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Abstract
In this paper, we are concerned with the problem of approximating a solution of an
ill-posed biparabolic problem in the abstract setting. In order to overcome the
instability of the original problem, we propose a regularizing strategy based on the
Kozlov-Maz’ya iteration method. Finally, some other convergence results including
some explicit convergence rates are also established under a priori bound
assumptions on the exact solution.
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1 Formulation of the problem
Throughout this paper H denotes a complex separable Hilbert space endowed with the
inner product 〈·, ·〉 and the norm ‖ · ‖, L(H) stands for the Banach algebra of bounded
linear operators on H .

Let A : D(A) ⊂ H −→ H be a positive, self-adjoint operator with compact resolvent, so
that A has an orthonormal basis of eigenvectors (φn) ⊂ H with real eigenvalues (λn) ⊂R+,
i.e.,

Aφn = λnφn, n ∈N
∗, 〈φi,φj〉 = δij =

{
, if i = j,
, if i 	= j,

 < ν ≤ λ ≤ λ ≤ λ ≤ · · · , lim
n→∞λn = ∞,

∀h ∈ H , h =
∞∑

n=

hnφn, hn = 〈h,φn〉.

In this paper, we consider the inverse source problem of determining the unknown
source term u() = f and the temperature distribution u(t) for  ≤ t < T , in the follow-
ing biparabolic problem:

{
Bu = ( d

dt + A)u(t) = u′′(t) + Au′(t) + Au(t) = ,  < t < T ,
u(T) = g, ut() = ,

()

where  < T < ∞ and f is a given H-valued function.
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In [, ] Kozlov and Maz’ya proposed an alternating iterative method to solve boundary
value problems for general strongly elliptic and formally self-adjoint systems. After that,
the idea of this method has been successfully used for solving a various classes of ill-posed
(elliptic, parabolic, and hyperbolic) problems; see, e.g., [–].

In this work we extend this method to our ill-posed biparabolic problem. To the best
of our knowledge, the literature devoted to this class of problems is quite scarce, except
the paper []. The study of this case is caused not only by theoretical interest, but also by
practical necessity.

It is well known that the classical heat equation does not accurately describe the con-
duction of heat [, ]. Numerous models have been proposed for better describing this
phenomenon, among them, we can cite the biparabolic model proposed in [] for a more
adequate mathematical description of heat and diffusion processes than the classical heat
equation. For a physical motivation and other models we refer the reader to [–].

2 Preliminaries and basic results
In this section we present the notation and the functional setting which will be used in
this paper and prepare some material which will be used in our analysis.

2.1 Notation
We denote by C(H) the set of all closed linear operators densely defined in H . The domain,
range, and kernel of a linear operator B ∈ C(H) are denoted as D(B), R(B), and N(B); the
symbols ρ(B), σ (B), and σp(B) are used for the resolvent set, spectrum, and point spec-
trum of B, respectively. If V is a closed subspace of H , we denote by �V the orthogonal
projection from H to V .

For ease of reading, we summarize some well-known facts for non-expansive operators.

Definition . A linear operator M ∈L(H) is called non-expansive if

‖M‖ ≤ .

Theorem . ([], Theorem .) Let M ∈ L(H) be a positive, self-adjoint operator with
‖M‖ ≤ . Putting V = N(M) and V = N(I – M). Then we have

s- lim
n−→+∞ Mn = �V , s- lim

n−→+∞(I – M)n = �V

i.e.,

∀h ∈ H , lim
n−→+∞ Mnh = �V h, lim

n−→+∞(I – M)nh = �V h.

For more details of the theory of non-expansive operators, we refer to Krasnosel’skii et
al. [], p..

Let us consider the operator equation

Sϕ = (I – M)ϕ = ψ ()

for non-expansive operators M.
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Theorem . Let M be a linear self-adjoint, positive, and non-expansive operator on H .
Let ψ̂ ∈ H be such that () has a solution ϕ̂. If  is not eigenvalue of M, i.e., (I –M) is injective
(V = N(I – M) = {}), then the successive approximations

ϕn+ = Mϕn + ψ̂ , n = , , , . . . ,

converge to ϕ̂ for any initial data ϕ ∈ H .

