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Abstract

Background: Adult neurogenesis and the incorporation of adult-born neurons into functional circuits requires precise
spatiotemporal coordination across molecular networks regulating a wide array of processes, including cell proliferation,
apoptosis, neurotrophin signaling, and electrical activity. MicroRNAs (miRs) - short, non-coding RNA sequences that alter
gene expression by post-transcriptional inhibition or degradation of mRNA sequences - may be involved in the global
coordination of such diverse biological processes. To test the hypothesis that miRs related to adult neurogenesis and
related cellular processes are functionally regulated in the nuclei of the avian song control circuit, we used microarray
analyses to quantify changes in expression of miRs and predicted target mRNAs in the telencephalic nuclei HVC, the
robust nucleus of arcopallium (RA), and the basal ganglia homologue Area X in breeding and nonbreeding Gambel’s
white-crowned sparrows (Zonotrichia leucophrys gambelli).

Results: We identified 46 different miRs that were differentially expressed across seasons in the song nuclei. miR-132 and
miR-210 showed the highest differential expression in HVC and Area X, respectively. Analyzing predicted mRNA targets
of miR-132 identified 33 candidate target genes that regulate processes including cell cycle control, calcium signaling,
and neuregulin signaling in HVC. Likewise, miR-210 was predicted to target 14 mRNAs differentially expressed across
seasons that regulate serotonin, GABA, and dopamine receptor signaling and inflammation.

Conclusions: Our results identify potential miR–mRNA regulatory networks related to adult neurogenesis and provide
opportunities to discover novel genetic control of the diverse biological processes and factors related to the functional
incorporation of new neurons to the adult brain.

Keywords: microRNA, miR–mRNA network, Adult neurogenesis, Seasonal plasticity, Sex steroids, Testosterone,
Photoperiod, Songbird, Bird song

Background
Ongoing neurogenesis in the adult brain requires com-
plex but yet precise temporal and spatial coordination of
the underlying processes and mechanisms. For example,
neural stem cells residing in specific niches throughout
the adult brain [1–4] proliferate and give rise to new
neurons and glia [5]. The new immature neurons depart
the neurogenic niche, migrate to their final destinations
[5, 6], and integrate into functional circuits [5, 7–9].

Once fully integrated mature adult-born neurons persist
for periods ranging from days to years [5, 10–12]. Each
of these processes is regulated by a plethora of interact-
ing autonomous and non-autonomous factors. Some of
these factors include but are not limited to sex steroid
hormones secreted by the gonads and synthesized de
novo in the brain, locally synthesized neurotrophins,
neural use and activity, cell death and inflammation, be-
havior including social interactions, and stress (for re-
views see [5, 13]).
One potential candidate for globally regulating the dif-

ferent biological processes, mechanisms, and factors as-
sociated with adult neurogenesis is microRNAs (miRs).
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miRs are short, non-coding RNA sequences that alter
gene expression by translational repression or mRNA
target degradation (for review see [14]). Individual miRs
have many mRNA targets, and thus can act as global
regulators of complex temporal and spatial patterns of
gene or protein expression changes underlying neural
plasticity [14]. Moreover, miR expression is highly
enriched in the brain [15] and has been implicated as
involved in a variety of neurological disorders and dis-
eases including Amyotrophic Lateral Sclerosis [16],
Fragile X mental retardation [17], mood and mental dis-
orders [18, 19], and Alzheimer’s Disease [20]. Specific
miRs play major roles in the normal processes of neural
plasticity including fate specification [21], dendritic

arborization and synapse formation [22, 23], adult-born
neuronal addition and survival [24], and apoptosis [25].
However, potential genetic regulatory networks of brain-
expressed miRs have been little explored in the context
of adult neural circuit plasticity.
One prominent model for adult neurogenesis is the

song control circuit of songbirds (Fig. 1a). Adult neuro-
genesis in Area X, a basal ganglia homologue required
for song learning [26], occurs at high constitutive rates
[27]. On the other hand, adult neurogenesis in HVC, a
pallial nucleus involved in song learning and production,
exhibits pronounced seasonal changes in neuronal
addition and neuronal loss (reviewed in [13]). Most, if
not all, of the new neurons added to the adult HVC have

Fig. 1 Experimental design. a A schematic of the song nuclei sampled for microarray analysis. The dotted line indicates where tissue samples
were obtained. b Experimental time-line for all experimental groups. A red line indicates termination of the experiment for the given group.
c Representative images of Nissl-stained brain sections confirming tissue punch locations in HVC, RA and Area X. The arrowheads indicate the
borders of the respective nuclei as determined by cell morphology and density
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long axons that project 4 mm or more to synapse on tar-
get cells in RA [28, 29]. During the breeding season total
neuronal number in HVC of Gambel’s white-crowned
sparrow (Zonotrichia leucophrys gambelii) increases by
25 % (nearly 68,000 neurons), due to increased addition
of adult-born neurons [30–32]. As white-crowned spar-
rows transition back into nonbreeding conditions, HVC
neuronal number decreases through caspase-mediated
apoptosis of neurons [33–35]. The seasonal incorpor-
ation of new HVC neurons of adult birds, correlates with
changes in song production - a learned sensorimotor be-
havior; each breeding season as HVC increases in neur-
onal number, song production rate and song stereotypy
increase [28, 36, 37]. Concomitant with the changes in
HVC morphology and singing behavior, both Area X
and RA change in morphology [27, 32, 33] and RA in
neuronal activity during breeding seasons [38, 39]. The
quantitative changes in HVC neuronal number, the in-
corporation of adult-born neurons into long-range
neural circuits, and the tight relationship between HVC
adult neurogenesis, morphological and physiological
changes in other song nuclei, and the production of a
learned sensorimotor behavior, make the HVC ➝ RA
and HVC ➝ Area X circuits a unique model for investi-
gating the spatiotemporal pattern of genetic networks
that regulate the multitude of processes and factors re-
lated to adult neural circuit plasticity.

