – 
(
Lr∗ + L

)

+ M(ti+ – si)�f
(
r∗)
∫ ti+

si

mf (s) ds

+ M�F
(
r∗)Tr(Q)

∫ ti+

si

mF (s) ds := Li.

Take L = max≤i≤N {L,Ki,Li}, then for each y ∈ Br(,B
b ), we have E‖�̄y‖ ≤L.

Step . �̄ is χ -contraction.
To clarify this, we decompose �̄ in the form �̄ = �̄ + �̄ for t ∈ [, b], where

(�̄y)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–R(t)G(,ϕ) + G(t, yt + ϕ̃t)
+
∫ t

 AR(t – s)G(s, ys + ϕ̃s) ds
+
∫ t

 AR(t – s)
∫ s

 h(s – τ )G(τ , yτ + ϕ̃τ ) dτ ds, t ∈ [, t], i = ,
, t ∈ (ti, si], i ≥ ,
–R(t – si)G(si, ysi + ϕ̃si ) + G(t, yt + ϕ̃t)

+
∫ t

si
AR(t – s)G(s, ys + ϕ̃s) ds

+
∫ t

si
AR(t – s)

∫ s
 h(s – τ )G(τ , yτ + ϕ̃τ ) dτ ds, t ∈ [si, ti+], i ≥ ,
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(�̄y)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t
 R(t – s)f (s, ys + ϕ̃s) ds

+
∫ t

 R(t – s)F(s, ys + ϕ̃s) dw(s), t ∈ [, t], i = ,
gi(t, yt + ϕ̃t), t ∈ (ti, si], i ≥ ,
R(t – si)gi(si, ysi + ϕ̃si )

+
∫ t

si
R(t – s)f (s, ys + ϕ̃s) ds

+
∫ t

si
R(t – s)F(s, ys + ϕ̃s) dw(s), t ∈ [si, ti+], i ≥ .

Claim  �̄ is Lipschitz continuous.

Let t ∈ [, t] and u, v ∈ B
b . From (H) and Lemma ., we have

E
∥
∥(�̄u)(t) – (�̄v)(t)

∥
∥

≤ E
∥∥G(t, ut + ϕ̃t) – G(t, vt + ϕ̃t)

∥∥

+ E
∥∥
∥∥

∫ t


AR(t – s)

[
G(s, us + ϕ̃s) – G(s, vs + ϕ̃s)

]
ds
∥∥
∥∥



+ E
∥∥
∥∥

∫ t


AR(t – s)

∫ s


h(s – τ )

[
G(τ , uτ + ϕ̃τ ) – G(τ , vτ + ϕ̃τ )

]
dτ ds

∥∥
∥∥



≤ 
∥
∥(–A)–β

∥
∥L‖ut – vt‖

B + M
–β t

∫ t


(t – s)–(–β)L‖us – vs‖

B ds

+ M
–βM

 t


∫ t


(t – s)–(–β)

∫ s


L‖uτ – vτ‖

B dτ ds

≤ K
b L
[∥∥(–A)–β

∥∥ + M
–β

(
 + M

 b) bβ

β – 

]
‖u – v‖

b.

Similarly, for any t ∈ (ti, ti+], i = , . . . , N , we have

E
∥∥(�̄u)(t) – (�̄v)(t)

∥∥

≤ E
∥
∥R(t – si)

[
G(si, usi + ϕ̃si ) – G(si, vsi + ϕ̃si )

]∥∥

+ E
∥
∥G(t, ut + ϕ̃t) – G(t, vt + ϕ̃t)

∥
∥

+ E
∥∥
∥∥

∫ t

si

AR(t – s)
[
G(s, us + ϕ̃s) – G(s, vs + ϕ̃s)

]
ds
∥∥
∥∥



+ E
∥∥
∥∥

∫ t

si

AR(t – s)
∫ s


h(s – τ )

[
G(τ , uτ + ϕ̃τ ) – G(τ , vτ + ϕ̃τ )

]
dτ ds

∥∥
∥∥



≤ M∥∥(–A)–β
∥
∥L‖usi – vsi‖

B + 
∥
∥(–A)–β

∥
∥L‖ut – vt‖

B

+ M
–β (ti+ – si)

∫ t

si

(t – s)–(–β)L‖us – vs‖
B ds

+ M
–βM

 (ti+ – si)
∫ t

si

(t – s)–(–β)
∫ s


L‖uτ – vτ‖

B dτ ds

≤ K
b L
[
(
 + M)∥∥(–A)–β

∥∥ + M
–β

(
 + M

 b) bβ

β – 

]
‖u – v‖

b.