Proof From the hypothesis and by virtue of Theorem ., we have

∀ϕ ∈ H , Mnϕ −→ �Vϕ = �{}ϕ = . ()

By induction with respect to n, it is easily seen that ϕn has the explicit form

ϕn = Mnϕ +
n–∑
j=

Mjψ̂

= Mnϕ +
(
I – Mn)(I – M)–ψ̂

= Mnϕ +
(
I – Mn)ϕ̂,

and () allows us to conclude that

ϕ̂ – ϕn = Mn(ϕ – ϕ̂) −→ , n −→ ∞. ()
�

Remark . In many situations, some boundary value problems for partial differential
equations which are ill-posed can be reduced to Fredholm operator equations of the first
kind of the form Bϕ = ψ , where B is compact, positive, and self-adjoint operator in a
Hilbert space H . This equation can be rewritten in the following way:

ϕ = (I – ωB)ϕ + ωψ = Lϕ + ωψ ,

where L = (I – ωB), and ω is a positive parameter satisfying ω < 
‖B‖ . It is easily seen that

the operator L is non-expansive and  is not eigenvalue of L. It follows from Theorem .
that the sequence {ϕn}∞n= converges and (I – ωB)nζ −→ , for every ζ ∈ H as n −→ ∞.

3 Ill-posedness of the problem and a conditional stability result
Let us consider the following well-posed problem:

{
Bw = ( d

dt + A)w(t) = w′′(t) + Aw′(t) + Aw(t) = ,  < t < T ,
w() = ξ , wt() = ,

()

where ξ ∈D(A).
Let us denote H

 = D(A) × H . Denoting U =
( u

u

)
we define the norm in H

 as ‖U‖
H =

‖Au‖ + ‖u‖. In this setting, the second-order differential equation () may be restated
as a first-order system in the Hilbert space H

 as follows:

W ′(t) = AW (t), W () =

(
ξ



)
, ()
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by setting

W (t) =

(
w(t)
w(t)

)
=

(
w(t)
w′(t)

)
, A =

(
 I

–A –A

)
,

where A is linear unbounded operator with domain D(A) = D(A) ×D(A).
It is well known that A is a generator of a strongly continuous semigroup {T (t) = etA}t≥

on H
 ([], Theorem .), more precisely, T (t) is analytic with the following explicit form:

T (t)Z = etA

(
z

z

)
=

∞∑
n=

etBn

(
〈z,φn〉φn

〈z,φn〉φn

)
, Z =

(
z

z

)
∈H

, ()

where Bn =
(  

–λ
n –λn

)
. By using some techniques of matrix algebra, we can give the form

of etBn as follows:

etBn =

(
e–λnt + λnte–λnt te–λnt

–λ
nte–λnt –λnte–λnt + e–λnt

)
.

It follows that

T (t)Z =
∞∑

n=

(
e–λnt + λnte–λnt te–λnt

–λ
nte–λnt –λnte–λnt + e–λnt

)(
〈z,φn〉φn

〈z,φn〉φn

)
. ()

By using semigroup theory [], we show the existence and uniqueness of mild solution of
the problem ().

Theorem . For any W () ∈H
, problem () admits an unique solution W ∈ C(], +∞[;

H
) ∩ C([, +∞[;H) ∩ C(], +∞[;D(A)), given by

W (t) = T (t)W () =
∞∑

n=

(
e–λnt + λnte–λnt te–λnt

–λ
nte–λnt –λnte–λnt + e–λnt

)(
〈z,φn〉φn

〈z,φn〉φn

)
. ()

In particular, for W () =
(

ξ



)
we have

W (t) = T (t)W () =
∞∑

n=

(
e–λnt + λnte–λnt te–λnt

–λ
nte–λnt –λnte–λnt + e–λnt

)(
〈ξ ,φn〉φn



)
. ()

As a consequence of Theorem ., we have the following result.