Methods
Animals
All animal procedures were approved by the Institutional
Animal Care and Use Committee at the University of
Washington. Sixty adult male Gambel’s white-crowned
sparrows (Zonotrichia leucophrys gambelii) were collected
in eastern Washington during their spring and autumnal
migration under State of WA Scientific Collecting permit
#10-162 and U.S. Fish and Wildlife Permit #MB708576-0.
Birds were housed in outdoor aviaries under natural pho-
toperiods for at least 20 weeks prior to transitioning into
indoor aviaries. Once indoors, birds were exposed to a
short-day photoperiod (SD; 8 h light: 16 h dark) for at
least 10 weeks prior to experiment onset to ensure that
they were photosensitive and responsive to sex steroid
hormones. Food and water were available ad libitum
throughout the experiment. We castrated all birds by an-
esthetizing them with isoflurane, making a small incision
on the left side anterior to the caudal-most rib and dorsal
to the uncinate process, and aspirating both testes [40].
To synchronize the physiological states of the birds,

birds were implanted with a subcutaneous Silastic pellet
(i.d. 1.0 mm; o.d. 2.0 mm; length: 12 mm; VWR) filled
with crystaline T (Sigma) and shifted to a long day
photoperiod (LD; 20 h light: 4 h dark) for 21 days (see
Fig. 1b for experimental design). A period of 21 days in

breeding-like conditions is adequate for full breeding-
like growth of the song circuits [32]. On day 21 we re-
moved the subcutaneous T pellets from all birds, and
shifted them back to SD photoperiods for 10 weeks. On
the final day of SD we quickly decapitated nine birds
and removed the brain for processing as detailed below.
The SD group of birds represented the steady-state
regressed song control circuit and served as a baseline of
comparison for all other groups. Another group of 45
birds were transitioned back to LD photoperiods and
implanted with T (LD + T). On days 3, 7, and 21 of LD
+ T exposure, we quickly decapitated nine birds from
each group and removed the brain. Of the nine
remaining birds in LD + T for 21 days, all had T pellets
removed and were transitioned back to SD overnight
(i.e. LDW condition). After 1 day in SD, all nine remaining
birds were killed for tissue collection. All birds were
allowed to sing throughout the course of the entire experi-
ment. SD and LDW birds sing less stereotyped song and
do so less frequently than LD + T birds [37]. There is
extensive variability in song rate within and between indi-
vidual birds over a given day, and from day to day, under
LD +T conditions [41]. To control for circadian effects on
genes and behavior, we killed all birds between 4 and 8 h
after lights on.

Tissue harvesting
The brains of all birds were removed rapidly (within
1 min) and Vibratome sectioned at 300 μm in ice-cold,
oxygenated artificial cerebral spinal fluid (ACSF;
119 mM NaCl, 2.5 mM KCl, 1.3 mM MgSO4, 2.5 mM
CaCl2, 1 mM NaH2PO4, 16.2 mM NaHCO3, 11 mM D-
glucose, and 10 mM HEPES). From these slices, punches
of tissue containing HVC, RA, or Area X were collected
within 2 min under a dissecting microscope using
blunted hypodermic needles of the minimum gage that
could fit entirely within the target nucleus. Tissue punch
location was verified post-hoc by Nissl-staining of re-
sectioned, fixed tissue, as in (Fig. 1c; [42]). HVC punches
included the proliferative ventricular zone just dorsal to
HVC. All of tissue punches from one nucleus of one bird
were pooled, flash frozen in dry ice, and stored at –80 °C
until processed for microarray hybridization.

RNA isolation to microarray hybridization
Total RNA was extracted from individual snap frozen
tissue samples using the mirVana Paris Kit according to
the manufacturer’s protocol (Life Technologies, PN
1556 M Rev C) to generate samples of isolated small
(<200 nucleotides) and large (>200 nucleotides) RNAs.
Total RNA concentration was determined measuring
OD260, and the integrity of each RNA sample was veri-
fied using an Agilent 2100 Bioanalyzer (Santa Clara,
CA). Only RNA samples with appropriate size
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Fig. 2 Patterns of changing expression of mRNA and miR transcripts between breeding and nonbreeding conditions. Expression data were converted
to z-scores for each mRNA or miR. Thus colors represent up (red) or down (blue) regulation of a miR or mRNA in a particular sample, as compared to
the mean expression for that gene. a The relative expression of mRNAs that were differentially regulated in at least one experimental group (i.e. LD + T
3D, 7D, 21, or LDW) compared to SD. A p-value of <0.0001 and a fold change >2.0 were used as the threshold for inclusion. b Relative expression of
miRs that were differentially regulated in at least one experimental group with a fold change >2.0 and p < 0.0005 compared to SD. miRs of interest
based on predicted function or miRs specific to birds are denoted
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distribution, quantity, and OD260/280 and OD 260/230
ratios of 1.8–2.1 were used for further array analysis.
Total RNA samples were used for mRNA and micro-
RNA arrays analysis.
For mRNA analysis, samples were processed and hy-

bridized to Agilent ZebraFinch Oligoarray v2.2 (Agilent,
Santa Clara, CA). The Agilent ZebraFinch Oligoarray
v2.2 was designed with 43,488 60-mer oligos represent-
ing 10,647 annotated genes ([43, 44]). RNA isolation
from brain punches resulted in a lower yield than is re-
quired for Agilent ZebraFinch Oligoarray v2.2. There-
fore, RNA amplification was performed using the Nugen
Ovation PicoSL WTA kit according to the manufac-
turer’s protocol. Amplified RNA was used for further
processing and hybridization to the Agilent arrays using
the manufacturer’s established one color protocol.
Hybridization and washing of these arrays was accom-
plished using HS 400 Pro hybridization and wash sta-
tions (Tecan Systems, Inc., San Jose, CA). In total 45

microarrays were used, including three replicates for
each nucleus from each experimental time point. Arrays
were scanned using an Agilent DNA Microarray Scanner
(Agilent Technologies, Inc. Santa Clara, CA), according
to the manufacturer’s established standard protocol.
For miR analysis, samples were processed and hybrid-

ized to Affymetrix miRNA 3.0 arrays (Affymetrix, Santa
Clara, CA). The Affymetrix miRNA 3.0 array was de-
signed based on the miRBase v17 database. This array
contains probe sets for 19,724 mature microRNAs from
a total of 153 species including several avian species.
Samples isolated form three individual birds belonging
to the same experimental groups were pooled. For each
experimental group, three biological replicates of pooled
samples (i.e., a total of nine birds in three pooled sam-
ples) were processed and hybridized to Affymetrix
miRNA 3.0 arrays according to the manufacturer’s rec-
ommended protocol. Arrays were scanned with an Affy-
metrix GeneChip® 3000 scanner. In total 45 microarrays

Table 1 Top canonical pathways of mRNAs seasonally regulated in HVC, RA, and Area X

