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Abstract
In this paper, we investigate the existence and the uniqueness of solutions for
coupled and uncoupled systems of fractional q-integro-difference equations with
nonlocal fractional q-integral boundary conditions. The existence and the uniqueness
of the solutions are established by using the Banach contraction principle, while the
existence of solutions is derived by applying Leray-Schauder’s alternative. Examples
illustrating our results are also presented.
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1 Introduction
In this paper, we investigate a coupled system of fractional q-integro-difference equations
with nonlocal fractional q-integral boundary conditions given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα
q x(t) = f (t, x(t), Iδ

r y(t)), t ∈ [, T],  < α ≤ ,
Dβ

p y(t) = g(t, y(t), Iε
z x(t)), t ∈ [, T],  < β ≤ ,

x() = , λIγ
mx(η) = Iκ

n y(ξ ),
y() = , λIμ

h y(θ ) = Iν
k x(τ ),

(.)

where  < p, q, r, z, m, n, h, k <  are quantum numbers, η, ξ , θ , τ ∈ (, T) are fixed points,
δ, ε,γ ,κ ,μ,ν > , and λ,λ ∈ R are given constants, Dρ

ω is the fractional ω-derivative of
Riemann-Liouville type of order ρ , when ρ ∈ {α,β} and ω ∈ {p, q}, Iψ

φ is the fractional
φ-integral of order ψ with φ ∈ {r, z, m, n, h, k} and ψ ∈ {δ, ε,γ ,κ ,μ,ν} and f , g : [, T] ×
R×R →R are continuous functions.

The early work on q-difference calculus or quantum calculus dates back to Jackson’s
paper []. Basic definitions and properties of quantum calculus can be found in the book
[]. The fractional q-difference calculus had its origin in the works by Al-Salam [] and
Agarwal []. Motivated by recent interest in the study of fractional-order differential equa-
tions, the topic of q-fractional equations has attracted the attention of many researchers.
The details of some recent development of the subject can be found in [–], and the
references cited therein, whereas the background material on q-fractional calculus can be
found in a recent book [].
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Recently in [], we have studied the existence and the uniqueness of solutions of a class
of boundary value problems for fractional q-integro-difference equations with nonlocal
fractional q-integral conditions which have different quantum numbers. Here we extend
the results of [] to a coupled system of fractional q-integro-difference equations with
nonlocal fractional q-integral boundary conditions.

The paper is organized as follows: In Section  we will present some useful preliminaries
and lemmas. Some auxiliary lemmas are presented in Section . In Section , we establish
an existence and a uniqueness result via the Banach contraction principle, and an exis-
tence result by applying Leray-Schauder’s alternative. Results on the uncoupled integral
boundary conditions case are contained in Section . Examples illustrating our results are
also presented.

2 Preliminaries
To make this paper self-contained, below we recall some well-known facts on fractional
q-calculus. The presentation here can be found in, for example, [, ].

For q ∈ (, ), define

[a]q =
 – qa

 – q
, a ∈R. (.)

The q-analog of the power function (a – b)k with k ∈N := {, , , . . .} is

(a – b)() = , (a – b)(k) =
k–∏

i=

(
a – bqi), k ∈N, a, b ∈ R. (.)

More generally, if γ ∈R, then

(a – b)(γ ) = aγ

∞∏

i=

 – (b/a)qi

 – (b/a)qγ +i , a �= . (.)

Note if b = , then a(γ ) = aγ . We also use the notation (γ ) =  for γ > . The q-gamma
function is defined by

�q(t) =
( – q)(t–)

( – q)t– , t ∈R \ {, –, –, . . .}. (.)

Obviously, �q(t + ) = [t]q�q(t).
The q-derivative of a function h is defined by

(Dqh)(t) =
h(t) – h(qt)

( – q)t
for t �=  and (Dqh)() = lim

t→
(Dqh)(t), (.)

and q-derivatives of higher order are given by

(
D

qh
)
(t) = h(t) and

(
Dk

qh
)
(t) = Dq

(
Dk–

q h
)
(t), k ∈ N. (.)

The q-integral of a function h defined on the interval [, b] is given by

(Iqh)(t) =
∫ t


h(s) dqs = t( – q)

∞∑

i=

h
(
tqi)qi, t ∈ [, b]. (.)
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If a ∈ [, b] and h is defined in the interval [, b], then its integral from a to b is defined by

∫ b

a
h(s) dqs =

∫ b


h(s) dqs –

∫ a


h(s) dqs. (.)

Similar to derivatives, an operator Ik
q is given by

(
I

q h
)
(t) = h(t) and

(
Ik

q h
)
(t) = Iq

(
Ik–

q h
)
(t), k ∈ N. (.)

The fundamental theorem of calculus applies to these operators Dq and Iq, i.e.,

(DqIqh)(t) = h(t), (.)

and if h is continuous at t = , then

(IqDqh)(t) = h(t) – h(). (.)

Definition . Let ν ≥  and h be a function defined on [, T]. The fractional q-integral
of Riemann-Liouville type is given by (I

q h)(t) = h(t) and

(
Iν

q h
)
(t) =


�q(ν)

∫ t


(t – qs)(ν–)h(s) dqs, ν > , t ∈ [, T]. (.)

Definition . The fractional q-derivative of Riemann-Liouville type of order ν ≥  is
defined by (D

qh)(t) = h(t) and

(
Dν

qh
)
(t) =

(
Dl

qIl–ν
q h

)
(t), ν > , (.)

where l is the smallest integer greater than or equal to ν .

Definition . For any t, s > ,

Bq(t, s) =
∫ 


u(t–)( – qu)(s–) dqu (.)

is called the q-beta function.

The expression of q-beta function in terms of the q-gamma function can be written as

Bq(t, s) =
�q(t)�q(s)
�q(t + s)

.

Lemma . [] Let α,β ≥  and f be a function defined in [, T]. Then the following for-
mulas hold:

() (Iβ
q Iα

q f )(t) = (Iα+β
q f )(t),

() (Dα
q Iα

q f )(t) = f (t).
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Lemma . [] Let α >  and n be a positive integer. Then the following equality holds:

(
Iα

q Dn
qf

)
(t) =

(
Dn

qIα
q f

)
(t) –

n–∑

i=

tα–n+i

�q(α + i – n + )
(
Di

qf
)
(). (.)