Corollary . For any ξ ∈D(A), problem () admits an unique solution

w ∈ C(], +∞[; H
) ∩ C([, +∞[; H

) ∩ C
(
[, +∞[;D(A)

)
∩ C(], +∞[;D(A)

) ∩ C(], +∞[;D
(
A))

given by

w(t) = R(t; A)ξ = (I + tA)e–tAξ =
∞∑

n=

( + tλn)e–tλn〈ξ ,φn〉φn. ()



Lakhdari and Boussetila Boundary Value Problems  (2015) 2015:55 Page 5 of 17

Remark . It is easy to check that

∥∥R(t; A)
∥∥ = sup

λ≥λ
( + tλ)e–tλ ≤ ( + tλ)e–tλ , ()

sup
≤t≤T

∥∥R(t; A)
∥∥ = sup

≤t≤T
( + tλ)e–tλ = . ()

3.1 Ill-posedness of the problem (1)
Theorem . Let g ∈ H , then the unique formal solution of the problem () is given by

u(t) =
∞∑

n=

(
 + tλn

 + Tλn

)
e(T–t)λn〈g,φn〉φn. ()

In this case,

f = u() =
∞∑

n=


 + Tλn

eTλn〈g,φn〉φn. ()

Proof By using the generalized Fourier method of expansion, the solution of () can be
written formally in the form

u(t) =
∞∑

n=

un(t)φn, un = 〈u,φn〉, ()

where un(t) = 〈u(t),ϕn〉 is the Fourier coefficient of u(t).
Substituting u(T) = g =

∑∞
n= gnφn and () into (), we get the family of second-order

ordinary differential equations
{

u′′
n(t) + λnu′

n(t) + λ
nun = ,  < t < T ,

un(T) = gn, u′
n() = .

()

For each fixed n, this differential equation is uniquely solvable and its unique solution is
given by

un(t) =
(

 + tλn

 + Tλn

)
e(T–t)λn gn = σ (t,λn)gn.

Finally, the formal solution of the problem () takes the form

u(t) =
∞∑

n=

(
 + tλn

 + Tλn

)
e(T–t)λn gnφn, gn = 〈g,φn〉. �

From this representation we see that u(t) is unstable in [, T[. This follows from the
high-frequency limit:

σ (t,λn) =
(

 + tλn

 + Tλn

)
e(T–t)λn −→ +∞, n −→ +∞.

Remark . • In the classical backward parabolic problem

vt + Av = ,  < t < T , v(T) = g, ()
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the unique formal solution is given by

v(t) =
∞∑

n=

θn(t,λn)〈g,ϕn〉ϕn, ()

where

θn(t,λn) = e(T–t)λn −→ +∞, n −→ +∞.

In this case, the high-frequency θn(t,λn) are equal to e(T–t)λn and the problem is severely
ill-posed.

• In the case of the biparabolic model, we have σn = rnθn, where

rn =
(

 + tλn

 + Tλn

)

is the relaxation coefficient resulting from the hyperbolic character of the biparabolic
model.

Observe that

t
T

≤ rn ≤  + tλ

 + Tλ
≤  ()

and

u(t) = R(t)v(t), ()

where

∥∥R(t)
∥∥ = sup

n
{rn} = r =

 + tλ

 + Tλ
. ()

From this remark, we observe that the degree of ill-posedness in the biparabolic model is
relaxed compared to the classical parabolic case.

3.2 Conditional stability estimate
We would like to have estimates of the form

∥∥u(t)
∥∥ ≤ �

(‖g‖),

for some function �(·) which satisfies the condition �(s) −→  as s −→ .
Since the problem of determining u(t) from the knowledge of {u(T) = g, u′() = } is ill-

posed, an estimate such as the above will not be possible unless we restrict the solution
u(t) to a certain source set M⊂ H .