Top Canonical Pathways p-value Ratio # of Genes

HVC

3D RAN Signaling 0.0009 0.214 3

Cell Cycle Control 0.0235 0.118 2

7D Galactose Degradation 0.0280 0.200 1

UDP-N-acetyl-D-galactosamine Biosynthesis 0.0057 0.143 1

21D ERK5 Signaling 0.0001 0.103 4

NGF Signaling 0.0064 0.062 5

LDW ATM Signaling 0.0168 0.075 3

Tumoricidal Function 0.0171 0.133 2

RA

3D Wnt/Ca + Pathway 0.0500 0.214 1

Axonal Guidance Signaling 0.0500 0.008 2

7D Myo-inositol Signaling 0.0081 0.086 3

T Lymphcyte Signaling 0.0478 0.042 1

21D Cancer Signaling 0.0027 0.056 2

Synaptic Long Term Depression 0.0105 0.023 2

LDW Sphingosine Metabolism 0.0054 0.500 1

Ceramide Degradation 0.0054 0.500 1

Area X

3D Galactose Degradation 0.0152 0.200 1

RAN Signaling 0.0420 0.071 1

7D Flavin Biosynthesis 0.0029 1.000 1

Salvage Pathway 0.0110 0.025 1

21D Granulocyte Adhesion 0.0130 0.045 2

Gylcerol Degradation 0.0197 0.200 1

LDW LPS/ IL-1 Mediated Function 0.0060 0.056 5

MIF-mediated Glucocorticoid Regulation 0.0100 0.167 2
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were used, including three replicates for each nucleus
from each experimental time point. The hybridized ar-
rays were scanned with an Affymetrix GeneChip 3000
scanner.

Microarray data analysis
Raw mRNA array data from the Agilent Zebrafinch Oli-
goarrays was extracted with the Agilent Feature Extrac-
tion image analysis software (Agilent, Santa Clara, CA).

Table 2 Significantly differentially expressed miRNAs with a fold change >1.5 and p < 0.0005

3D 7D 21D LDW

HVC miRNA Fold
Change

p-value miRNA Fold
Change

p-value miRNA Fold
Change

p-value miRNA Fold
Change

p-value

miR-132 (4)a 1.88 ± 0.18 0.0015 miR-132 (12) 2.83 ± 0.06 0.0033 miR-132
(13)

3.63 ± 0.07 <0.0001 miR-132
(13)

3.65 ± 0.10 0.0001

miR-1356 2.00 <0.0001 miR-134 −1.12 0.0001

miR-212 1.96 0.0001 miR-1182 −1.81 0.0005

miR-2840 1.69 0.0004 miR-404 −1.83 0.0005

miR-1915 −1.98 0.0002

miR-395f −2.11 0.0003

miR-2455 −2.23 0.0003

miR-1562 −2.39 0.0002

miR-4516 −2.44 <0.0001

miR-574 −2.45 0.0005

miR-295 −2.53 0.0004

miR-395b −2.57 0.0001

miR-1782 −2.68 0.0004

miR-1362 −2.79 0.0001

RA

miR-281 4.47 0.0001 miR-34a 5.00 <0.0001 miR-132
(4)

1.88 ± 0.05 0.0001 miR-132
(4)

1.90 ± 0.11 0.0001

miR-1192 3.98 0.0003 miR-2111n 4.84 <0.0001 miR-2525 −2.40 0.0004

miR-184 3.94 0.0004 miR-2571 4.47 0.0001

miR-77 3.86 0.0005 miR-311b 4.29 0.0001

miR-4197 −3.92 0.0004 miR-4142 4.02 0.0003

miR-236 −3.94 0.0004 mir-135a 3.98 0.0003

miR-2182 −4.03 0.0003 miR-8 3.97 0.0003

miR-758 −4.04 0.0003 miR-199b 3.85 0.0005

miR-982 −4.33 0.0001 miR-837 −3.90 0.0004

miR-34 −4.62 0.0001 miR-528 −4.03 0.0003

mir-4478 −4.73 <0.0001 miR-441a −4.15 0.0002

miR-3479 −5.23 <0.0001 miR-395 g −4.17 0.0002

mir-23a −4.22 0.0002

miR-2357 −4.23 0.0002

mir-3673 −4.35 0.0001

mir-129 −4.64 <0.0001

Area X

miR-2491 2.00 0.0002 miR-210 −1.96 <0.0001 miR-3751 1.35 <0.0001 miR-132
(6)

1.69 ± 0.06 0.0002

miR-132 (2) −1.79 ±
0.16

0.0002 miR-210
(4)

−1.71 ±
0.09

0.0003 miR-1713 −1.55 <0.0001

Fold changes are mean ± S.E.M. across all probes satisfying selection criteria, whereas p-value is that of the least significant result satisfying selection criteria
aNumber of probes with expression meeting selection criteria in parentheses
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The data were normalized using a variance-stabilization
procedure (VSN) [45]. Image generation and feature ex-
traction for Affymetrix microRNA 3.0 arrays was per-
formed using Affymetrix GeneChip Command Console
Software. The raw microRNA array data was normalized
using quantile normalization, followed by a robust
multi-array average (RMA; [46]) with Bioconductor [47].
Several quality control steps were followed: (1) visual in-
spection of the GCOS chip images, (2) visual inspection
of the chip pseudoimages generated by the Bioconductor
affyPLM package, (3) generation and inspection of prin-
cipal components analysis (PCA) plots, (4) generation
and inspection of histograms of raw signal intensities,
and (5) generation and comparison of the Relative Log
Expression and Normalized Unscaled Standard Errors
using the Bioconductor affyPLM package. MiRs and
mRNAs with significant differential expression were
identified using the Bioconductor limma package [48].
Data were analyzed using a weighted analysis of variance
(ANOVA) model, making individual comparisons using
empirical Bayes adjusted contrasts. The weighted
ANOVA model assigned array weights to smoothly up
or down-weight the importance of a particular array,
based on how similar that array is to others of the same

type [49]. The empirical Bayes adjustment estimates a
variance prior based on all genes or miRNAs on the
array, and then reduces the by-gene estimates towards
that prior [48].
We compared the differentially expressed mRNAs

from our study to previously published gene expression
data sets ([40, 44]; GSE28347 and GSE33365, respect-
ively) using R software (http://www.r-project.org/). We
filtered both gene expression data sets for differentially
expressed genes using the published filtering criteria
used in the prior studies (i.e. a threshold of 1.5-fold
change and p < 0.05 for the Thompson et al. (2012) data,
and a 2-fold change and p < 0.01 for Whitney et al.
(2014); [40, 44]). Prior to making comparisons we
assigned HUGO Gene Nomenclature Committee sym-
bols (http://www.genenames.org) to the probes. This re-
sulted in a 75 % overlap in gene symbols between our
array targets and the targets of the arrays used in
Thomspon et al. (2012). Whitney et al. (2014) utilized
the same array platform as we did. We compared the
differentially expressed genes in HVC, RA, and Area X
in LD + T 3, 7, and 21D and LDW relative to SD across
our and the Thompson et al. (2012) datasets. We com-
pared our results from LD + T 21D relative to SD to the