3 Some auxiliary lemmas
The following formulas have been modified from Lemmas . and  in [] and [], re-
spectively.

Lemma . Let x, y, z >  and  < u, v, w < . Then, for φ ∈R+, we have
(i) Ix

uIy
v ()(φ) = �u(y+)

�u(x+y+)�v(y+)φ
x+y;

(ii) Ix
uIy

v Iz
w()(φ) = �u(y+z+)�v(z+)

�u(x+y+z+)�v(y+z+)�w(z+)φ
x+y+z .

Lemma . Given u, v ∈ C([, T],R), the unique solution of the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα
q x(t) = u(t), t ∈ [, T],  < α ≤ ,

Dβ
p y(t) = v(t), t ∈ [, T],  < β ≤ ,

x() = , λIγ
mx(η) = Iκ

n y(ξ ),
y() = , λIμ

h y(θ ) = Iν
k x(τ ),

(.)

is

x(t) =


�q(α)

∫ t


(t – qs)(α–)u(s) dqs +

λ�

�
tα–Iμ

h Iβ
p v(θ )

–
�

�
tα–Iν

k Iα
q u(τ ) +

λλ�

�
tα–Iγ

mIα
q u(η)

–
λ�

�
tα–Iκ

n Iβ
p v(ξ ) (.)

and

y(t) =


�p(β)

∫ t


(t – ps)(β–)v(s) dps +

λ�

�
tβ–Iγ

mIα
q u(η)

–
�

�
tβ–Iκ

n Iβ
p v(ξ ) +

λλ�

�
tβ–Iμ

h Iβ
p v(θ )

–
λ�

�
tβ–Iν

k Iα
q u(τ ), (.)

where

� =
�n(β)

�n(β + κ)
ξβ+κ–,

� =
�k(α)

�k(α + ν)
τα+ν–,

� =
�m(α)

�m(α + γ )
ηα+γ –,

� =
�h(β)

�h(β + μ)
θβ+μ–,

� = �� – λλ�� �= .
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Proof From  < α ≤ , we let n = . Applying Lemma ., the equations in (.) can be
expressed as equivalent integral equations

x(t) = ctα– + ctα– +


�q(α)

∫ t


(t – qs)(α–)u(s) dqs, (.)

y(t) = dtβ– + dtβ– +


�p(β)

∫ t


(t – ps)(β–)v(s) dps (.)

for c, c, d, d ∈ R. The conditions x() =  and y() =  imply that c =  and d = ,
respectively. Taking the Riemann-Liouville fractional φ-integral of order ψ >  for (.)
and (.), we have the system

Iψ

φ x(t) = c
�φ(α)

�φ(α + ψ)
tα+ψ–

+


�φ(ψ)�q(α)

∫ t



∫ s


(t – φs)(ψ–)(s – qw)(α–)u(w) dqw dφs, (.)

Iψ

φ y(t) = d
�φ(β)

�φ(β + ψ)
tβ+ψ–

+


�φ(ψ)�p(β)

∫ t



∫ s


(t – φs)(ψ–)(s – pw)(β–)v(w) dpw dφs. (.)

Substituting (ψ ,φ, t) by (γ , m,η), (ν, k, τ ) in (.), and (κ , n, ξ ), (μ, h, θ ) in (.) and using
Lemma . with nonlocal conditions in (.), we have

c =
λ�

�
Iμ

h Iβ
p v(θ ) –

�

�
Iν

k Iα
q u(τ )

+
λλ�

�
Iγ

mIα
q u(η) –

λ�

�
Iκ

n Iβ
p v(ξ )

and

d =
λ�

�
Iγ

mIα
q u(η) –

�

�
Iκ

n Iβ
p v(ξ )

+
λλ�

�
Iμ

h Iβ
p v(θ ) –

λ�

�
Iν

k Iα
q u(τ ).

Substituting the values of c, c, d, and d in (.) and (.), we obtain the solutions (.)
and (.) as required. �

4 Main results
Let C = C([, T],R) denotes the Banach space of all continuous functions from [, T]
to R. Let us introduce the space X = {x(t)|x(t) ∈ C([, T],R)} endowed with the norm
‖x‖ = sup{|x(t)|, t ∈ [, T]}. Obviously (X,‖ · ‖) is a Banach space. Also let Y = {y(t)|y(t) ∈
C([, T],R)} be endowed with the norm ‖y‖ = sup{|y(t)|, t ∈ [, T]}. Obviously the product
space (X × Y ,‖(x, y)‖) is a Banach space with norm ‖(x, y)‖ = ‖x‖ + ‖y‖.

In view of Lemma ., we define an operator K : X × Y → X × Y by

K(x, y)(t) =

(
K(x, y)(t)
K(x, y)(t)

)

,
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where

K(x, y)(t) = Iα
q f

(
s, x(s), Iδ

r y(s)
)
(t) +

λ�

�
tα–Iμ

h Iβ
p g

(
s, y(s), Iε

z x(s)
)
(θ )

–
�

�
tα–Iν

k Iα
q f

(
s, x(s), Iδ

r y(s)
)
(τ )

+
λλ�

�
tα–Iγ

mIα
q f

(
s, x(s), Iδ

r y(s)
)
(η)

–
λ�

�
tα–Iκ

n Iβ
p g

(
s, y(s), Iε

z x(s)
)
(ξ ) (.)

and

K(x, y)(t) = Iβ
p g

(
s, y(s), Iε

z x(s)
)
(t) +

λ�

�
tβ–Iγ

mIα
q f

(
s, x(s), Iδ

r y(s)
)
(η)

–
�

�
tβ–Iκ

n Iβ
p g

(
s, y(s), Iε

z x(s)
)
(ξ )

+
λλ�

�
tβ–Iμ

h Iβ
p g

(
s, y(s), Iε

z x(s)
)
(θ )

–
λ�

�
tβ–Iν

k Iα
q f

(
s, x(s), Iδ

r y(s)
)
(τ ). (.)