In our model, we will see that we can employ the method of logarithmic convexity to
identify this source set:

Mρ =
{

w(t) ∈ H : w obeys () and
∥∥Aw()

∥∥ ≤ ρ < ∞}
. ()

We recall the following useful result (see, e.g., [], p., [], p.).
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Theorem . Let v(t) be the solution of problem (). Then the following estimate holds:

∀t ∈ [, T],
∥∥v(t)

∥∥ ≤ ∥∥v(T)
∥∥ t

T
∥∥v()

∥∥ T–t
T . ()

Now, if we assume that u() = f =
∑∞

n= fnφn such that ‖Au()‖ =
∑∞

n= λ
n|fn| ≤ ∞, then

we have

∥∥TAu()
∥∥ = T

∞∑
n=

λ
n|fn| ≤

∞∑
n=

( + Tλn)|fn| =
∥∥(I + TA)u()

∥∥

and

∥∥(I + TA)u()
∥∥ =

∞∑
n=

((
 + Tλn

λn

)
λn

)

|fn| ≤
(

 + Tλ

λ

) ∞∑
n=

λ
n|fn|,

which implies that

T
∥∥Au()

∥∥ ≤ ∥∥(I + TA)u()
∥∥ ≤

(
 + Tλ

λ

)∥∥Au()
∥∥. ()

By virtue of the estimate () and the formulas

v(t) = exp
(
(T – t)A

)
g =

∞∑
n=

e(T–t)λn gnφn,

u(t) = R(t)v(t) = (I + tA)(I + TA)–v(t)

=
∞∑

n=

(
 + tλn

 + Tλn

)
e(T–t)λn gnφn

=
∞∑

n=

rne(T–t)λn gnφn,

and

v() = (I + TA)u(), v(T) = u(T) = g,

we can write

∥∥u(t)
∥∥ ≤ ∥∥R(t)

∥∥∥∥v(t)
∥∥ ≤ ∥∥R(t)

∥∥(∥∥v()
∥∥ T–t

T
∥∥v(T)

∥∥ t
T
)

≤ ∥∥R(t)
∥∥(∥∥(I + TA)u()

∥∥ T–t
T

∥∥v(T)
∥∥ t

T
)
. ()

Combining () and (), we derive the following estimate:

∥∥u(t)
∥∥ ≤ C(t, T ,λ)

{∥∥Au()
∥∥ T–t

T ‖g‖ t
T
}

, ()

where

C(t, T ,λ) =
(

 + tλ

 + Tλ

)(
 + Tλ

λ

) T–t
T ≤

(
 + Tλ

λ

) T–t
T

= γ .
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On the basis {φn} we introduce the Hilbert scale (Hs)s∈R (resp. (Es)s∈R) induced by A as
follows:

Hs = D
(
As) =

{
h ∈ H : ‖h‖

Hs =
∞∑

n=

λs
n
∣∣〈h,ϕn〉

∣∣ < +∞
}

,

E
s = D

(
esTA)

=

{
h ∈ H : ‖h‖

Es =
∞∑

n=

eTsλn
∣∣〈h,ϕn〉

∣∣ < +∞
}

.

Remark . Observe that

∀n ≥ ,
(

λ

 + Tλn

)
≤

(
λn

 + Tλn

)

�⇒ 
 + Tλn

≤
(


λ

)(
λn

 + Tλn

)

�⇒ ∥∥u()
∥∥ =

∞∑
n=

(


 + Tλn

)

eTλn |gn| ≤
(


λ

)∥∥Au()
∥∥; ()

∀n ≥ ,
(

λ

 + Tλ

)
≤

(
λn

 + Tλn

)
≤ 

T

�⇒
(

λ

 + Tλ

) ∞∑
n=

eTλn |gn| ≤
∞∑

n=

(
λn

 + Tλn

)

eTλn |gn|

≤
(


T

) ∞∑
n=

eTλn |gn|. ()

Then we deduce that

∥∥u()
∥∥ +

∥∥Au()
∥∥ < ∞ ⇐⇒ ∥∥Au()

∥∥ < ∞ ⇐⇒
∞∑

n=

eTλn |gn| < ∞. ()

Theorem . Problem () is conditionally well-posed on the set

M =
{

w(t) ∈ H :
∥∥Aw()

∥∥ < ∞}

if and only if

g ∈ E
 =

{
h ∈ H :

∞∑
n=

eTλn
∣∣(h,ϕn)

∣∣ < ∞
}

.