Fig. 3 qRT-PCR validation miR microarray identification of miR-132 as differentially regulated between seasons. Fold change in expression of miR-
132 from the microarray (M; shown in light colors) compared to qRT-PCR (P; dark colors). All fold-changes are relative to SD. miR-132 trended towards
differential expression with qRT-PCR at LD + T 7D in HVC (adjusted-p = 0.0802) and achieved significant differential expression at LD + T 21D in
RA (adjusted-p = 0.0427)
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Fig. 4 (See legend on next page.)
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differentially expressed genes between 5 h of singing and
no singing of Whitney et al. (2014).

Real-time quantitative PCR confirmation of miR expression
Differentially expressed genes of interest were selected
for internal validation of the microarray results by
TaqMan based real-time quantitative reverse tran-
scription (qRT-PCR). The goal of the qRT-PCR was
to confirm the identity and expression of genes
shown by the microarray analysis to be differentially
expressed. Four micro-liters of remaining cRNA not
used for microarray hybridization was added to each
25 μl PCR mixture consisting of primers (0.16 μM

each) specific to one miR of interest, buffers, salts,
and SYBR Green PCR master mix. Fluorescence de-
tection was measured using the 7900HT FAST Real-
Time PCR System (Applied Biosystems, Foster City,
CA) with the following PCR reaction profile: 1 cycle
of 95 °C for 10 min, 40 cycles of 95 °C for 30 s, and
60 °C for 60 s, followed by a melt curve. DNA ampli-
fication was quantified from the C (T) value based on
standard curves to ensure quantification was within a
linear range. All signals were normalized against U6,
and fold-change ratios were calculated for experimen-
tal samples compared to SD controls using R soft-
ware. miR-132 qRT-PCR expression across nuclei at

Table 3 Top pathways for miR-132 and miR-210 predicted mRNA targets across all time points

Top Canonical
Pathway

p-value Ratio Genes

miR-132 HVC

Molecular Mechanisms of Cancer <0.0001 0.0301 E2F5, CFLAR, ADCY3, ARHGEF10, CDKN1A, MAPK1, TGFB2, PRKD1,
RAP2B, PRKAG2, FOXO1

RAR Activation 0.0001 0.0398 ADCY3, MAPK1, TGFB2, PRKD1, PRKAG2, NCOR1, GTF2H1

VDR/RXR Activation 0.0001 0.0641 CDKN1A, TGFB2, PRKD1, NCOR1, FOXO1

Breast Cancer Regulation by Stathmin1 0.0001 0.0366 E2F5, ADCY3, ARHGEF10, CDKN1A, MAPK1, PRKD1, PRKAG2

ErbB Signaling 0.0001 0.0581 HBEGF, MAPK1, PRKD1, NRG2, FOXO1

Pancreatic Adenocarcinoma Signaling 0.0003 0.0472 E2F5, HBEGF, CDKN1A, MAPK1, TGFB2

Cell Cycle: G1/S Checkpoint Regulation 0.0005 0.0625 E2F5, CDKN1A, TGFB2, FOXO1

PPARα/RXRα Activation 0.0005 0.0335 ADCY3, MAPK1, TGFB2, CAND1, PRKAG2, NCOR1

Leptin Signaling 0.0008 0.0541 ADCY3, MAPK1, PRKAG2, FOXO1

Acute Myeloid Leukemia Signaling 0.0009 0.0519 KITLG, MAPK1, TCF7L2, TCF7L1

miR-210 Area X

Phospholipase C Signaling 0.0022 0.0126 ADCY5, BTK, PPP1CB

Dopamine Receptor Signaling 0.0033 0.0256 ADCY5, PPP1CB

CDK5 Signaling 0.0052 0.0202 ADCY5, PPP1CB

NAD Biosynthesis III 0.0066 0.1670 NMNAT2

Phosphatidylcholine Biosynthesis I 0.0078 0.1430 PCYT1B

NAD Salvage Pathway III 0.0078 0.1430 NMNAT2

Cellular Effects of Sildenafil (Viagra) 0.0089 0.0155 ADCY5, PPP1CB

β-adrenergic Signaling 0.0093 0.0150 ADCY5, PPP1CB

Calcium Transport I 0.0100 0.1110 ATP2B3

Dopamine-DARPP32 Feedback in
cAMP Signaling

0.0135 0.0124 ADCY5, PPP1CB

(See figure on previous page.)
Fig. 4 The seasonal miR-132–mRNA regulatory network in HVC. a The relative expression changes of mRNA targets of miR-132 that were differentially
regulated in at least one experimental group (i.e. LD + T 3D, 21, or LDW) compared to SD, as well as having an inverse correlation to miR-132 in the same
comparison. A p-value of <0.005 and a fold change >1.5 at any time point were used as selection criteria for mRNAs presented in the heat map. b An
interaction network of mRNAs that were differentially anti-expressed with a fold change > -1.5 and p< 0.005 from conditions in which miR-132 was also
differentially expressed (i.e. fold change > 2.0). IPA network analyses revealed several key pathways were down-regulated during periods of HVC new
neuronal addition and functional incorporation
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LD + T 3D, 7D, 21D, and LDW relative to SD were
fit with ANOVA and had p-values adjusted using a
family-wise error rate (FWER) adjustment and subse-
quent Hommel correction for multiple comparison.