For the sake of convenience, we set

A =
Tα

�q(α + )
, A =

Tβ

�p(β + )
,

A =
�q(δ + )Tα+δ

�q(α + δ + )�r(δ + )
, A =

�p(ε + )Tβ+ε

�p(β + ε + )�z(ε + )
,

A =
�m(α + )ηγ +α

�m(γ + α + )�q(α + )
, A =

�n(β + )ξκ+β

�n(κ + β + )�p(β + )
,

A =
�h(β + )θμ+β

�h(μ + β + )�p(β + )
, A =

�k(α + )τ ν+α

�k(ν + α + )�q(α + )
,

A =
�m(α + δ + )�q(δ + )ηγ +α+δ

�m(γ + α + δ + )�q(α + δ + )�r(δ + )
,

A =
�n(β + ε + )�p(ε + )ξκ+β+ε

�n(κ + β + ε + )�p(β + ε + )�z(ε + )
,

A =
�h(β + ε + )�p(ε + )θμ+β+ε

�h(μ + β + ε + )�p(β + ε + )�z(ε + )
,

A =
�k(α + δ + )�q(δ + )τ ν+α+δ

�k(ν + α + δ + )�q(α + δ + )�r(δ + )
.

Theorem . Assume that f , g : [, T] ×R
 →R are continuous functions and there exist

positive constants Mi, Ni, i = , , such that for all t ∈ [, T] and ui, vi ∈R, i = , ,

∣
∣f (t, u, u) – f (t, v, v)

∣
∣ ≤ M|u – v| + M|u – v|

and

∣
∣g(t, u, u) – g(t, v, v)

∣
∣ ≤ N|u – v| + N|u – v|.
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In addition, we suppose that

B + B + C + C < ,

where

B = MA +
|λ|Tα–

|�|
(
�NA + |λ|�MA + �NA

)
+

�

|�|Tα–MA,

B = MA +
|λ|Tα–

|�|
(
�NA + |λ|�MA + �NA

)
+

�

|�|Tα–MA,

C = NA +
|λ|Tβ–

|�|
(
�MA + |λ|�NA + �MA

)
+

�

|�|Tβ–NA,

C = NA +
|λ|Tβ–

|�|
(
�MA + |λ|�NA + �MA

)
+

�

|�|Tβ–NA.

Then the system (.) has a unique solution on [, T].

Proof Firstly, we define supt∈[,T] |f (t, , )| = G < ∞ and supt∈[,T] |g(t, , )| = G < ∞
such that

r ≥ max

{
B

 – (B + B)
,

C

 – (C + C)

}

,

where

B = GA +
|λ|Tα–

|�|
(
�GA + |λ|�GA + �GA

)
+

�

|�|Tα–GA,

C = GA +
|λ|Tβ–

|�|
(
�GA + |λ|�GA + �GA

)
+

�

|�|Tβ–GA.

We will show that KBr ⊂ Br , where Br = {(x, y) ∈ X × Y : ‖(x, y)‖ ≤ r}.
For (x, y) ∈ Br , taking into account Lemma ., we have

∣
∣K(x, y)(t)

∣
∣

≤ sup
t∈T

{

Iα
q
∣
∣f

(
s, x(s), Iδ

r y(s)
)∣
∣(t) +

|λ|�

|�| tα–Iμ

h Iβ
p
∣
∣g

(
s, y(s), Iε

z x(s)
)∣
∣(θ )

+
�

|�| tα–Iν
k Iα

q
∣
∣f

(
s, x(s), Iδ

r y(s)
)∣
∣(τ ) +

|λ||λ|�

|�| tα–Iγ
mIα

q
∣
∣f

(
s, x(s), Iδ

r y(s)
)∣
∣(η)

+
|λ|�

|�| tα–Iκ
n Iβ

p
∣
∣g

(
s, y(s), Iε

z x(s)
)∣
∣(ξ )

}

≤ Iα
q
(∣
∣f

(
s, x(s), Iδ

r y(s)
)

– f (s, , )
∣
∣ +

∣
∣f (s, , )

∣
∣
)
(t)

+
|λ|�

|�| Tα–Iμ

h Iβ
p
(∣
∣g

(
s, y(s), Iε

z x(s)
)

– g(s, , )
∣
∣ +

∣
∣g(s, , )

∣
∣
)
(θ )

+
�

|�|Tα–Iν
k Iα

q
(∣
∣f

(
s, x(s), Iδ

r y(s)
)

– f (s, , )
∣
∣ +

∣
∣f (s, , )

∣
∣
)
(τ )

+
|λ||λ|�

|�| Tα–Iγ
mIα

q
(∣
∣f

(
s, x(s), Iδ

r y(s)
)

– f (s, , )
∣
∣ +

∣
∣f (s, , )

∣
∣
)
(η)
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+
|λ|�

|�| Tα–Iκ
n Iβ

p
(∣
∣g

(
s, y(s), Iε

z x(s)
)

– g(t, , )
∣
∣ +

∣
∣g(t, , )

∣
∣
)
(ξ )

≤ M‖x‖A + M‖y‖A + GA

+
|λ|�

|�| Tα–(N‖y‖A + N‖x‖A + GA
)

+
�

|�|Tα–(M‖x‖A + M‖y‖A + GA
)

+
|λ||λ|�

|�| Tα–(M‖x‖A + M‖y‖A + GA
)

+
|λ|�

|�| Tα–(N‖y‖A + N‖x‖A + GA
)

= B‖x‖ + B‖y‖ + B

≤ (B + B)r + B ≤ r.

In a similar way, we get

∣
∣K(x, y)(t)

∣
∣

≤ Iβ
p
(∣
∣g

(
s, y(s), Iε

z x(s)
)

– g(s, , )
∣
∣ +

∣
∣g(s, , )

∣
∣
)
(t)

+
|λ|�

|�| Tβ–Iγ
mIα

q
(∣
∣f

(
s, x(s), Iδ

r y(s)
)

– f (s, , )
∣
∣ +

∣
∣f (s, , )

∣
∣
)
(η)

+
�

|�|Tβ–Iκ
n Iβ

p
(∣
∣g

(
s, y(s), Iε

z x(s)
)

– g(s, , )
∣
∣ +

∣
∣g(s, , )

∣
∣
)
(ξ )

+
|λ||λ|�

|�| Tβ–Iμ

h Iβ
p
(∣
∣g

(
s, y(s), Iε

z x(s)
)

– g(s, , )
∣
∣ +

∣
∣g(s, , )

∣
∣
)
(θ )

+
|λ|�

|�| Tβ–Iν
k Iα

q
(∣
∣f

(
s, x(s), Iδ

r y(s)
)

– f (s, , )
∣
∣ +

∣
∣f (s, , )

∣
∣
)
(τ )

≤ N‖y‖A + N‖x‖A + GA

+
|λ|�

|�| Tβ–(M‖x‖A + M‖y‖A + GA
)

+
�

|�|Tβ–(N‖y‖A + N‖x‖A + GA
)

+
|λ||λ|�

|�| Tβ–(N‖y‖A + N‖x‖A + GA
)

+
|λ|�

|�| Tβ–(M‖x‖A + M‖y‖A + GA
)

= C‖x‖ + C‖y‖ + C

≤ (C + C)r + B ≤ r.