Moreover, if u(t) ∈ Mρ , then we have the Hölder continuity,

∥∥u(t)
∥∥ ≤ �

(‖g‖) = γ
(
ρ

T–t
T

)‖g‖ t
T . ()
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4 Regularization by Kozlov-Maz’ya iteration method and error estimates
4.1 Description of the method
The iterative algorithm for solving the ill-posed problem () starts by letting f ∈ H be
arbitrary. The first approximation u(t) is the solution to the direct problem

{
Bu(t) = ( d

dt + A)u(t) = ,  < t ≤ T ,
u() = f, u

t () = .
()

If the pair (uk , fk) has been constructed, let

(P)k+ : fk+ = fk – ω
(
uk(T) – g

)
, ()

where ω is such that

 < ω < ω∗ =


‖K‖ =
eTλ

( + Tλ)
,

where

‖K‖ =
∥∥R(T , A)

∥∥ = sup
n≥

{
( + Tλn)e–Tλn

}
= ( + Tλ)e–Tλ ,

and R(t, A) is the resolving operator associated to the direct well-posed biparabolic prob-
lem (), given by the expression ().

Finally, we get uk+ by solving the problem

{
Buk+(t) = ( d

dt + A)uk+(t) = ,  < t ≤ T ,
uk+() = fk+, uk+

t () = .
()

We set G = (I – ωK). If we iterate backwards in (P)k+ we obtain

fk = Gkf + ω

k–∑
i=

Gif = Gkf +
(
I – Gk)K–f = Gkf + u() – Gku(). ()

This implies that

fk – u() = Gk(f – u()
)
, uk(t) – u(t) = R(t; A)Gk(f – u()

)
. ()

Proposition . The operator G = (I –ωK) is self-adjoint and non-expansive on H . More-
over, it does not have  as eigenvalue.

Proof The self-adjointness follows from the definition of G. Since we have the inequality
 <  – ω( + Tλ)e–Tλ <  for λ ∈ σ (A), we have σp(G) ⊂ ], [, then  is not eigenvalue
of G. �

Remark . Let k ∈N
∗. Then we have

‖G‖ = ‖I – ωK‖ <  �⇒
∥∥∥∥∥

k–∑
i=

Gi

∥∥∥∥∥ ≤
k–∑
i=

∥∥Gi∥∥ ≤ k. ()
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In general, the exact solution u() = f ∈ H is required to satisfy a so-called source
condition [], otherwise the convergence of the regularization method approximating
the problem can be arbitrarily slow. To accelerate the convergence of the regularization
method, we assume the following source conditions:

(
f – u()

) ∈D
(
A+β

)
, β > . ()

We provide the following lemma which will be used in the proof of convergence esti-
mates.

Lemma . Let σ > , k ≥ , and � the real-valued function defined by

�(λ) =
(
 – ω( + Tλ)e–Tλ

)k
λ–σ , λ ∈ [λ,∞[, ()

where λ >  and ω < ω∗ = 
(+Tλ)e–Tλ . Then we have

�∞ = sup
λ≥λ

�(λ) ≤ C
(


ln(k)

)σ

. ()

Proof We have

�(λ) ≤ �̂(λ) =
(
 – ω( + Tλ)e–Tλ

)k
λ–σ , λ ∈ [λ,∞[.

For notational convenience and simplicity, we denote

μ = Tλ, τ = ω( + Tλ), μ = Tλ,

�̂(λ) =
(
 – τe–μ

)k(T–μ
)–σ = Tσ

(
 – τe–μ

)k
μ–σ = Tσ �̃(μ), μ ∈ [μ,∞[.