MiR sequencing and analysis
In order to cross correlate seasonally regulated mRNAs
to the differentially regulated miRs, we used the micro-
RNA Target Filter function of the Ingenuity Pathway
Analysis software (IPA, http://www.ingenuity.com) as
described below. The miR sequence, specifically the ma-
ture and seed region sequences, were confirmed to be
100 % homologous to the equivalent human miR. Briefly,
primers for PCR were designed to amplify the full se-
quence of Gambel’s white-crowned sparrow miRs of
interest using the sequence of that miR in closely related
bird species and a broad range of vertebrates. From gen-
omic DNA, full genomic miR sequences were amplified
with PCR using Quick Load Master Mix (New England
Biolabs) as per the manufacturer’s protocol. MiR se-
quence was verified (via GeneWiz, Seattle, WA) from in-
dependent PCR product of five individual birds after
isolation from a 1.5 % electrophoresis gel using the

Qiagen Gel Extraction Kit. All miRs of interest were
confirmed to have 100 % identity within the mature and
seed regions of human and mouse sequences (Additional
file 1: Table S1). For miR-132 and miR-210, rooted
phylogenetic trees with branch lengths were constructed
in ClustalW (www.genome.jp/tools/clustalw/) using the
white-crowned sparrow sequence and the respective
miR sequences of other vertebrates obtained through
the miRBase, v17 database (mirbase.org, University of
Manchester) or when not available, as with miR-210, an-
notated sequences from bird (taxid:8782) BLAST hits
(blast.ncbi.nlm.nih.gov; Additional file 2: Figures S1 and
Additional file 3: Figure S2).

Canonical signaling pathway and miR target predictions
Conserved canonical signaling pathways were predicted
for both mRNAs and miRs using the core analysis mod-
ule of the IPA software (Ingenuity, http://www.ingenui-
ty.com). Canonical pathways with p < 0.05 were
considered significant. Potential targets of miR-132 and
miR-210 were predicted using the miR Target Filter
module in IPA (Ingenuity) and applying the filtering cri-
teria moderate or high confidence based on the

Table 4 Top pathways for miR-132 in HVC predicted mRNA targets at each time point

Top Canonical Pathways p-Value Ratio # Genes

LD + T 3D

Breast Cancer Regulation 0.0017 0.0209 4

Estrogen-mediated S-phase Entry 0.0019 0.0833 2

Molecular Mechanisms of Cancer 0.0028 0.0137 5

Cell Cycle Checkpoint Control 0.0094 0.0364 2

Wnt/β-catenin Sginaling 0.0103 0.0178 3

LD + T 7D

PTEN Signaling 0.0009 0.0254 3

AMPK Signaling 0.0013 0.0224 3

Melanoma Signaling 0.0030 0.0476 2

Calcium Signaling 0.0029 0.0169 3

Antiproliferative Role 0.0046 0.0317 2

LD + T 21D

ErbB Signaling <0.0001 0.0581 5

Neuregulin Signaling 0.0001 0.0455 4

ErbB2/3 Signaling 0.0006 0.0526 3

Molecular Mechanisms of Cancer 0.0006 0.0164 6

ErbB4 Signaling 0.0007 0.0500 3

LDW

Melanocyte Development, Pigmentation Signaling 0.0001 0.0357 3

CDK5 Signaling 0.0002 0.0303 3

RAR Activation 0.0009 0.0170 3

PPARα/RXRα Activation 0.0010 0.0168 3

Pyridoxal 5’-phosphate Salvage Pathway 0.0023 0.0313 2
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TargetScan database, as well as experimentally validated
targets based on the miRBase and miRecords databases.
It is important to recognize that the IPA data base con-
tains mRNA sequence information from mouse, rat, and
human, but not white-crowned sparrow or other avian
species. Therefore, the IPA predicted microRNA targets
are based on these mammalian mRNA sequences. Cur-
rently a white-crowned sparrow data base is not avail-
able to identify predicted targets of microRNAs. We
used the following approach to minimize the chance of
drawing conclusions based on incorrectly predicted tar-
gets. First, we performed pathway analyses with two
miRs – miR-132 and miR-210-both of which have 100 %
identity in white-crowned sparrows with the respective
human miR sequence. Second, we overlaid and filtered
all miR targets with the white-crowned sparrow mRNA
array data generated using the same samples with the
IPA predicted targets. We only used those predicted
mRNA targets that were also inversely differentially
expressed (>1.5-fold, p < 0.005) in our white-crowned
sparrow mRNA array data for further analysis. Third, we
focused our analysis on identified pathways suggested by

microRNA targets, thereby minimizing the potential pit-
fall of placing too much emphasis on single target genes.

Results and discussion
Seasonal expression of mRNAs in the song control nuclei
We identified differential expression of mRNA between
breeding and nonbreeding condition using microarray
analyses of tissue harvested from HVC, RA, and Area X,
in SD, LD + T at 3D, 7D, 21D, and LDW conditions. We
obtained 155, 61, 43, and 67 of differentially expressed
(fold >2.0, p < 0.0001) mRNAs in HVC at LD + T 3D,
7D, 21D, and LDW, respectively (Fig. 2a; Additional file
4: Table S2). In RA 7, 14, 10, and 10 and in Area X 21,
25, 29, and 81 genes varied by >2.0 fold change with
p < 0.0001 in LD + T 3D, 7D, 21D, and LDW, respect-
ively (Fig. 2a; Additional file 4: Table S2). We found
in the neurogenic nuclei HVC and Area X that only
8.6–13.9 % and 31.0–41.9 %, respectively, of the genes
that were differentially expressed across all time
points were down regulated (Fig. 2a; Additional file 4:
Table S2). In the non-neurogenic nucleus RA we
found a higher percentage of genes down-regulated

Table 5 Top pathways for miR-210 in Area X predicted mRNA targets at each time point