Consequently, ‖K(x, y)(t)‖ ≤ r.
Next, for (x, y), (x, y) ∈ X × Y , and for any t ∈ [, T], we have

∣
∣K(x, y)(t) – K(x, y)(t)

∣
∣

≤ Iα
q
(∣
∣f

(
s, x(s), Iδ

r y(s)
)

– f
(
s, x(s), Iδ

r y(s)
)∣
∣
)
(t)
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+
|λ|�

|�| Tα–Iμ

h Iβ
p
(∣
∣g

(
s, y(s), Iε

z x(s)
)

– g
(
s, y(s), Iε

z x(s)
)∣
∣
)
(θ )

+
�

|�|Tα–Iν
k Iα

q
(∣
∣f

(
s, x(s), Iδ

r y(s)
)

– f
(
s, x(s), Iδ

r y(s)
)∣
∣
)
(τ )

+
|λ||λ|�

|�| Tα–Iγ
mIα

q
(∣
∣f

(
s, x(s), Iδ

r y(s)
)

– f
(
s, x(s), Iδ

r y(s)
)∣
∣
)
(η)

+
|λ|�

|�| Tα–Iκ
n Iβ

p
(∣
∣g

(
s, y(s), Iε

z x(s)
)

– g
(
s, y(s), Iε

z x(s)
)∣
∣
)
(ξ )

≤ M‖x – x‖Iα
q ()(T) + M‖y – y‖Iα

q Iδ
r ()(T)

+
|λ|�

|�| Tα–(N‖y – y‖Iμ

h Iβ
p ()(θ ) + N‖x – x‖Iμ

h Iβ
p Iε

z ()(θ )
)

+
�

|�|Tα–(M‖x – x‖Iν
k Iα

q ()(τ ) + M‖y – y‖Iν
k Iα

q Iδ
r ()(τ )

)

+
|λ||λ|�

|�| Tα–(M‖x – x‖Iγ
mIα

q ()(η) + M‖y – y‖Iγ
mIα

q Iδ
r ()(η)

)

+
|λ|�

|�| Tα–(N‖y – y‖Iκ
n Iβ

p ()(ξ ) + N‖x – x‖Iκ
n Iβ

p Iε
z ()(ξ )

)

= B‖x – x‖ + B‖y – y‖.

Therefore, we have
∥
∥K(x, y)(t) – K(x, y)(t)

∥
∥ ≤ (B + B)

(‖x – x‖ + ‖y – y‖
)
. (.)

In the same way, we have
∣
∣K(x, y)(t) – K(x, y)(t)

∣
∣

≤ Iβ
p
(∣
∣g

(
s, y(s), Iε

z x(s)
)

– g
(
s, y(s), Iε

z x(s)
)∣
∣
)
(t)

+
|λ|�

|�| Tβ–Iγ
mIα

q
(∣
∣f

(
s, x(s), Iδ

r y(s)
)

– f
(
s, x(s), Iδ

r y(s)
)∣
∣
)
(η)

+
�

|�|Tβ–Iκ
n Iβ

p
(∣
∣g

(
s, y(s), Iε

z x(s)
)

– g
(
s, y(s), Iε

z x(s)
)∣
∣
)
(ξ )

+
|λ||λ|�

|�| Tβ–Iμ

h Iβ
p
(∣
∣g

(
s, y(s), Iε

z x(s)
)

– g
(
s, y(s), Iε

z x(s)
)∣
∣
)
(θ )

+
|λ|�

|�| Tβ–Iν
k Iα

q
(∣
∣f

(
s, x(s), Iδ

r y(s)
)

– f
(
s, x(s), Iδ

r y(s)
)∣
∣
)
(τ )

≤ N‖y – y‖A + N‖x – x‖A

+
|λ|�

|�| Tβ–(M‖x – x‖A + M‖y – y‖A
)

+
�

|�|Tβ–(N‖y – y‖A + N‖x – x‖A
)

+
|λ||λ|�

|�| Tβ–(N‖y – y‖A + N‖x – x‖A
)

+
|λ|�

|�| Tβ–(M‖x – x‖A + M‖y – y‖A
)

= C‖x – x‖ + C‖y – y‖,
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which implies

∥
∥K(x, y)(t) – K(x, y)(t)

∥
∥ ≤ (C + C)

(‖x – x‖ + ‖y – y‖
)
. (.)

It follows from (.) and (.) that

∥
∥K(x, y)(t) – K(x, y)(t)

∥
∥ ≤ (B + B + C + C)

(‖x – x‖ + ‖y – y‖
)
.

Since B + B + C + C < , therefore, K is a contraction operator. So, by Banach’s fixed
point theorem, the operator K has a unique fixed point, which is the unique solution of
problem (.). The proof is completed. �

In the next result, we prove the existence of solutions for the problem (.) by applying
the Leray-Schauder alternative.

Lemma . (Leray-Schauder alternative, see [], p.) Let F : E → E be a completely con-
tinuous operator (i.e., a map that restricted to any bounded set in E is compact). Let

E(F) =
{

x ∈ E : x = λF(x) for some  < λ < 
}

.

Then either the set E(F) is unbounded, or F has at least one fixed point.

For convenience, we set constants

E = PA +
|λ|Tα–

|�|
(
�QA + |λ|�PA + �QA

)
+

�

|�|Tα–PA,

E = PA +
|λ|Tα–

|�|
(
�QA + |λ|�PA + �QA

)
+

�

|�|Tα–PA,

E = PA +
|λ|Tα–

|�|
(
�QA + |λ|�PA + �QA

)
+

�

|�|Tα–PA,

F = QA +
|λ|Tβ–

|�|
(
�PA + |λ|�QA + �PA

)
+

�

|�|Tβ–QA,

F = QA +
|λ|Tβ–

|�|
(
�PA + |λ|�QA + �PA

)
+

�

|�|Tβ–QA,

F = QA +
|λ|Tβ–

|�|
(
�PA + |λ|�QA + �PA

)
+

�

|�|Tβ–QA

and

G∗ = max
{

 – (E + F),  – (E + F)
}

.

