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In vivo analysis of Nef’s role in HIV-1 
replication, systemic T cell activation  
and CD4+ T cell loss
Richard L Watkins, John L Foster* and J Victor Garcia*

Background: Nef is a multifunctional HIV-1 protein critical for progression to AIDS. Humans infected with nef(−) 
HIV-1 have greatly delayed or no disease consequences. We have contrasted nef(−) and nef(+) infection of BLT 
humanized mice to better characterize Nef’s pathogenic effects.

Results: Mice were inoculated with CCR5-tropic HIV-1JRCSF (JRCSF) or JRCSF with an irreversibly inactivated nef (JRCS-
FNefdd). In peripheral blood (PB), JRCSF exhibited high levels of viral RNA (peak viral loads of 4.71 × 106 ± 1.23 × 106 
copies/ml) and a progressive, 75% loss of CD4+ T cells over 17 weeks. Similar losses were observed in CD4+ T cells 
from bone marrow, spleen, lymph node, lung and liver but thymocytes were not significantly decreased. JRCSFNefdd 
also had high peak viral loads (2.31 × 106 ± 1.67 × 106) but induced no loss of PB CD4+ T cells. In organs, JRCSFNefdd 
produced small, but significant, reductions in CD4+ T cell levels and did not affect the level of thymocytes. Uninfected 
mice have low levels of HLA-DR+CD38+CD8+ T cells in blood (1–2%). Six weeks post inoculation, JRCSF infection 
resulted in significantly elevated levels of activated CD8+ T cells (6.37 ± 1.07%). T cell activation coincided with PB 
CD4+ T cell loss which suggests a common Nef-dependent mechanism. At 12 weeks, in JRCSF infected animals PB T 
cell activation sharply increased to 19.7 ± 2.9% then subsided to 5.4 ± 1.4% at 14 weeks. HLA-DR+CD38+CD8+ T cell 
levels in JRCSFNefdd infected mice did not rise above 1–2% despite sustained high levels of viremia. Interestingly, we 
also noted that in mice engrafted with human tissue expressing a putative protective HLA-B allele (B42:01), JRCS-
FNefdd exhibited a substantial (200-fold) reduced viral load compared to JRCSF.

Conclusions: Nef expression was necessary for both systemic T cell activation and substantial CD4+ T cell loss from 
blood and tissues. JRCSFNefdd infection did not activate CD8+ T cells or reduce the level of CD4+ T cells in blood but 
did result in a small Nef-independent decrease in CD4+ T cells in organs. These observations strongly support the 
conclusion that viral pathogenicity is mostly driven by Nef. We also observed for the first time substantial host-specific 
suppression of HIV-1 replication in a small animal infection model.
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Background
In individuals infected with nef-defective HIV-1, viral 
replication and pathogenesis were strongly attenuated 
[1–4]. Nef is a multifunctional protein and considerable 
effort has been made to understand which Nef activities 
are important for its contribution to AIDS [5–9]. These 
include the killing of bystander cells, maintenance of 

chronic viral replication leading to systemic immune sys-
tem activation and blunting the host immune response 
[2, 10–16]. Ex vivo and in vivo models of HIV-1 infection 
have resulted in important advances defining Nef ’s criti-
cal role for high levels of viral replication and for CD4+ 
T cell and thymocyte killing. Infection models include 
PBMCs, human fetal thymus organ culture, SCID-hu 
Thy/Liv mice and human aggregate lymphoid tissue 
explant from tonsil [17–26]. Unfortunately, these models 
could not address the systemic effects of Nef.

The bone marrow/liver/thymus (BLT) humanized 
mouse model has recently been employed to investigate 

Open Access

*Correspondence:  john_foster@med.unc.edu; victor_garcia@med.unc.edu 
Division of Infectious Diseases, UNC Center for AIDS Research, Genetic 
Medicine, University of North Carolina, Campus Box 7042, Chapel Hill, NC 
27599-7042, USA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193792235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12977-015-0187-z&domain=pdf