The question now is to show that there exists a positive constant μ∗ such that �̃(μ) =
( – τe–μ)kμ–σ is monotonically increasing in [μ,μ∗[ and monotonically decreasing in
]μ∗,∞[. Since �̃(μ) is continuously differentiable in [μ,∞[ and

�̃(μ) > , �̃(∞) = , �̃(μ) ≥ ,

then the maximum of �̃(μ) is attained at an interior point, which is a critical point of �̃(μ).
From

d�̃(μ)
dμ

= μ–σ–( – τe–μ
)k–{

τ (kμ + σ )e–μ – σ
}

it follows that a critical point of �̃(μ) in ]μ,∞[ satisfies

τ (kμ + σ )e–μ – σ =  ⇐⇒ (kμ + σ )e–μ –
σ

τ
= .

We introduce the auxiliary function

D(μ) = (kμ + σ )e–μ –
σ

τ
, μ ∈ [μ,∞[.



Lakhdari and Boussetila Boundary Value Problems  (2015) 2015:55 Page 11 of 17

For k sufficiently large, D(μ∗ = ln(k)) = k ln(k)+σ

k – σ
τ

> . For a >  and k sufficiently large,
we have D(μ∗∗ = ln(ka)) = ak ln(k)+σ

ka – σ
τ

< . Therefore, there exists k̂(a) such that

D
(
ln(k)

)
> , ∀k ≥ k̂(a),

D
(
ln

(
ka)) < , ∀k ≥ k̂(a).

Consequently the critical point ν of D(μ) must lie between μ∗ = ln(k) and μ∗∗ = ln(ka), i.e.,
ν ∈ ]μ∗,μ∗∗[. Now let k ≥ max(, k̂(a)). Then we have

sup
μ∈[μ,+∞[

�̃(μ) = �̃(ν) =
(
 – τe–ν

)k
ν–σ ≤ ν–σ ≤ (

μ∗)–σ =
(
ln(k)

)–σ .

Thus, the upper bound of �(λ) can be estimated as follows:

sup
λ∈[λ,+∞[

�(λ) ≤ sup
λ∈[λ,+∞[

�̂(λ) = Tσ sup
μ∈[μ,+∞[

�̃(μ) ≤ Tσ
(
ln(k)

)–σ . �

Now we are in a position to state the main result of this method.

Theorem . Let g ∈ E and ω satisfy  < ω < ω∗, f ∈ H, be an arbitrary element for the
iterative procedure suggested above and uk be the kth approximate solution. Then we have

sup
t∈[,T]

∥∥u(t) – uk(t)
∥∥ −→ , k −→ ∞. ()

Moreover, if (f – u()) ∈ Hσ , σ = β +  (β > ), i.e.,

∥∥f – u()
∥∥

Hσ =
∞∑

n=

λσ
n

∣∣〈f – u(),φn
〉∣∣ ≤ E,

then the rate of convergence of the method is given by

sup
t∈[,T]

∥∥u(t) – uk(t)
∥∥ ≤ CE

(


ln(k)

)+β

, k ≥ . ()

Proof By virtue of Proposition ., Theorem ., and the estimate (), it follows immedi-
ately that

sup
t∈[,T]

∥∥u(t) – uk(t)
∥∥ = sup

t∈[,T]

∥∥R(t; A)Gk(f – u()
)∥∥ ≤ sup

t∈[,T]

∥∥R(t; A)
∥∥∥∥Gk(f – u()

)∥∥
≤ ∥∥Gk(f – u()

)∥∥ −→ , k −→ ∞.

We have∥∥u(t) – uk(t)
∥∥ =

∥∥R(t; A)Gk(f – u()
)∥∥

≤ ∥∥R(t; A)
∥∥∥∥Gk(f – u()

)∥∥ ≤
∞∑

n=

�(λn)λσ
n

∣∣〈f – u(),φn
〉∣∣

≤
(

sup
n

�(λn)
)∥∥f – u()

∥∥
Hσ ≤

(
sup

n
�(λn)

)
E,

and by virtue of Lemma . (estimate ()), we conclude the desired estimate. �
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Remark . Under the conditions (f – u()) ∈ Hσ , σ =  + β , β > , and

sup
λ≥λ

{
λ�(λ)