Theorem . Assume that there exist real constants Pi, Qi ≥  (i = , ), and P > , Q > 
such that for all ui, vi ∈R (i = , ) we have

∣
∣f (t, u, u)

∣
∣ ≤ P + P|u| + P|u|,

∣
∣g(t, v, v)

∣
∣ ≤ Q + Q|v| + Q|v|.
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In addition it is assumed that

E + F <  and E + F < .

Then there exists at least one solution for the system (.).

Proof We first prove that the operator K : X × Y → X × Y is completely continuous. The
continuity of functions f and g imply that the operator K is continuous. Let � ⊂ X × Y
be a bounded set. Then there exist positive constants D and D such that

∣
∣f

(
t, u(t), u(t)

)∣
∣ ≤ D,

∣
∣g

(
t, v(t), v(t)

)∣
∣ ≤ D, ∀(u, u), (v, v) ∈ �.

Then for any (u, u), (v, v) ∈ �, and using Lemma ., we have

∥
∥K(x, y)

∥
∥ ≤ Iα

q
∣
∣f

(
s, x(s), Iδ

r y(s)
)∣
∣(t) +

|λ|�

|�| Tα–Iμ

h Iβ
p
∣
∣g

(
s, y(s), Iε

z x(s)
)∣
∣(θ )

+
�

|�|Tα–Iν
k Iα

q
∣
∣f

(
s, x(s), Iδ

r y(s)
)∣
∣(τ )

+
|λ||λ|�

|�| Tα–Iγ
mIα

q
∣
∣f

(
s, x(s), Iδ

r y(s)
)∣
∣(η)

+
|λ|�

|�| Tα–Iκ
n Iβ

p
∣
∣g

(
s, y(s), Iε

z x(s)
)∣
∣(ξ )

≤ DA +
D|λ|�

|�| Tα–A +
D�

|�| Tα–A

+
D|λ||λ|�

|�| Tα–A +
D|λ|�

|�| Tα–A.

In the same way, we deduce that

∥
∥K(x, y)

∥
∥ ≤ Iβ

p
(∣
∣g

(
s, y(s), Iε

z x(s)
)∣
∣
)
(t) +

|λ|�

|�| Tβ–Iγ
mIα

q
(∣
∣f

(
s, x(s), Iδ

r y(s)
)∣
∣
)
(η)

+
�

|�|Tβ–Iκ
n Iβ

p
(∣
∣g

(
s, y(s), Iε

z x(s)
)∣
∣
)
(ξ )

+
|λ||λ|�

|�| Tβ–Iμ

h Iβ
p
(∣
∣g

(
s, y(s), Iε

z x(s)
)∣
∣
)
(θ )

+
|λ|�

|�| Tβ–Iν
k Iα

q
(∣
∣f

(
s, x(s), Iδ

r y(s)
)∣
∣
)
(τ )

≤ DA +
D|λ|�

|�| Tβ–A +
D�

|�| Tβ–A

+
D|λ||λ|�

|�| Tβ–A +
D|λ|�

|�| Tβ–A.

Thus, it follows from the above inequalities that the operator K is uniformly bounded.
Next, we show that K is equicontinuous. Let t, t ∈ [, T] with t < t. Then we have

∣
∣K(x, y)(t) – K(x, y)(t)

∣
∣

≤ ∣
∣Iα

q f
(
s, x(s), Iδ

r y(s)
)
(t) – Iα

q f
(
s, x(s), Iδ

r y(s)
)
(t)

∣
∣
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+
|λ|�

|�|
∣
∣tα–

 – tα–


∣
∣Iμ

h Iβ
p
∣
∣g

(
s, y(s), Iε

z x(s)
)∣
∣(θ )

+
�

|�|
∣
∣tα–

 – tα–


∣
∣Iν

k Iα
q
∣
∣f

(
s, x(s), Iδ

r y(s)
)∣
∣(τ )

+
|λ||λ|�

|�|
∣
∣tα–

 – tα–


∣
∣Iγ

mIα
q
∣
∣f

(
s, x(s), Iδ

r y(s)
)∣
∣(η)

+
|λ|�

|�|
∣
∣tα–

 – tα–


∣
∣Iκ

n Iβ
p
∣
∣g

(
s, y(s), Iε

z x(s)
)∣
∣(ξ )

≤ D

�q(α)

∫ t



[
(t – qs)(α–) – (t – qs)(α–)]dqs

+
D

�q(α)

∫ t

t

(t – qs)(α–) dqs

+
|λ|�D

|�|
∣
∣tα–

 – tα–


∣
∣A +

�D

|�|
∣
∣tα–

 – tα–


∣
∣A

+
|λ||λ|�D

|�|
∣
∣tα–

 – tα–


∣
∣A +

|λ|�D

|�|
∣
∣tα–

 – tα–


∣
∣A.

Analogously, we can get

∣
∣K(x, y)(t) – K(x, y)(t)

∣
∣

≤ ∣
∣Iβ

p g
(
s, y(s), Iε

z x(s)
)
(t) – Iβ

p g
(
s, y(s), Iε

z x(s)
)
(t)

∣
∣

+
|λ|�

|�|
∣
∣tβ–

 – tβ–


∣
∣Iγ

mIα
q
∣
∣f

(
s, x(s), Iδ

r y(s)
)∣
∣(η)

+
�

|�|
∣
∣tβ–

 – tβ–


∣
∣Iκ

n Iβ
p
∣
∣g

(
s, y(s), Iε

z x(s)
)∣
∣(ξ )

+
|λ||λ|�

|�|
∣
∣tβ–

 – tβ–


∣
∣Iμ

h Iβ
p
∣
∣g

(
s, y(s), Iε

z x(s)
)∣
∣(θ )

+
|λ|�

|�|
∣
∣tβ–

 – tβ–


∣
∣Iν

k Iα
q
∣
∣f

(
s, x(s), Iδ

r y(s)
)∣
∣(τ )

≤ D

�p(β)

∫ t



[
(t – ps)(β–) – (t – ps)(β–)]dps

+
D

�p(β)

∫ t

t

(t – ps)(β–) dps

+
|λ|�D

|�|
∣
∣tβ–

 – tβ–


∣
∣A +

�D

|�|
∣
∣tβ–

 – tβ–


∣
∣A

+
|λ||λ|�D

|�|
∣
∣tβ–

 – tβ–


∣
∣A +

|λ|�D

|�|
∣
∣tβ–

 – tβ–


∣
∣A.