Thus, for all t ∈ [, b], we have

E
∥∥(�̄u)(t) – (�̄v)(t)

∥∥ ≤ L‖u – v‖
b.
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Taking the supremum over t,

‖�̄u – �̄v‖
b ≤ L‖u – v‖

b,

where L = K
b L[( + M)‖(–A)–β‖ + M

–β ( + M
 b) bβ

β– ]. By (.), we see that L < .
Hence, �̄ is Lipschitz continuous.

Claim  �̄ maps bounded sets into equicontinuous sets of B
b .

Let  < τ < τ ≤ t. For each x ∈ Br(,B
b ), we have

E
∥
∥(�̄y)(τ) – (�̄y)(τ)

∥
∥

≤ E
∥∥
∥∥

∫ τ



[
R(τ – s) – R(τ – s)

]
f (s, ys + ϕ̃s) ds

∥∥
∥∥



+ E
∥∥
∥∥

∫ τ

τ

R(τ – s)f (s, ys + ϕ̃s) ds
∥∥
∥∥



+ E
∥
∥∥
∥

∫ τ



[
R(τ – s) – R(τ – s)

]
F(s, ys + ϕ̃s) dw(s)

∥
∥∥
∥



+ E
∥
∥∥∥

∫ τ

τ

R(τ – s)F(s, ys + ϕ̃s) dw(s)
∥
∥∥∥



≤ �f
(
r∗)τ

∫ τ



∥∥R(τ – s) – R(τ – s)
∥∥mf (s) ds

+ M�f
(
r∗)(τ – τ)

∫ τ

τ

mf (s) ds

+ �F
(
r∗)Tr(Q)

∫ τ



∥∥R(τ – s) – R(τ – s)
∥∥mF (s) ds

+ M�F
(
r∗)Tr(Q)

∫ τ

τ

mF (s) ds.

For any τ, τ ∈ (ti, si], τ < τ, i = , . . . , N , we have

E
∥∥(�̄y)(τ) – (�̄y)(τ)

∥∥ = E
∥∥gi(τ, yτ + ϕ̃τ ) – gi(τ, yτ + ϕ̃τ )

∥∥.

Similarly, for any τ, τ ∈ (ti, ti+], τ < τ, i = , . . . , N , we have

E
∥∥(�̄y)(τ) – (�̄y)(τ)

∥∥

≤ E
∥
∥[R(τ – si) – R(τ – si)

]
gi(si, ysi + ϕ̃si )

∥
∥

+ E
∥
∥∥∥

∫ τ

si

[
R(τ – s) – R(τ – s)

]
f (s, ys + ϕ̃s) ds

∥
∥∥∥



+ E
∥
∥∥∥

∫ τ

τ

R(τ – s)f (s, ys + ϕ̃s) ds
∥
∥∥∥



+ E
∥∥∥
∥

∫ τ

si

[
R(τ – s) – R(τ – s)

]
F(s, ys + ϕ̃s) dw(s)

∥∥∥
∥
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+ E
∥
∥∥
∥

∫ τ

τ

R(τ – s)F(s, ys + ϕ̃s) dw(s)
∥
∥∥
∥



≤ 
∥∥R(τ – si) – R(τ – si)

∥∥[cir∗ + di
]

+ �f
(
r∗)(τ – si)

∫ τ

si

∥∥R(τ – s) – R(τ – s)
∥∥mf (s) ds

+ M�f
(
r∗)(τ – τ)

∫ τ

τ

mf (s) ds

+ �F
(
r∗)Tr(Q)

∫ τ

si

∥
∥R(τ – s) – R(τ – s)

∥
∥mF (s) ds

+ M�F
(
r∗)Tr(Q)

∫ τ

τ

mF (s) ds.

The right-hand side tends to zero as τ → τ, since R(t) is equicontinuous for t >  im-
plies the continuity in the uniform operator topology, and in view of condition (H). The
equicontinuities for the cases τ < τ ≤  or τ ≤  ≤ τ are very simple. Hence �̄ maps
Br(,B

b ) into an equicontinuous family of functions.

Claim  �̄ is a χ -contraction.