Page 2 of 11Watkins et al. Retrovirology  (2015) 12:61 

systemic effects of HIV-1 infection. In particular, BLT 
humanized mice have been inoculated with HIV-1JRCSF 
(JRCSF) that has the CCR5 tropism predominantly found 
in infected individuals [27]. Denton et  al. found high 
levels of replication by JRSCF and a significant cyto-
pathic effect on CD4+CCR5+ T cells. Nie et al. [28] also 
found high levels of viral replication and targeted killing 
of CD4+CCR5+ T cells in NOG-hCD34 mice. Finally, 
Dudek et al. [29] also reported high levels of JRCSF rep-
lication in NOD/SCID BLT and NOD/SCID/IL2Rγc−/− 
BLT mice. However, the role of Nef in HIV replication 
and CD4+ T cell depletion in the context of a CCR5-
tropic virus has not been reported. In addition, Long 
et  al. [30] infected BLT mice with JRCSF and observed 
systemic activation of peripheral blood CD8+ T cells but 
the role of Nef was not investigated. Therefore, we have 
extended previous studies to compare JRCSF infection 
with infection by JRCSF modified to contain an irrevers-
ibly inactivated nef (JRCSFNefdd). In BLT humanized 
mice, Nef was found to have a limited role in JRCSF rep-
lication, but was necessary for systemic T cell activation 
and CD4+ T cell loss in peripheral blood and in tissues. 
This was the case for multiple BLT mouse human tissue 
cohorts. However, in one exceptional cohort expressing 
an HIV-1 protective HLA-B allele (B42:01), the absence 
of Nef expression led to a 200-fold reduction in viral 
loads. This reduction was not observed in mice infected 
with the wildtype virus expressing Nef. This is the first 
demonstration of a host specific effect on viral load in an 
HIV-1 infection model.

Results
Infection of BLT humanized mice with JRCSF 
and JRCSFNefdd
We compared the infection of humanized BLT mice with 
the CCR5-tropic JRCSF and JRCSF with an irrevers-
ibly inactivated nef (JRCSFNefdd) to discern the phe-
notypic differences between wild type and nef(−) virus 
(Figure 1a). The deletions were made to reflect the trun-
cations of nef found in patients reported to have been 
infected with a nef(−) virus [1, 3, 31, 32]. Though the 
proviral clone for JRCSFNefdd did not express Nef it did 
produce wild type levels of Env (Figure  1b). Further, in 
Figure 1c we observed that the nef deletions did not affect 
viral replication of this virus [33].

In Figure 2a, the levels of virus in blood following intra-
venous injection of JRCSF or JRCSFNefdd [9 ×  104 tis-
sue culture infectious units (TCIU)] were monitored 
for 17  weeks. Both viruses showed rapid increases of 
viral RNA in blood with high levels of virus through-
out the course of infection. Peak viral loads for the 
two viruses were not significantly different (JRCSF, 
4.71  ×  106  ±  1.23  ×  106 copies of viral RNA per ml 

versus JRCSFNefdd, 2.31 × 106 ± 1.67 × 106). However, 
at 8  weeks the average viral load for JRCSFNefdd mice 
was lower than the average viral load for JRCSF mice 
(0.18 × 106 ± 0.09 × 106 and 1.24 × 106 ± 0.37 × 106, 
respectively; p < 0.033) but this significant difference was 
not observed at later time points because JRCSFNefdd 
viral loads displayed considerable variation over time 
(Additional file 1: Figure S1).

We also monitored CD4+ T cells in blood post JRCSF 
inoculation over the course of infection. Our results 
show a slow, 17 week decline in CD4+ T cells while CD4+ 
T cell levels in uninfected mice remained unchanged 
(Figure 2b). These slow losses in CD4+ T cells are in con-
trast with those previously reported with X4-tropic HIV-
1LAI (LAI) that rapidly depleted CD4+ T cells from blood 
following inoculation [32]. Conversely, JRCSFNefdd 
infected BLT mice showed no reduction in peripheral 
blood CD4+ T cells (Figure 2b) which is similar to what 
was previously observed during the course of LAINefdd 
infection under similar experimental conditions [32].

CD4+ T cell levels in tissues of mice infected 
with JRCSFNefdd are higher than those in BLT mice 
infected with JRCSF
The BLT mice from Figure 2 were sacrificed and CD4+ T 
cells present in bone marrow, spleen, lymph node, lung 
and liver were analyzed by flow cytometry (Figure  3a). 
In JRCSF infected mice, all five organs exhibited signifi-
cant drops in the levels of CD4+ T cells. In four of five 
organs, the JRCSFNefdd infected mice also had reduced 
levels of CD4+ T cells, the exception being spleen. How-
ever, the loss of CD4+ T cells as a result of JRCSFNefdd 
infection was not as great as for JRCSF (p < 0.05 for bone 
marrow, spleen, lymph node, lung and liver, Figure  3a). 
In the case of CD4+CD8+ thymocytes, there was no 
significant reduction noted for JRCSF or JRCSFNefdd 
(Figure  3b). These results show that the CD4+ T cell 
depletion observed during the course of JRCSF’s infec-
tion is blunted in the absence of Nef expression.