} ≤ C
(


ln(k)

)β

,

we can write

∥∥A
(
u(t) – uk(t)

)∥∥ ≤ CE
(


ln(k)

)β

. ()

Proof

∥∥A
(
u(t) – uk(t)

)∥∥ =
∥∥AR(t; A)Gk(f – u()

)∥∥

≤ ∥∥R(t; A)
∥∥∥∥AGk(f – u()

)∥∥

≤
∞∑

n=

{
λn�(λn)

}
λσ

n
∣∣〈f – u(),φn

〉∣∣

≤
(

sup
n

λn�(λn)
)∥∥f – u()

∥∥
Hσ

≤
(

sup
n

λn�(λn)
)

E

≤
{

CE
(


ln(k)

)β}

. �

Theorem . Let g ∈ E and ω satisfy  < ω < ω∗, and let f ∈ H be an arbitrary element
for the iterative procedure suggested above and uk (resp. uδ

k) be the kth approximate solution
for the exact data g (resp. for the inexact data gδ) such that ‖g – gδ‖ ≤ δ. Then under the
condition (), the following inequality holds:

sup
t∈[,T]

∥∥u(t) – uk
δ (t)

∥∥ ≤ CE
(


ln(k)

)+β

+ ε(k)δ,

where ε(k) = ‖ω∑k–
i= (I – ωK)i‖ ≤ kω.

Proof Using () and the triangle inequality, we can write

f k = Gkf + ω

k–∑
i=

Gig, uk(t) = R(t; A)f k , ()

f k
δ = Gkf + ω

k–∑
i=

Gigδ , uδ
k(y) = R(t; A)f k

δ , ()

∥∥u(t) – uk
δ (t)

∥∥ =
∥∥(

u(t) – uk(t)
)

+
(
uk(t) – uk

δ (t)
)∥∥ ≤ � + �,

where

� =
∥∥u(t) – uk(t)

∥∥ ≤ ∥∥u(t) – uk(t)
∥∥∞ ≤ CE

(


ln(k)

)+β

, k ≥ , ()
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and

� =
∥∥uk(t) – uk

δ (t)
∥∥ =

∥∥R(t; A)
(
f k – f k

δ

)∥∥ =

∥∥∥∥∥ωR(t; A)
k–∑
i=

Gi(g – gδ
)∥∥∥∥∥

≤
∥∥∥∥∥ω

k–∑
i=

Gi(g – gδ
)∥∥∥∥∥ ≤

∥∥∥∥∥ω

k–∑
i=

Gi

∥∥∥∥∥δ = �̂.

By using inequality (), the quantity �̂ can be estimated as follows:

�̂ ≤ ωkδ. ()

Combining () and () and taking the supremum with respect to t ∈ [, T] of ‖u(t) –
uk

δ (t)‖, we obtain the desired bound. �

Remark . Choosing k = k(δ) such that ωkδ −→  as δ −→ , we obtain

sup
t∈[,T]

∥∥uk(t) – uk
δ (t)

∥∥ −→  as k −→ +∞.

5 Numerical results
In this section we give a two-dimensional numerical test to show the feasibility and effi-
ciency of the proposed method. Numerical experiments were carried out using Matlab.

We consider the following inverse problem:

⎧⎪⎨
⎪⎩

( ∂
∂t – ∂

∂x )u(x, t) = , x ∈ (,π ), t ∈ (, ),
u(, t) = u(π , t) = , t ∈ (, ),
u(x, ) = g(x), ut(x, ) = , x ∈ [,π ],

()

where f (x) = u(x, ) is the unknown initial condition and u(x, ) = g(x) is the final condition.
It is easy to check that the operator

A = –
∂

∂x , D(A) = H
(,π ) ∩ H(,π ) ⊂ H = L(,π ),

is positive, self-adjoint with compact resolvent (A is diagonalizable).
The eigenpairs (λn,φn) of A are

λn = n, φn(x) =
√


π

sin(nx), n ∈N
∗.