Let there be an arbitrary bounded subset W ⊂ B
b . Since the analytic resolvent op-

erator R(·) is equicontinuous, R(t – s)F(s, Ws + ϕ̃s) is piecewise equicontinuous on each
J i = [si, ti+], i = , , . . . , N . For bounded sets W , V ∈PC , we can deduce the following:

∥
∥∥
∥

∫ t

si

R(t – s)F(s, Ws + ϕ̃s) dw(s) –
∫ t

si

R(t – s)F(s, Vs + ϕ̃s) dw(s)
∥
∥∥
∥

=
(∥∥
∥∥

∫ t

si

R(t – s)
[
F(s, Ws + ϕ̃s) – F(s, Vs + ϕ̃s)

]
dw(s)

∥∥
∥∥

) 


≤ M
(

Tr(Q)
∫ t

si

∥∥F(s, Ws + ϕ̃s) – F(s, Vs + ϕ̃s)
∥∥ ds

) 


,

and hence

χ

(∫ t

si

R(t – s)F(s, Ws + ϕ̃s) dw(s)
)

≤ M
(

Tr(Q)
∫ t

si

[
χ
(
F(s, Ws + ϕ̃s)

)] ds
) 


.

Then, from (H)-(H) and Lemmas ., ., we have, for t ∈ [, t],

χ
(
(�̄W )(t)

) ≤ χ

(∫ t


R(t – s)f (s, Ws + ϕ̃s) ds

)
+ χ

(∫ t


R(t – s)F(s, Ws + ϕ̃s) dw(s)

)

≤ M
∫ t


χ
(
f (s, Ws + ϕ̃s)

)
ds + M

(
Tr(Q)

∫ t



[
χ
(
F(s, Ws + ϕ̃s)

)] ds
) 



≤ M
∫ t


ζf (s) sup

–∞<θ≤
χ
(
W (s + θ ) + ϕ̃(s + θ )

)
ds

+ M
(

Tr(Q)
∫ t



[
ζF (s) sup

–∞<θ≤
χ
(
W (s + θ ) + ϕ̃(s + θ )

)]
ds
) 
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≤ M
∫ t


ζf (s) sup

≤τ≤s
χ
(
W (τ )

)
ds

+ M
(

Tr(Q)
∫ t



[
ζF (s) sup

≤τ≤s
χ
(
W (τ )

)]
ds
) 



≤ M
∫ t


ζf (s) ds sup

≤s≤b
χ
(
W (s)

)
+ M

(
Tr(Q)

∫ t


ζ 

F (s) ds
) 


sup

≤s≤b
χ
(
W (s)

)

≤ M
[∫ t


ζ (s) ds +

(
Tr(Q)

∫ t


ζ 

F (s) ds
) 


]
χPC(W ).

For any t ∈ (ti, si], i = , . . . , N , we have

χ
(
(�̄W )(t)

)
= χ
(
gi(t, Wt + ϕ̃t)

)

≤ γi sup
–∞<θ≤

χ
(
W (t + θ ) + ϕ̃(t + θ )

)

≤ γi sup
ti<τ≤t

χ
(
W (τ )

)≤ γi sup
≤τ≤b

χ
(
W (τ )

)≤ γiχPC(W ).

Similarly, for any t ∈ (si, ti+], i = , . . . , N , we have

χ
(
(�̄W )(t)

) ≤ χ
(
R(t – si)gi(si, Wsi + ϕ̃si )

)
+ χ

(∫ t

si

R(t – s)f (s, Ws + ϕ̃s) ds
)

+ χ

(∫ t

si

R(t – s)F(s, Ws + ϕ̃s) dw(s)
)

≤ Mχ
(
gi(si, Wsi + ϕ̃si )

)
+ M

∫ t

si

χ
(
f (s, Ws + ϕ̃s)

)
ds

+ M
(

Tr(Q)
∫ t

si

[
χ
(
F(s, Ws + ϕ̃s)

)] ds
) 



≤ Mγi sup
–∞<θ≤

χ
(
W (si + θ ) + ϕ̃(si + θ )

)

+ M
∫ t

si

ζf (s) sup
–∞<θ≤

χ
(
W (s + θ ) + ϕ̃(s + θ )

)
ds

+ M
(

Tr(Q)
∫ t

si

[
ζF (s) sup

–∞<θ≤
χ
(
W (s + θ ) + ϕ̃(s + θ )

)]
ds
) 