Analysis of systemic T cell activation during the course 
of infection with JRCSF and JRCSFNefdd
JRCSF infected mice display a relatively slow decline in 
peripheral blood (PB) CD4+ T cells but JRCSFNefdd 
infected mice did not lose these cells (Figure  2b). The 
possibility of an association of CD4+ T cell loss with sys-
temic T cell activation was investigated [30]. Representa-
tive flow cytometric analyses of HLA-DR+CD38+CD8+ 
T cells in blood at 12 weeks are presented in Figure 4a. 
Levels of activated CD8+ T cells were quite low in unin-
fected mice but greatly increased during JRCSF infec-
tion. In contrast, JRCSFNefdd infection had little effect 
on T cell activation despite peak viral loads that were not 
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significantly lower than JRCSF (Figure 2a). In Figure 4b, 
the aggregate time courses for HLA-DR+CD38+CD8+ T 
cells in blood are shown with individual plots presented 
in Additional file  2: Figure  S2. Uninfected mice did not 
have elevated levels of activated CD8+ T cells at any point 
during the experiment and JRCSFNefdd infected mice 
had nearly identical results with the exception of a single 
mouse (JRCSFNefdd 6) at a single time point (week 17) 
during the entire course of the study (Additional file  2: 
Figure  S2). Interestingly, for JRCSF infected mice both 
the activation of CD8+ T cells (JRCSF 6.3 ± 1.1% vs unin-
fected 1.7 ± 0.5%, p = 0.0095, p = 0.0008; Figure 4b) and 
the loss of PB CD4+ T cells (JRCSF 6.4 ± 1.1% vs unin-
fected mice 0.6 ± 0.1%; p = 0.0095; Figure 2b) were first 

clearly evident at 6  weeks. T cell activation remained 
elevated and PB CD4+ T cell continued to decline for 
14  weeks (Figures  2b, 4b). Therefore, the appearance of 
activated CD8+ T cells and loss of CD4+ T cells in blood 
were tightly correlated. At 12  weeks, further activation 
occurred (JRCSF, 19.7 ± 2.9% HLA-DR+CD38+CD8+ T 
cells versus uninfected, 1.1 ± 0.3%, p = 0.0003 and ver-
sus JRCSFNefdd, 1.7 ± 0.5% p = 0.0008). There was no 
dramatic effect of this spike on viral load or the steady 
decline in PB CD4+ T cells (Figure 2a, b).

Time courses of T cell activation for the individual 
control or JRCSF and JRCSFNefdd infected mice are 
presented in Figure  5. In each JRCSF infected mouse, 
the early appearance of CD8+ T cell activation is 
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Figure 1 HIV-1JRCSF with a truncated nef. a Upper panel schematic representation of wild type JRCSF nef (WT JRCSF) is presented. Nucleotides 
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temporally associated with the initial loss of CD4+ T 
cells in blood. Conversely, there was no elevation of 
HLA-DR+CD38+CD8+ T cells and no loss of CD4+ T 
cells in PB for either uninfected or JRCSFNefdd-infected 
BLT mice except as noted above for JRCSFNefdd 6 at 
17  weeks. At this singular, late time point, the associa-
tion between T cell activation and CD4+ T cell decline is 
maintained despite the absence of Nef expression (Addi-
tional file 2: Figure S2). In sum, our results demonstrate a 

strong and highly consistent linkage of CD8+ T cell acti-
vation to the loss of PB CD4+ T cells in JRCSF infected 
mice.

Specific suppressive effect on JRCSFNefdd viral load 
in mice reconstituted with cells and tissue expressing HLA 
B42:01
Dudek et  al. investigated infection with JRCSF of eight 
BLT humanized mice tissue cohorts with many HLA 
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Figure 3 Systemic CD4+ T cell but not thymocyte loss in mice infected with JRCSF and JRCSFNefdd. a CD4+ T cell analysis was performed on five 
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haplotypes represented. The only cohort-specific reduc-
tion in viral load found was with mice implanted with 
B57-expressing human tissue. Mice with human cells 
expressing this protective haplotype exhibited a four-fold 
reduction in viral load relative to all other haplotypes 
investigated including the protective allele, B27 [29]. We 
did not have tissue with the B57 haplotype and consist-
ent with Dudek et al. we observed no cohort-specific sup-
pression of viral load with JRCSF infection. Nor did we 
observe reductions in viral loads with JRCSFNefdd infec-
tions except for one cohort of mice designated Cohort 1 
(Table 1). Cohort 1 has HLA haplotypes, A23:01, A30:01, 