Top Canonical Pathways p-Value Ratio # Genes

LD + T 7D

Phospholipase C Signaling 0.0049 0.0084 2

B Lymphocyte Signaling 0.0184 0.0244 1

Serotonin Receptor Signaling 0.0197 0.0227 1

Primary Immunodeficiency Signaling 0.0232 0.0192 1

GABA Receptor Signaling 0.0299 0.0149 1

LD + T 21D

Phosphatidylcholine Biosynthesis 0.0039 0.1430 1

Calcium Transport I 0.0050 0.1110 1

Choline Biosynthesis III 0.0071 0.0769 1

RAN Signaling 0.0093 0.0588 1

Chemokine Signaling 0.0389 0.0141 1

LDW

Phospholipase C Signaling 0.0007 0.0126 3

Dopamine Receptor Signaling 0.0015 0.0256 2

CDK5 Signaling 0.0025 0.0202 2

Cellular Effects of Sildenafil 0.0042 0.0155 2

Cardiac β-adrenergic Signaling 0.0044 0.0150 2

(See figure on previous page.)
Fig. 5 The seasonal miR-210 –mRNA regulatory network in HVC. a The expression fold changes of miR-210 mRNA that were differentially regulated and
inversely correlated in at least one experimental group in which miR-210 was also differentially expressed (i.e. LD + T 7D, 21, or LDW) compared to SD. A
p-value of <0.005 and fold change >1.5 at any time point were used as selection criteria for mRNAs presented in the heat map. b An interaction network
of mRNAs that were differentially anti-expressed with a fold change > 1.5 and p< 0.005 (bright) or p< 0.05 (faded) from conditions in which miR-210 was
also differentially expressed (i.e. fold change > –2.0). IPA network analyses revealed several key pathways were up-regulated in Area X during periods of
volume expansion
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and greater variability in this percentage across ex-
perimental groups compared to the neurogenic nuclei;
the percentage of down regulated genes in RA varied
from 50 to 97 % across all time points. We used IPA
to identify significant pathways in our data. Seasonally
regulated mRNAs were involved in several canonical
signaling pathways including ERK5 and NGF signaling
in HVC and WNT/Ca + and axonal guidance signaling
in RA (Table 1). Upon transition from breeding to
nonbreeding conditions (LDW group), we found that
genes in the canonical signaling pathways for cell
death (i.e. tumorcidal) and inflammation (i.e. LPS/IL-
1) were differentially expressed compared to SD in
HVC and Area X (Table 1).
Gene regulatory networks that control patterning and

plasticity within song control nuclei have been previ-
ously examined with sequencing analysis of the zebra
finch genome as well as microarray analysis [43, 50].
More specifically, Thompson et al. (2012) identified 132
genes in HVC cells that changed in expression between
breeding and nonbreeding conditions when compared to
gene expression in RA, a non-neurogenic region of the
song bird brain [40]. By comparison, we identified 265
genes differentially expressed between HVC and RA in
breeding conditions and 239 in nonbreeding conditions.
In both studies, genes that promoted proliferation,
angiogenesis, and neurite extension were up-
regulated, whereas genes that support programmed
cell death were down-regulated in HVC under breed-
ing conditions [40]. Specific genes that encode neuro-
trophins known to promote neuronal migration,
recruitment, and survival, including brain-derived
neurotrophic factor (BDNF) and insulin-like growth
factor 1 were differentially regulated in HVC under
breeding conditions in both studies [40]. A detailed
comparison of specific genes differentially regulated in
both the current study and the data from Thompson
et al. (2012) revealed that neuropeptide Y(NPY) was
differentially expressed in HVC during LD + T 21D.
No other genes were commonly shared as signifi-
cantly differentially regulated across brain regions and
across common experimental groups. This comparison
was limited, however, by a 27 % concordance for
clone IDs and 75 % concordance for gene symbols
between the two array platforms used within these
studies [40].
During breeding conditions, the period in which HVC

incorporates a significant number or adult-born neu-
rons, white-crowned sparrows sing with greater stereo-
typy and more often when compared to both SD and
LDW [35, 37]. Previous studies have examined differen-
tial gene expression related specifically to singing behav-
ior in zebra finches [44, 51]. For example, Whitney et al.
(2014) identified 5167 differentially expressed transcripts

in HVC, RA, Area X and LMAN that grouped into four
superclusters of transient early and late-response in-
creases and decreases. Examination of enriched gene
pathways in both our study and Whitney et al. (2014)
identified pathways related to MEF/ERK signaling in
HVC, Wnt signaling in RA, and biogenesis in Area X
[44]. Direct comparison of the differentially expressed
genes in the LD + T 21D group of the white-crowned
sparrows with those of zebra finches singing for 5 h ver-
sus no singing resulted in only one shared differentially
expressed gene – ASAP3 in Area X.

miRs are differentially expressed in song control nuclei
between breeding and nonbreeding conditions
To test whether miRs were differentially expressed
between breeding and nonbreeding conditions, we quan-
tified with microarray the fold-change relative to SD of
over 150 unique miRs in tissue from HVC, RA and Area
X of birds in LD + T and LDW. Of the three miRs that
were significantly differentially expressed across all con-
ditions (>2.0 fold change and false discovery rate = 0.05),
miR-132, specifically within HVC, exhibited the highest
fold change in expression (Additional file 5: Table S3).
Using a less stringent threshold of fold change >2.0 and
p < 0.0005, we obtained 4, 13, 19, and 29 differentially
expressed miRs in HVC, at LD + T 3D, 7D, 21D, and
LDW, respectively (Table 2 and Fig. 2b). In RA we
found thirty miRs that were differentially expressed in
one or more experimental groups, whereas in Area X
only five miRs were differentially expressed with the
fold change >2.0 and p < 0.0005 (Table 2 and Fig. 2b).
The expression landscapes in HVC, RA, and Area X
suggest that the majority of miRs are generally up-
regulated with time into breeding condition (Fig. 2b).
Concomitantly, large clusters of mRNAs became
down-regulated with progression into breeding condi-
tion in all three nuclei (Fig. 2a). Alternatively, during
LDW 13 miRs in HVC decreased significantly in ex-
pression compared to SD, while large clusters of
mRNAs related to macrophage function (e.g. MPEG1),
cell arrest (e.g. ZAR1), and sirtuin signaling (e.g.
SIRT3) increased in expression.
qRT-PCR of miR-132 on the same tissue used in the

miR microarray validated the differential expression of
miR-132 from the microarray analyses. The directional
trends for miR-132 showed consistent up-regulation in
qRT-PCR expression across all experimental groups for
which miR-132 was significantly up-regulated in the
microarray analyses (Fig. 3). Following FWER adjust-
ment and Hommel correction for multiple comparisons,
the differential miR-132 expression at LD + T 21D in RA
achieved significance (adjusted-p = 0.0427).
Previous Illumina sequencing of auditory regions in

zebra finches in response to song exposure identified

Larson et al. BMC Genomics  (2015) 16:905 Page 13 of 18



121 miRs conserved in other vertebrates and 34 novel
miR sequences specific to zebra finches [52]. Consistent
with this previous work we found that both conserved
and bird-specific miRs were differentially expressed
across seasons in the song control circuit. Some of the
bird-specific miRs differentially expressed in HVC in-
cluded miR-1562, −1782, −1915, −2962, −1700, −1575,
and −1704 (Fig. 2b and Table 2).
Of the highly conserved miRs identified in this study,