≤ Mγi sup
si<τ≤t

χ
(
W (τ )

)
+ M

∫ t

si

ζf (s) sup
si<τ≤s

χ
(
W (τ )

)
ds

+ M
(

Tr(Q)
∫ t

si

[
ζF (s) sup

si≤τ≤s
χ
(
W (τ )

)]
ds
) 



≤ Mγi sup
≤τ≤b

χ
(
W (τ )

)
+ M

∫ t

si

ζf (s) ds sup
≤s≤b

χ
(
W (s)

)

+ M
(

Tr(Q)
∫ t

si

ζ 
F (s) ds

) 


sup
≤s≤b

χ
(
W (s)

)

≤ M
[
γi +

∫ t

si

ζf (s) ds +
(

Tr(Q)
∫ t

si

ζ 
F (s) ds

) 

]
χPC(W ).
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Thus, for all t ∈ [, b], we have

χ
(
(�̄W )(t)

)≤
[

(M + )γi + M
∫ b


ζf (s) ds + M

(
Tr(Q)

∫ t


ζ 

F (s) ds
) 


]
χPC(W )

and

χ (�̄W ) ≤
[

(M + )γi + M
∫ b


ζf (s) ds + M

(
Tr(Q)

∫ b


ζ 

F (s) ds
) 


]
χPC(W ).

Since

χPC(�̄W ) = χPC(�̄W + �̄W ) ≤ χPC(�̄W ) + χPC(�̄W )

≤ L̃χPC(W ) < χPC(W ),

where L̃ = max≤i≤N {√L + (M + )γi + M
∫ b

 ζf (s) ds + M(Tr(Q)
∫ b

 ζ 
F (s) ds) 

 } < . There-
fore, �̄ is a χ -contraction. In view of Lemma ., we conclude that �̄ has at least one fixed
point y∗ ∈ W ⊂ B

b . Let x(t) = y∗(t) + ϕ̃(t), t ∈ (–∞, b]. Then x is a fixed point of the oper-
ator �, which implies that x is a mild solution of the problem (.)-(.) and the proof of
Theorem . is complete. �

Theorem . If the assumptions (H)-(H) are satisfied, then the system (.)-(.) has at
least one mild solution on [, b], provided that

max
≤i≤N

K
b

{(
 + M)ci +

[(
 + M)∥∥(–A)–β

∥∥

+ M
–β

(
 + M

 b) bβ

β – 

]
L + Mb

∫ b


mf (s) ds lim sup

ς→∞
�f (ς )

ς

+ M Tr(Q)
∫ b


mF (s) ds lim sup

ς→∞
�F (ς )

ς

}
< . (.)

Proof Let �, �̄ be defined as in the proof of Theorem .. We claim that there exists an
k >  such that �̄(Bk(,B

b )) ⊂ (Bk(,B
b )). If we assume that this assertion is false, then

for each k >  we can choose yk ∈ Bk(,B
b ) and tk ∈ [, b] such that k < E‖(�yk)(tk)‖.

Consequently, we have, for tk ∈ [, t],

k < E
∥∥(�yk)(tk)∥∥

≤ M
∥
∥(–A)–β

∥
∥(L‖ϕ‖

B + L
)

+ 
∥∥(–A)–β

∥∥(L
∥∥yk

tk + ϕ̃tk
∥∥
B + L

)

+ M
–β t

∫ tk



(
tk – s

)–(–β)(L
∥∥yk

s + ϕ̃s
∥∥
B + L

)
ds

+ M
–βMt



∫ tk



(
tk – s

)–(–β)
∫ s



(
L
∥
∥yk

τ + ϕ̃τ

∥
∥
B + L

)
dτ ds

+ Mt

∫ tk


mf (s)�f

(∥∥yk
s + ϕ̃s

∥
∥
B
)

ds + M Tr(Q)
∫ tk


mF (s)�F

(∥∥yk
s + ϕ̃s

∥
∥
B
)

ds.
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For any tk ∈ (ti, si], i = , . . . , N , we have

k < E
∥
∥(�yk)(tk)∥∥ ≤ ci

∥
∥yk

tk + ϕ̃tk
∥
∥
B + di.