Therefore, the operator K(x, y) is equicontinuous, and thus the operator K(x, y) is com-
pletely continuous.

Finally, it will be verified that the set E = {(x, y) ∈ X × Y : (x, y) = λK(x, y),  ≤ λ ≤ } is
bounded. Let (x, y) ∈ E , then (x, y) = λK(x, y). For any t ∈ [, T], we have

x(t) = λK(x, y)(t), y(t) = λK(x, y)(t).
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Then we have
∣
∣x(t)

∣
∣ ≤ PIα

q ()(t) + P‖x‖Iα
q ()(t) + P‖y‖Iα

q Iδ
r ()(t)

+
|λ|�

|�| Tα–(QIμ

h Iβ
p ()(θ ) + Q‖y‖Iμ

h Iβ
p ()(θ ) + Q‖x‖Iμ

h Iβ
p Iε

z ()(θ )
)

+
�

|�|Tα–(PIν
k Iα

q ()(τ ) + P‖x‖Iν
k Iα

q ()(τ ) + P‖y‖Iν
k Iα

q Iδ
r ()(τ )

)

+
|λ||λ|�

|�| Tα–(PIγ
mIα

q ()(η) + P‖x‖Iγ
mIα

q ()(η) + P‖y‖Iγ
mIα

q Iδ
r ()(η)

)

+
|λ|�

|�| Tα–(QIκ
n Iβ

p ()(ξ ) + Q‖y‖Iκ
n Iβ

p ()(ξ ) + Q‖x‖Iκ
n Iβ

p Iε
z ()(ξ )

)

≤ E + E‖x‖ + E‖y‖

and
∣
∣y(t)

∣
∣ ≤ QIβ

p ()(t) + Q‖y‖Iβ
p ()(t) + Q‖x‖Iβ

p Iε
z ()(t)

+
|λ|�

|�| Tβ–(PIγ
mIα

q ()(η) + P‖x‖Iγ
mIα

q ()(η) + P‖y‖Iγ
mIα

q Iδ
r ()(η)

)

+
�

|�|Tβ–(QIκ
n Iβ

p ()(ξ ) + Q‖y‖Iκ
n Iβ

p ()(ξ ) + Q‖x‖Iκ
n Iβ

p Iε
z ()(ξ )

)

+
|λ||λ|�

|�| Tβ–(QIμ

h Iβ
p ()(θ ) + Q‖y‖Iμ

h Iβ
p ()(θ ) + Q‖x‖Iμ

h Iβ
p Iε

z ()(θ )
)

+
|λ|�

|�| Tβ–(PIν
k Iα

q ()(τ ) + P‖x‖Iν
k Iα

q ()(τ ) + P‖y‖Iν
k Iα

q Iδ
r ()(τ )

)

≤ F + F‖x‖ + F‖y‖,

which yields

‖x‖ ≤ E + E‖x‖ + E‖y‖

and

‖y‖ ≤ F + F‖x‖ + F‖y‖.

Therefore, we have

‖x‖ + ‖y‖ ≤ (E + F) + (E + F)‖x‖ + (E + F)‖y‖,

and, consequently,

∥
∥(x, y)

∥
∥ ≤ E + F

G∗

for any t ∈ [, T], which proves that E is bounded. Thus, by Lemma ., the operator K
has at least one fixed point. Hence the system (.) has at least one solution. The proof is
complete. �

4.1 Examples
In this subsection, we present some examples to illustrate our results.



Suantai et al. Advances in Difference Equations  (2015) 2015:124 Page 14 of 21

Example . Consider the following coupled system of fractional q-integro-difference
equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D/
/ x(t) = cos π t

(et+) · |x(t)|
+|x(t)| + e–t

(t+) · Iπ
/y(t) +

√


 ,  < t < ,

D/
/ y(t) = sin π t

(+t) · |y(t)|
+|y(t)| + 

(et+) · Iπ/
/ x(t) +

√
,

x() = ,
√

I/
/ x( 

 ) = I
√


/ y( 

 ),

y() = ,
√


 Ie

/y( 
 ) = I

√


/ x( 
 ).

(.)

Here α = /, δ = π , β = /, ε = π/, γ = /, κ =
√

, μ = e, ν =
√

, q = /, r = /,
p = /, z = /, m = /, n = /, h = /, k = /, η = /, ξ = /, θ = /, τ = /, λ =

√
,

λ =
√

/, T = , f (t, x, Iδ
r y) = (|x| cos π t)/((et + )( + |x|)) + (e–t /((t + )))Iπ

/y +
√

/,
and g(t, y, Iδ

r x) = (|y| sin π t)/(( + t)( + |y|)) + (/(et + ))Iπ/
/ x +

√
. Since

∣
∣f (t, u, u) – f (t, v, v)

∣
∣ ≤ 


|u – v| +




|u – v|

and

∣
∣g(t, u, u) – g(t, v, v)

∣
∣ ≤ 


|u – v| +




|u – v|,

then the assumptions of Theorem . are satisfied with M = /, M = /, N = /,
and N = /. By using the Maple program, we can find that

� = �� – λλ�� ≈ . �= 

and

B = MA +
|λ|Tα–

|�|
(
�NA + |λ|�MA + �NA

)
+

�

|�|Tα–MA

≈ .,

B = MA +
|λ|Tα–

|�|
(
�NA + |λ|�MA + �NA

)
+

�

|�|Tα–MA

≈ .,

C = NA +
|λ|Tβ–

|�|
(
�MA + |λ|�NA + �MA

)
+

�

|�|Tβ–NA

≈ .,

C = NA +
|λ|Tβ–

|�|
(
�MA + |λ|�NA + �MA

)
+

�

|�|Tβ–NA

≈ ..

Therefore, we get

B + B + C + C ≈ . < .