several are known to play roles in neural plasticity. For
example, in the non-neurogenic nucleus RA, we found
high expression of miR-135. Previous studies found that
miR-135 inhibits the expression of the serotonin trans-
porter and the inhibitory serotonin receptor, thereby
promoting an increase in serotonin signaling [53]. The
up-regulation of miR-135 in RA coincides with increases
in spontaneous firing activity [38] and the probable in-
creased serotonin signaling in RA [54, 55]. Another miR
of interest up-regulated in RA during breeding condi-
tions is miR-184. miR-184 regulates the translation of
NUMB [51], a protein necessary for the survival of
neural progenitor cells [56], a protein necessary for the
survival of neural progenitor cells [57] and neuronal dif-
ferentiation in the mammalian cortex [58]. miR-184 may
confer low levels of NUMB in RA and prevent local
neurogenesis. Finally, miR-129, down-regulated in RA
during breeding conditions, has previously been shown
to inhibit FOXP2 translation [59], a protein thought to
be associated with human speech [60], vocal learning in
songbirds [61], and neurite outgrowth [62]. FOXP2 has
been found to be post-transcriptionally modified by
miR-9 and miR-140, both of which are differentially
expressed in zebra finch as a result of different social
contexts for singing (i.e. directed towards a female or
undirected) [63]. Moreover, the identification of avian
gene targets of FOXP2 through co-expression network
analyses [51] suggests that FOXP2 itself serves as a ful-
crum for coordinating large regulatory gene networks.
Given these previous findings and that miR-129, a pre-
dicted regulator of FOXP2, is differentially expressed
across seasons in RA, the occurrence and importance of
post-transcriptional regulation of FOXP2 is of interest
for additional exploration into regulatory networks re-
lated to song leaning and neural circuit plasticity.
In the neurogenic nucleus HVC, in addition miR-132,

miR-212 expression also increased at 21D into LD + T.
miR-212 transcription occurs at the miR-212/132 cluster
[64]. Beyond functioning in tandem with miR-132, which
will be discussed in greater detail below, miR-212 has
also been shown to independently decrease glial cell pro-
liferation [65]. Moreover, miR-212 expression in the rat
dentate gyrus was increased following both acute and
chronic electroconvulsive therapy [66], a therapy which
increases neural stem cell proliferation [67] and

increased neuronal fate specification [68]. Previous re-
ports together with our data suggest that miR-212 func-
tions both in tandem with miR-132 and independently
to increase adult neurogenesis.
In HVC upon transition from LD+T to LDW, we

found two miRs of interest that decreased in expression:
miR-295 and miR-134. During LDW cell death peaks as
HVC volume collapses [33] and neural stem cell prolifera-
tion increases significantly [35]. The timing of decreased
miR-295 expression is consistent with a previous report
that showed miR-295 suppressed autophagic cell death
[69]: miR-295 down-regulation in HVC during LDW may
permit the concurrent increase in HVC cell death. Add-
itionally, we found that mir-134 expression was decreased
in LDW compared to SD. miR-134 has been shown to
regulate neural stem cell proliferation and neural plasti-
city, however, in a direction seemingly contradictory to
our results. Decreased levels of miR-134 have been re-
ported to increase synaptic plasticity and memory forma-
tion [70], dendritic spine formation and synaptic
maturation [65], and neuronal survival [71]. The signaling
mechanisms by which miR-134 exerts these effects, how-
ever, are just beginning to be elucidated.

The seasonal interaction network of miR-132 in HVC
miR-132 mediates the integration of adult-born neurons
in dentate gyrus [24], the arborization of new neurons in
the hippocampus [23], and radial migration of neurons
via expression of FOXP2 [72]. Based on the previously
documented role of miR-132 in mammalian adult neuro-
genesis and synaptic formation and plasticity, and the
fact that miR-132 was the most significantly up-
regulated miR in HVC, we examined the miR–mRNA
regulatory network of miR-132 more thoroughly. Prior
to such analyses we first confirmed that the sequence of
white-crowned sparrow miR-132 (i.e. zlg-mir-132) ma-
ture and seed regions was the same as the human miR-
132 (hsa-mir-132) sequence (Additional file 1: Table S1
and Additional file 2: Figure S1). One-hundred percent
identity is necessary because IPA software predicts tar-
gets based on the human miR seed region and mRNA
3‘UTR sequences. The zlg-mir-132 sequence was indeed
100 % identical to hsa-mir-132 in both the seed regions
and the mature sequence. The full sequence of zlg-mir-
132 was 62 % identical to the full sequence of hsa-mir-
132 (miRBase MI0000449), 64 % to rno-mir-132 (rat;
miRBase MI0000905), and 96 % to tgu-mir-132 (zebra
finch; miRBase MI0016249). Generating a rooted phylo-
genetic tree with various vertebrate miR-132 sequences
represented, grouped the zlg-miR-132 sequence with tgu-
mir-132, further confirming correct full white-crowned
sparrow sequence (Additional File 2: Figure S1).
Through IPA software, miR-132 was predicted to tar-

get a total of 767 mRNAs. Thirty-three out of the 767
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predicted mRNA targets were differentially expressed (>1.5
fold, p < 0.005) with expression inversely correlated with
miR-132 between breeding and nonbreeding conditions in
HVC (Fig. 4a). Of the thirty-three miR-132 targets eleven,
two, fourteen, and five targets were differentially expressed
during LD+T at 3D, 7D, 21D, and LDW, respectively
(Fig. 4a). All of the predicted 33 seasonally-expressed tar-
gets of miR-132 were investigated for functional related-
ness using IPA, from which we obtained the top significant
canonical pathways represented by the filtered targets
across all experimental groups (Table 3 and Fig. 4b). Inde-
pendent analyses of functional relatedness of miR-132 tar-
gets from LD+T 3D, 7D, 21D, and LDW identified top
canonical pathways including cell cycle control, PTEN sig-
naling, calcium signaling, neuregulin signaling, and retinoic
acid signaling (Table 4 and Fig. 4b).
High levels of miR-132 expression in HVC are consist-