Similarly, for any tk ∈ (si, ti+], i = , . . . , N , we have

k < E
∥
∥(�yk)(tk)∥∥

≤ M
[
ci
∥∥yk

si
+ ϕ̃si

∥∥
B + di +

∥∥(–A)–β
∥∥(L

∥∥yk
si

+ ϕ̃si

∥∥
B + L

)]

+ 
∥
∥(–A)–β

∥
∥(L

∥
∥yk

tk + ϕ̃tk
∥
∥
B + L

)

+ M
–β (ti+ – si)

∫ tk

si

(
tk – s

)–(–β)(L
∥
∥yk

s + ϕ̃s
∥
∥
B + L

)
ds

+ M
–βM

 (ti+ – si)
∫ tk

si

(
tk – s

)–(–β)
∫ s



(
L
∥∥yk

τ + ϕ̃τ

∥∥
B + L

)
dτ ds

+ M(ti+ – si)
∫ tk

si

mf (s)�f
(∥∥yk

s + ϕ̃s
∥∥
B
)

ds

+ M Tr(Q)
∫ tk

si

mF (s)�F
(∥∥yk

s + ϕ̃s
∥∥
B
)

ds.

Then, for all tk ∈ [, b], we have

k < E
∥∥(�yk)(tk)∥∥

≤ M∗ + ci
[
K

b k +
(
K

b MH̃ + M
b
)‖ϕ‖

B
]

+ M{ci
[
K

b k

+
(
K

b MH̃ + M
b
)‖ϕ‖

B
]

+
∥∥(–A)–β

∥∥L
[
K

b k +
(
K

b MH̃ + M
b
)‖ϕ‖

B
]}

+ 
∥
∥(–A)–β

∥
∥L

[
K

b k +
(
K

b MH̃ + M
b
)‖ϕ‖

B
]

+ M
–βb

∫ tk



(
tk – s

)–(–β)L
[
K

b k +
(
K

b MH̃ + M
b
)‖ϕ‖

B
]

ds

+ M
–βM

 b
∫ tk



(
tk – s

)–(–β)
∫ s


L
[
K

b k +
(
K

b MH̃ + M
b
)‖ϕ‖

B
]

dτ ds

+ Mb
∫ tk


mf (s)�f

(

[
K

b k +
(
K

b MH̃ + M
b
)‖ϕ‖

B
])

ds

+ M Tr(Q)
∫ tk


mF (s)�F

(

[
K

b k +
(
K

b MH̃ + M
b
)‖ϕ‖

B
])

ds,

and hence

 < max
≤i≤N

K
b

{(
 + M)ci +

[(
 + M)∥∥(–A)–β

∥
∥

+ M
–β

(
 + M

 b) bβ

β – 

]
L + Mb

∫ b


mf (s) ds lim sup

ς→∞
�f (ς )

ς

+ M Tr(Q)
∫ b


mF (s) ds lim sup

ς→∞
�F (ς )

ς

}
,
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which is contrary to our assumption (.). The proofs of the other steps are similar to those
in Theorem .. Therefore, we omit the details. By means of Lemma ., we conclude that
(.)-(.) has at least a mild solution. The proof is complete. �

4 Application
Consider the impulsive stochastic partial functional neutral integro-differential equations
of the form

d
[

z(t, x) –
∫ t

–∞
ϑ(t)ϑ(s – t)z(s, x) ds

]

=
∂

∂x

[
z(t, x) +

∫ t


b̃(t – s)z(s, x) ds

]
dt

+
∫ t

–∞
ν(t)ν(s – t)z(s, x) ds dt

+
∫ t

–∞
�(t)�(s – t)z(s, x) ds dw(t),

(t, x) ∈
N⋃

i=

[si, ti+] × [,π ], (.)

z(t, ) = z(t,π ) = , t ∈ [, b], (.)

z(τ , x) = ϕ(τ , x), (τ , x) ∈ (–∞, ]× ∈ [,π ], (.)

z(t, x) =
∫ t

–∞
ηi(s – t)z(s, x) ds, (t, x) ∈ (ti, si] × [,π ], (.)

where ϕ is continuous and there exists a constant K such that |b̃(t – s)| ≤ K. w(t) denotes
a one-dimensional standard Wiener process in H defined on a stochastic space (�,F , P)
and we take H = L([, ]) with the norm ‖ · ‖ and define the operators A : H → H by
Aω = ω′′ with the domain

D(A) :=
{
ω ∈ H : ω,ω′ are absolutely continuous,ω′′ ∈ H ,ω() = ω(π ) = 

}
.