In this case, () takes the form

f (x) = u(x, ) =

π

+∞∑
n=


 + n en

(∫ π


g(x) sin(nx) dx

)
sin(nx). ()

In the following, we consider an example which has an exact expression of solutions
(u(x, t), f (x)).
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Example If u(x, ) = φ(x) =
√


π

sin(x), then the function

u(x, t) =
∞∑

n=

( + tλn)e–tλn〈φ,φn〉φn(x) = ( + tλ)e–tλφ(x) =
√


π

( + tλ)e–tλ sin(x)

is the exact solution of the problem (). Consequently, the data function is g(x) = u(x, ) =√

π


e sin(x).

Kozlov-Maz’ya iteration method. By using the central difference with step length h =
π

N+ to approximate the first derivative ux and the second derivative uxx, we can get the
following semi-discrete problem (ordinary differential equation):

⎧⎪⎨
⎪⎩

( d
dt – Ah)u(xi, t) = , xi = ih, i = , . . . , N , t ∈ (, ),

u(x = , t) = u(xN+ = π , t) = , t ∈ (, ),
u(xi, ) = g(xi), ut(xi, ) = , xi = ih, i = , . . . , N ,

()

where Ah is the discretization matrix stemming from the operator A = – d

dx :

Ah =


h Tridiag(–, , –) ∈MN (R)

is a symmetric, positive definite matrix. We assume that it is fine enough so that the dis-
cretization errors are small compared to the uncertainty δ of the data; this means that Ah

is a good approximation of the differential operator A = – d

dx , whose unboundedness is
reflected in a large norm of Ah. The eigenpairs (μk , ek) of Ah are given by

μk = 
(

N + 
π

)

sin
(

kπ

(N + )

)
, ek =

(
sin

(
jkπ

N + 

))N

j=
, k = , . . . , N .

Adding a random distributed perturbation (obtained by the Matlab command randn)
to each data function, we obtain the vector gδ :

gδ = g + ε randn
(
size(g)

)
,

where ε indicates the noise level of the measurement data and the function ‘randn(·)’ gen-
erates arrays of random numbers whose elements are normally distributed with mean ,
variance σ  = , and standard deviation σ = . ‘randn(size(g))’ returns an array of random
entries that is the same size as g . The bound on the measurement error δ can be measured
in the sense of the root mean square error (RMSE) according to

δ =
∥∥gδ – g

∥∥∗ =

(

N

N∑
i=

(
g(xi) – gδ(xi)

)
)/

.

The discrete iterative approximation of () takes the form

f δ
k (xj) = (I – ωKh)kf(xj) + ω

k–∑
i=

(I – ωKh)igδ(xj), j = , . . . , N , ()

where Kh = (IN + Ah)e–Ah and ω < ω∗ = 
‖Kh‖ = eμ

+μ
.
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Figure 1 Noise level = 1/100, iter = 5.

Figure 2 Noise level = 1/100, iter = 6.

Figures - show the comparison between the exact solution and its computed approx-
imations for different values N (:= number of grid points), k (:= number of iterations),
ω (:= relaxation factor), ε (:= noisy level) and Er(f ) = ‖fapproximate–fexacte‖∗

‖fexacte‖∗ (:= relative error).
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Figure 3 Noise level = 1/1,000, iter = 5.

Figure 4 Noise level = 1/1,000, iter = 6.



Lakhdari and Boussetila Boundary Value Problems  (2015) 2015:55 Page 17 of 17

Table 1 Kozlov-Maz’ya method

N k ε ω Er(f )

40 5 0.01 0.83697 0.0523
40 6 0.01 0.83697 0.0612
40 5 0.001 0.83697 0.0054
40 6 0.001 0.83697 0.0162

Relative error Er (f ).

6 Conclusion
The numerical results (Figures -, Table ) are quite satisfactory. Even with the noise level
ε = ., the numerical solutions are still in good agreement with the exact solution.

In this study, a convergent and stable reconstruction of an unknown initial condition has
been obtained using the Kozlov-Maz’ya iteration method. Both theoretical and numerical
studies have been provided.
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