Hence, by Theorem ., the problem (.) has a unique solution on [, ].
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Example . Consider the following coupled system of fractional q-integro-difference
equations with fractional q-integral conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D/
/ x(t) = e–t

(t+) · |x(t)|
+|x(t)| + 

(e–t +) · I
√


/ y(t) +

√
,  < t < π ,

D/
/y(t) = cos π t

(+t) · |y(t)|
+|y(t)| + 

(et+) · I
√


/ x(t) + 

 ,

x() = , I/
/ y( π

 ) +
√

I
√


/ x( π

 ) = ,

y() = , I
√

/
/ x( π

 ) +
√

I
√

π

/ y( π
 ) = .

(.)

Here α = /, δ =
√

, β = /, ε =
√

, γ =
√

, κ = /, μ =
√

π , ν =
√

/, q = /,
r = /, p = /, z = /, m = /, n = /, h = /, k = /, η = π/, ξ = π/, θ = π/,
τ = π/, λ = –

√
, λ = –

√
, T = π , f (t, x, Iδ

r y) = (e–t/(t + ))(|x|/( + |x|)) + (/(e–t +
))I

√


/ y +
√

, and g(t, y, Iδ
r x) = (cos π t/( + t))(|y|/( + |y|)) + (/(et + ))I

√


/ x + (/).
Since

∣
∣f (t, u, u)

∣
∣ ≤ √

 +



|u| +




|u|

and

∣
∣g(t, v, v)

∣
∣ ≤ 


+




|v| +



|v|,

then the assumptions of Theorem . are satisfied with P =
√

, P = /, P = /,
Q = /, Q = /, and Q = /. By using the Maple program, we can find that

� = �� – λλ�� ≈ –. �= 

and

E = PA +
|λ|Tα–

|�|
(
�QA + |λ|�PA + �QA

)
+

�

|�|Tα–PA

≈ .,

E = PA +
|λ|Tα–

|�|
(
�QA + |λ|�PA + �QA

)
+

�

|�|Tα–PA

≈ .,

E = PA +
|λ|Tα–

|�|
(
�QA + |λ|�PA + �QA

)
+

�

|�|Tα–PA

≈ .,

F = QA +
|λ|Tβ–

|�|
(
�PA + |λ|�QA + �PA

)
+

�

|�|Tβ–QA

≈ .,

F = QA +
|λ|Tβ–

|�|
(
�PA + |λ|�QA + �PA

)
+

�

|�|Tβ–QA

≈ .,
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F = QA +
|λ|Tβ–

|�|
(
�PA + |λ|�QA + �PA

)
+

�

|�|Tβ–QA

≈ .

and

G∗ = max
{

 – (E + F),  – (E + F)
}

= max{., .} = ..

Therefore, we get

E + F ≈ . <  and E + F ≈ . < .

Hence, by Theorem ., the problem (.) has at least one solution on [,π ].

5 Uncoupled integral boundary conditions case
In this section we consider the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα
q x(t) = f (t, x(t), Iδ

r y(t)), t ∈ [, T],  < α ≤ ,
Dβ

p y(t) = g(t, y(t), Iε
z x(t)), t ∈ [, T],  < β ≤ ,

x() = , λIγ
mx(η) = Iκ

n x(ξ ),
y() = , λIμ

h y(θ ) = Iν
k y(τ ).

(.)

Lemma . (Auxiliary lemma, see []) For h ∈ C([, T],R), the unique solution of the
problem

{
Dα

q x(t) = h(t), t ∈ [, T],  < α ≤ ,
x() = , λIγ

mx(η) = Iκ
n x(ξ ),

(.)

is given by

x(t) = Iα
q h(t) +

λtα–

�
Iγ

mIα
q h(η) –

tα–

�
Iκ

n Iα
q h(ξ ), (.)

where

� =
�n(α)

�n(κ + α)
ξκ+α– – λ

�m(α)
�m(γ + α)

ηγ +α– �= .

5.1 Existence results for uncoupled case
In view of Lemma ., we define an operator T : X × Y → X × Y by

T (x, y)(t) =

(
T(x, y)(t)
T(x, y)(t)

)

,

where

T(x, y)(t) = Iα
q f

(
s, x(s), Iδ

r y(s)
)
(t) +

λtα–

�
Iγ

mIα
q f

(
s, x(s), Iδ

r y(s)
)
(η)

–
tα–

�
Iκ

n Iα
q f

(
s, x(s), Iδ

r y(s)
)
(ξ )
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and

T(x, y)(t) = Iβ
p g

(
s, y(s), Iε

z x(s)
)
(t) +

λtβ–

�
Iμ

h Iβ
p g

(
s, y(s), Iε

z x(s)
)
(θ )

–
tβ–

�
Iν

k Iβ
p g

(
s, y(s), Iε

z x(s)
)
(τ ),

where

� =
�k(β)

�k(ν + β)
τ ν+β– – λ

�h(β)
�h(μ + β)

θμ+β– �= .

In the sequel, we set constants

A =
�n(α + )ξκ+α

�n(κ + α + )�q(α + )
,

A =
�n(α + δ + )�q(δ + )ξκ+α+δ

�n(κ + α + δ + )�q(α + δ + )�r(δ + )
,

A =
�k(β + )τ ν+β

�k(ν + β + )�p(β + )
,

A =
�k(β + ε + )�p(ε + )τ ν+β+ε

�k(ν + β + ε + )�p(β + ε + )�z(ε + )
,

H = MA +
|λ|Tα–

|�| MA +
Tα–

|�| MA,

H = MA +
|λ|Tα–

|�| MA +
Tα–

|�| MA,

L = NA +
|λ|Tβ–

|�| NA +
Tβ–

|�| NA,

L = N A +
|λ|Tβ–

|�| N A +
Tβ–

|�| N A.

Now we present the existence and the uniqueness result for the problem (.). We do
not provide the proof of this result as it is similar to the one for Theorem ..

Theorem . Assume that f , g : [, T] ×R
 →R are continuous functions and there exist

constants Ki, Li, i = ,  such that for all t ∈ [, T] and ui, vi ∈R, i = , ,

∣
∣f (t, u, u) – f (t, v, v)

∣
∣ ≤ M|u – v| + M|u – v|

and

∣
∣g(t, u, u) – g(t, v, v)

∣
∣ ≤ N |u – v| + N|u – v|.

In addition, assume that

H + H + L + L < .

Then the boundary value problem (.) has a unique solution on [, T].
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The second result deals with the existence of solutions for the problem (.), is analogous
to Theorem . and is given below.