Then

Aω = –
∞∑

n=

n〈ω, zn〉zn, ω ∈ D(A),

where zn(x) =
√


π

sin(nx), n = , , , . . . , is an orthogonal set of eigenvector of –A. It is
well known that A generates a strongly continuous semigroup that is analytic, and a re-
solvent operator R(t) can be extracted from this analytic semigroup (see [, ]). Since
the operator R(t) is analytic there exists a constant M >  such that ‖R(t)‖ ≤ M and it
satisfies (H).

The bounded linear operator (–A) 
 is given by

(–A)

 ω =

∞∑

n=

n

 〈ω, zn〉zn
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on the space

D
(
(–A)



)

=

{

ω(·) ∈ H :
∞∑

n=

n

 〈ω, zn〉zn ∈ H

}

,

and (–A)– 
 ω =

∑∞
n=



n


〈ω, zn〉zn for every ω ∈ H and ‖(–A)– 

 ‖ is bounded.

Let r ≥ ,  ≤ p < +∞ and let h̃ : (–∞, –r] → R be a nonnegative measurable function
which satisfies the conditions (h-), (h-) in the terminology of Hino et al. []. Briefly,
this means that h̃ is locally integrable and there is a nonnegative, locally bounded function
γ on (–∞, ] such that h̃(ξ + τ ) ≤ γ (ξ )h̃(τ ) for all ξ ≤  and θ ∈ (–∞, –r) \ Nξ , where
Nξ ⊆ (–∞, –r) is a set whose Lebesgue measure zero. We denote by PCr ×Lp(h̃, H) the set
that consists of all classes of functions ϕ : (–∞, ] → H such that ϕ|[–r,] ∈ PC([–r, ], H),
ϕ(·) is Lebesgue measurable on (–∞, –r), and h̃‖ϕ‖p is Lebesgue integrable on (–∞, –r).
The seminorm is given by

‖ϕ‖B = sup
–r≤τ≤

∥
∥ϕ(τ )

∥
∥ +
(∫ –r

–∞
h̃(τ )‖ϕ‖p dτ

)/p

.

The space B = PCr ×Lp(h̃, H) satisfies axioms (A)-(C). Moreover, when r =  and p = , we
can take H̃ = , M(t) = γ (–t)/, and K(t) =  + (

∫ 
–t h̃(τ ) dτ )/, for t ≥ . (See Theorem ..

in [] for details.)
Additionally, assume that the following conditions hold:
(i) The functions ϑj,νj,�j : R →R, j = , , are continuous with

Lϑ =
∫ 

–∞
(ϑ(s))

h̃(s)
ds < ∞, Lν =

∫ 
–∞

(ν(s))

h̃(s)
ds < ∞, L� =

∫ 
–∞

(�(s))

h̃(s)
ds < ∞.

(ii) The functions ηi : R→R, i = , . . . , N , are continuous with L̃i =
∫ 

–∞
(ηi(s))

h̃(s)
ds < ∞

for every i = , , . . . , N .
Take ϕ ∈ B = PC × L(h̃, H) with ϕ(θ )(x) = ϕ(θ , x), (θ , x) ∈ (–∞, ] × B. Let z(s)(x) =

z(s, x). G : [, b] ×B → H , f : [, b] ×B → H , F : [, b] ×B → L(H), gi : [, b] ×B → H be
the operators defined by

(–A)

 G(t,ϕ)(x) =

∫ 

–∞
ϑ(t)ϑ(θ )ϕ(θ )(x) dθ ,

f (t,ϕ)(x) =
∫ 

–∞
ν(t)μ(θ )ϕ(θ )(x) dθ ,

F(t,ϕ)(x) =
∫ 

–∞
�(t)�(θ )ϕ(θ )(x) dθ ,

gi(t,ϕ)(x) =
∫ 

–∞
ηi(θ )ϕ(θ )(x) dθ .