ent with previous reports of high miR-132 expression in
the brains of zebra finches [73]. Moreover, high expres-
sion of miR-132 in breeding condition HVC corrobo-
rates previous studies on the interactions between this
miR, neurotrophins, and the ERK/MAPK signaling cas-
cade. Transcription of miR-132 is controlled directly by
the transcription factor cAMP-response element binding
protein (CREB; [64]). Activation of CREB by phosphoryl-
ation occurs with BDNF binding the TRKB receptor
[74], circadian gene oscillation [75], and synaptic activity
via nuclear calcium signaling [76]. Activated CREB in
combination with BDNF-mediated activation of the
ERK/MAPK pathway in turn increases expression of
miR-132 [77]. In HVC during breeding conditions,
BDNF expression is enhanced by the presence of sex ste-
roids [78] via the expansion of vasculature endothelial
cells [79]. Concomitantly, CREB is co-expressed season-
ally in HVC with androgen receptors [80], which trans-
activate CREB when T binds [81]. Thus, in breeding
conditions high T levels likely promote miR-132
expression via the enhanced activation of CREB and the
production and signaling of BDNF in HVC. In turn,
miR-132 represses the translation of a variety of repres-
sor genes to promote cell cycle entry [82], neuronal
addition [24], and arborization [23], and even the prolif-
eration of endothelial cells [83] that secrete BDNF [79].
In this manner, mir-132 likely supports increased new
neuronal addition and survival in HVC during breeding
conditions.
The increase of miR-132 during breeding conditions

driving a putative increase in BDNF, which in turn pro-
motes HVC neuronal addition, is also consistent with
previous studies. In both juvenile and adult birds, BDNF
mRNA is expressed in in HVC and another song nu-
cleus, LMAN, but not in Area X or RA [78, 84]. More-
over, expression in HVC is both higher during breeding
conditions compared to nonbreeding conditions in

white-crowned sparrows [78] and is necessary [85] and
sufficient [86] for increased addition of adult-born neu-
rons in HVC in canaries. BDNF expression also posi-
tively correlates with increased singing behavior, both of
which positively correlate with the number and survival
of new neurons added in HVC [87]. Alternatively, deaf-
ening (i.e., loss of auditory neural activity) decreases
neuronal addition to HVC in adult zebra finches [88].
These studies highlight the seemingly inextricable link
between BDNF, singing behavior, and addition of adult-
born neurons in HVC, and suggest a common factor,
such as miR-132, may be coordinating the expression of
breeding condition neurotrophin expression, cytoarchi-
tecture, and behavior.

The seasonal interaction network of miR-210 in Area X
Of the significantly seasonally regulated miRs in Area X
- another neurogenic and seasonally plastic song circuit
nucleus - miR-210 stood out as a miR of interest. Given
the role of miR-210 in promoting neural repair through
angiogenesis [89–91], we investigated the miR–mRNA
network of miR-210 more thoroughly. We first con-
firmed that the sequence of mature and seed regions of
white-crowned sparrow miR-210 (i.e. zlg-mir-210) were
100 % identical to hsa-mir-210 sequence (Additional file
1: Table S1 and Additional file 3: Figure S2). The full
sequence of zlg-mir-210 was 67 % identical to the full
sequence of hsa-mir-210 (miRBase MI0000286), 67 % to
rno-mir-210 (miRBase MI0000950), and 82 % to cli-mir-
210 (pigeon; NCBI RefSeq NW_004973526.1). A rooted
phylogenetic tree placed the zlg-miR-210 sequence in
the same clade as several other bird species including
the collard-fly catcher (Ficedula albicollis) and the
pigeon (Columbia livia; Additional file 3: Figure S2).
Using IPA’s microRNA Target Prediction function we

identified 1100 total targets of mir-210, 14 of which
were differentially expressed (fold >1.5, p < 0.005) as
assessed by mRNA microarray analysis and inversely
correlated in Area X. Two predicted target mRNAs
were differentially expressed in Area X between SD and
LD + T at 21D, while six were differentially expressed
between SD and LDW (Fig. 5a). Examining the filtered
targets across experimental groups for functional re-
latedness identified top significant canonical pathways
related to dopamine signaling, phospholipase signaling,
and calcium signaling (Table 3). Independent analyses
of functional relatedness of miR-210 targets from LD +
T 7D, 21D, and LDW identified top canonical pathways
including serotonin, GABA, and dopamine receptor sig-
naling, calcium transport, and lymphocyte signaling
(Table 5 and Fig. 5b).
Although the mechanism through which T or its me-

tabolites reduces miR-210 expression is unclear, our data
suggests that miR-210 is indeed under sex steroid
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control. No previous reports find evidence of direct con-
trol of miR-210 expression by sex steroids. Alternatively,
miR-210 regulation by T may be indirect: miR-210 ex-
pression is induced by HIFα [92], which is suppressed by
estrogen [93], a metabolite of T. Thus, increased sys-
temic T, and its aromatization to estrogen, in Area X
could prevent expression of HIF1α thereby also prevent-
ing mir-210 expression.
Previous work found that miR-210 expression was

significantly increased in glioma tissue and inhibition of
miR-210 promoted glial cell proliferation and glioma
cell apoptosis [94]. Alternatively, miR-210 has also been
shown to reduce the inflammatory release of cytokines
[95], to promote VEGF [96, 97] and Notch 1 [91] ex-
pression, and to increase endothelial cell and neural
precursor cell proliferation [90]. These seemingly con-
trasting roles for miR-210 remain to be reconciled.
Given these reports and that we find both pro-
neurogenic and anti-apoptotic genes predicted miR-210
targets are up-regulated during LD + T, miR-210 ex-
pression in the brain may represent a fine-scaled dose-
dependent response to regulate levels of neural stem
cell proliferation, neuronal versus glial fate specifica-
tion, and cell survival.

Conclusions
We identified two seasonal miR–mRNA interaction net-
works that likely coordinate the various processes and
factors related to the integration of new neurons in
neural circuits and for the seasonal plasticity of the
HVC to RA and HVC to Area X neural pathways.
Highly differentially expressed miRs including, miR-132
and miR-210, likely target many gene products that are
also seasonally regulated. Our data are not only consist-
ent with previous reports of miR signaling networks and
roles, but also suggest that sex steroids may regulate the
processes of seasonal plasticity via alterations in miR–
mRNA expression networks. Herein, we provide oppor-
tunities to test novel genetic regulatory networks that
control the diverse processes and mechanisms of func-
tional incorporation of new neurons to the adult brain.
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