Theorem . Assume that there exist real constants m̄i, n̄i ≥  (i = , ), and m̄ > , n̄ > 
such that ∀xi ∈R (i = , ) we have

∣
∣f (t, x, x)

∣
∣ ≤ m̄ + m̄|x| + m̄|x|,

∣
∣g(t, x, x)

∣
∣ ≤ n̄ + n̄|x| + n̄|x|.

In addition it is assumed that

U + V <  and U + V < ,

where Ui, Vi, i = , , are given by

U = m̄A +
|λ|Tα–

|�| m̄A +
Tα–

|�| m̄A,

U = m̄A +
|λ|Tα–

|�| m̄A +
Tα–

|�| m̄A,

V = n̄A +
|λ|Tβ–

|�| n̄A +
Tβ–

|�| n̄A,

V = n̄A +
|λ|Tβ–

|�| n̄A +
Tβ–

|�| n̄A.

Then the boundary value problem (.) has at least one solution on [, T].

Proof By setting

G∗ = min
{

 – (U + V),  – (U + V)
}

,

the proof is similar to that of Theorem .. So we omit it. �

5.2 Examples
In this subsection, we present two examples of uncoupled case of nonlocal conditions.

Example . Consider the following system of fractional q-integro-difference equations
with q-integral conditions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D/
/x(t) = e–t sinπ t

(t+) · |x(t)|
+|x(t)| + cos π t

π (t+) · I
√


/ y(t) – 

 ,  < t < ,

D/
/ y(t) = πe–t

(π+t) · |y(t)|
+|y(t)| + sin π t

(et+) · I
√


/ x(t) + 

 ,

x() = , 
 I

√



/ x( 

 ) = I
√


/ x( 

 ),

y() = , I
√

π

/ y() + 
 Iπ

/y( 
 ) = .

(.)

Here α = /, δ =
√

, β = /, ε =
√

, γ =
√

/, κ =
√

/, μ = π , ν =
√

π , q = /, r =
/, p = /, z = /, m = /, n = /, h = /, k = /, η = /, ξ = /, θ = /, τ = , λ =
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/, λ = –/, T = , f (t, x, Iδ
r y) = (e–t sinπ t/(t + ))(|x|/( + |x|)) + (cos π t/π (t + ))I

√


/ y –
(/), and g(t, y, Iδ

r x) = (πe–t/(π + t))(|y|/(+ |y|))+(sin π t/(et +))I
√


/ x+(/). Since

∣
∣f (t, u, u) – f (t, v, v)

∣
∣ ≤ 


|u – v| +


π

|u – v|

and

∣
∣g(t, u, u) – g(t, v, v)

∣
∣ ≤ 

π
|u – v| +




|u – v|,

then the assumptions of Theorem . are satisfied with M = /, M = /π , N  =
/π , and N = /. By using the Maple program, we can find that

� =
�n(α)

�n(κ + α)
ξκ+α– – λ

�m(α)
�m(γ + α)

ηγ +α– ≈ . �= ,

� =
�k(β)

�k(ν + β)
τ ν+β– – λ

�h(β)
�h(μ + β)

θμ+β– ≈ . �= 

and

H = MA +
|λ|Tα–

|�| MA +
Tα–

|�| MA ≈ .,

H = MA +
|λ|Tα–

|�| MA +
Tα–

|�| MA ≈ .,

L = NA +
|λ|Tβ–

|�| NA +
Tβ–

|�| NA ≈ .,

L = N A +
|λ|Tβ–

|�| N A +
Tβ–

|�| N A ≈ ..

Therefore, we get

H + H + L + L ≈ . < .

Hence, by Theorem ., the problem (.) has a unique solution on [, ].

Example . Consider the following system of fractional q-integro-difference equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D
√

π√
/x(t) = e–t

(e–t+) · |x(t)|
+|x(t)| + π

(t+π ) · I/√
/y(t) + √


,  < t < ,

Dπ/
π/y(t) = e–t cos π t

(t+) · |y(t)|
+|y(t)| + 

(t+) · I/
π/x(t) +

√


 ,

x() = ,
√


 I/

π/x() + I/
π/x( 

 ) = ,

y() = , I
√


π/y( 

 ) = I/
π/y( 

 ).

(.)

Here α =
√

π , δ = /, β = π/, ε = /, γ = /, κ = /, μ =
√

, ν = /, q =
√

/,
r =

√
/, p = π/, z = π/, m = π/, n = π/, h = π/, k = π/, η = , ξ = /, θ = /,

τ = /, λ = –
√

/, λ = , T = , f (t, x, Iδ
r y) = (e–t/(e–t + ))(|x|/( + |x|)) + (π/(t +

π ))I/√
/y + (/

√
), and g(t, y, Iδ

r x) = (e–t cos π t/(t + ))(|y|/( + |y|)) + (/(t + ))I/
π/x +



Suantai et al. Advances in Difference Equations  (2015) 2015:124 Page 20 of 21

(
√

/). Since

∣
∣f (t, x, x)

∣
∣ ≤ √


+



|x| +



|x|

and

∣
∣g(t, x, x)

∣
∣ ≤

√



+




|x| +



|x|,

then the assumptions of Theorem . are satisfied with m̄ = /
√

, m̄ = /, m̄ = /,
n̄ =

√
/, n̄ = /, and n̄ = /. By using the Maple program, we can find that

� =
�n(α)

�n(κ + α)
ξκ+α– – λ

�m(α)
�m(γ + α)

ηγ +α– ≈ . �= ,

� =
�k(β)

�k(ν + β)
τ ν+β– – λ

�h(β)
�h(μ + β)

θμ+β– ≈ –. �= 

and

U = m̄A +
|λ|Tα–

|�| m̄A +
Tα–

|�| m̄A ≈ .,

U = m̄A +
|λ|Tα–

|�| m̄A +
Tα–

|�| m̄A ≈ .,

V = n̄A +
|λ|Tβ–

|�| n̄A +
Tβ–

|�| n̄A ≈ .,

V = n̄A +
|λ|Tβ–

|�| n̄A +
Tβ–

|�| n̄A ≈ ..

Therefore, we get

U + V ≈ . <  and U + V ≈ . < .

Hence, by Theorem ., the problem (.) has at least one solution on [, ].
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