Under the above assumptions, the problem (.)-(.) can be written as (.)-(.). More-
over, for any t ∈ [, b], ψ ,ψ ∈ B, we have

E
∥
∥(–A)


 G(t,ψ)

∥
∥ = E

[∫ π



(∫ 

–∞
ϑ(t)ϑ(s)ψ(s)(x) ds

)

dx
]

≤
(∫ 

–∞
ϑ(t)ϑ(s)

∥
∥ψ(s)

∥
∥ds
)
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≤ ‖ϑ‖
∞

(∫ 

–∞
(ϑ(s))

h̃(s)
ds
)(∫ 

–∞
h̃(s)
∥∥ψ(s)

∥∥ ds
)

≤ LG‖ψ‖
B

and

E
∥
∥(–A)



[
G(t,ψ) – G(t,ψ)

]∥∥

= E
[∫ π



(∫ 

–∞
ϑ(t)ϑ(s)

[
ψ(s)(x) – ψ(s)(x)

]
ds
)

dx
]

≤
(∫ 

–∞
ϑ(t)ϑ(s)

∥∥ψ(s) – ψ(s)
∥∥ds
)

≤ ‖ϑ‖
∞

(∫ 

–∞
(ϑ(s))

h̃(s)
ds
)(∫ 

–∞
h̃(s)
∥
∥ψ(s) – ψ(s)

∥
∥ ds

)

≤ LG‖ψ – ψ‖
B ,

where LG = ‖ϑ‖∞Lϑ . For any t ∈ [, b], ψ ,ψ ∈ B, we have

E
∥
∥f (t,ψ)

∥
∥ = E

[∫ π



(∫ 

–∞
ν(t)ν(s)ψ(s)(x) ds

)

dx
]

≤
(∫ 

–∞
ν(t)ν(s)

∥∥ψ(s)
∥∥ds
)

≤ ‖ν‖
∞

(∫ 

–∞
(ν(s))

h̃(s)
ds
)(∫ 

–∞
h̃(s)
∥∥ψ(s)

∥∥ ds
)

≤ Lf ‖ψ‖
B

and

∥
∥f (t,ψ) – f (t,ψ)

∥
∥

=
[∫ π



(∫ 

–∞
ν(t)ν(s)

[
ψ(s)(x) – ψ(s)(x)

]
ds
)

dx
] 



≤
∫ 

–∞
ν(t)ν(s)

∥∥ψ(s) – ψ(s)
∥∥ds

≤ ‖ν‖∞
(∫ 

–∞
(ν(s))

h̃(s)
ds
) 


(∫ 

–∞
h̃(s)
∥
∥ψ(s) – ψ(s)

∥
∥ ds

) 


≤√Lf ‖ψ – ψ‖B ,

and we can see that, for each bounded set D ⊂ B,

χ
(
f (t, D)

)≤√Lf sup
–∞<θ≤

χ
(
D(θ )

)
,

where Lf = ‖ν‖∞Lν . Similarly, we have

E
∥∥F(t,ψ)

∥∥ ≤ LF‖ψ‖
B
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and

∥
∥F(t,ψ) – F(t,ψ)

∥
∥≤√LF‖ψ – ψ‖B ,

and we can see that, for each bounded set D ⊂ B,

χ
(
F(t, D)

)≤√LF sup
–∞<θ≤

χ
(
D(θ )

)
,

where LF = ‖�‖∞L� .
Moreover, we have, for any t, t̃ ∈ (ti, si], i = , . . . , N , ψ ,ψ ∈ B,

E
∥
∥gi(t,ψ)

∥
∥ ≤ L̃i‖ψ‖B ,

∥
∥gi(t,ψ) – gi(t̃,ψ)

∥
∥≤

√
L̃i‖ψ – ψ‖B ,

and we can see that, for each bounded set D ⊂ B,

χ
(
gi(t, D)

)≤
√

L̃i sup
–∞<θ≤

χ
(
D(θ )

)
.

Obviously, �f (s) = �F (s) = s,
∫∞




�f (s)+�F (s) ds = ∞. If also the associated conditions (.)
and (.) or (.) hold, then it satisfies all the assumptions given in Theorem . or The-
orem ., and we can conclude that the problem (.)-(.) has at least one mild solution
on [, b].

5 Conclusion
In this paper, we studied a new class of impulsive stochastic partial neutral evolution equa-
tions with infinite delay in Hilbert spaces. More precisely, by using stochastic analysis, the
theory of analytic resolvent operators, fractional power of closed operators, the Darbo
fixed point theorem, and the Darbo-Sadovskii fixed point theorem combined with the
Hausdorff measure of noncompactness techniques, we investigated the existence of mild
solutions of the impulsive stochastic system. The conditions are formulated and proved
under which R(·) is analytic and f , F satisfy the Carathéodory condition. Finally, an appli-
cation is provided to illustrate the applicability of the new results.
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