B42:01, B53:01, C08:01, C17:01. In a report based on a 
large population of South African HIV-1 positive individ-
uals, B42:01 was one of the few HLA-B haplotypes found 
to have significantly lower viral loads [34]. Two Cohort 
1 mice were infected with JRCSFNefdd and had consist-
ently lower viral loads than two Cohort 1 JRCSF mice at 
every time point (Figure 6a). At week 10, this reduction 
reached 200-fold. Comparisons of the four JRCSF and 
four JRCSFNefdd mice from Cohorts 2, 3, 4, and 5 gave 
considerable overlap in the viral loads with the JRCSF and 
JRCSFNefdd infected mice (Figure  6b). On the basis of 
these results, we hypothesize that JRCSFNefdd infected 
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mice can have substantially reduced viral burdens rela-
tive to JRCSF mice but the reduction is dependent on the 
genotype of the engrafted tissue.

Disscusion
We have extensively characterized infection of BLT 
humanized mice with a wild type R5-tropic virus (JRCSF) 
and an isogenic nef(−) virus (JRCSFNefdd). Following 

JRCSF infection, there is a progressive 17 week decline in 
CD4+ T cells in blood to about 25% of the levels found 
in uninfected mice. Also at 17  weeks, CD4+ T cells in 
organs were reduced to 20–40% of the levels in unin-
fected mice. These substantial pathogenic effects are, 
nonetheless, less aggressive than the CD4+ T cell losses 
previously reported for the CXCR4-tropic HIV-1 LAI in 
this same model and under similar experimental condi-
tions [32]. However, one stark difference between JRCSF 
and LAI infection was that thymocytes were present at 
near normal levels throughout JRCSF infection but mas-
sively depleted by LAI. The maintenance of thymocyte 
viability despite R5-tropic infection may reflect the pau-
city of CCR5 expressing cells in thymocytes [27]. Inter-
estingly, Jamieson et  al. [24] reported severe losses of 
thymic organoid cells with X4-tropic NL-43 infection 
of SCID–hu mice but little evidence of pathogenicty for 
R5-tropic JRCSF. Not surprisingly, our results reflect 
these earlier results with regard to thymocytes. However, 
previously unreported is the loss of about 75% of CD4+ 
T cells from blood and tissues. In contrast to the rapid 
loss of CD4+ T cells in BLT mice with LAI infection, a 
largely intact human thymic organ during JRCSF infec-
tion could replenish CD4+ T cells in the periphery and 
slow the net loss of CD4+ T cells. The loss of thymocytes 
during X4-tropic LAI infection would not allow buffer-
ing the CD4+ T cell levels in tissues resulting in dramatic 
depletion of these cells [32]. These considerations suggest 
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Figure 5 Systemic T cell activation is compared to PB CD4+ T cell loss in individual mice. Plots for individual mice of CD4+ T cells (left y axis) and 
of HLA-DR+CD38+CD8+ T cells (right y axis) over the infection time course are shown. Top row all six JRCSF infected mice show increases in CD8+ T 
cell activation concomitant to PB CD4+ T cell loss. Middle row JRCSFNefdd infected BLT mice show very low T cell activation and no CD4+ T cell loss 
except for JRCSFNefdd 6 which had a drop in CD4+ at week 17. Bottom row uninfected mice show very low T cell activation and no CD4+ T cell loss.

Table 1 Haplotype of tissues/CD34 stem cells used for the 
construction of the BLT humanized mice used

Multiple BLT mice constructed from the same human tissue are designated 
by a cohort number. The lower level of PB JRCSFNefdd viral RNA compared to 
JRCSF viral RNA in Cohort 1, but none of the others, led us to have the MHCI 
haplotypes determined. A02:06 in Cohort 5 is in italics because it appears to be 
a previously undocumented A2 variant (similar to A*02:06). There is a nucleotide 
substitution in exon 3 that is not present in the HLA database. As it is located 
in exon 3 and encodes a non-synonymous substitution (Histidine > Leucine at 
codon 114), it may impact peptide binding.

Cohort 1 A23:01 A30:01 B42:01 B53:01 
C08:01 C17:01

JRCSF 3, 4; JRCSFNefdd 4, 5

Cohort 2 A02:01 A02:01 B35:17 B52:01 
C03:03 C04:04

JRCSF 2; JRCSFNefdd 3

Cohort 3 A02:01 A03:01 B35:01 B44:02 
C04:01 C05:01

JRCSF 1

Cohort 4 A11:01 A24:02 B35:01 B35:24 
C04:01 C04:01

JRCSF 5, 6; JRCSFNefdd 6

Cohort 5 A02:06 A34:01 B39:05 B40:02 C07:02 
C15:02

JRCSFNefdd 2

Cohort 6 ND JRCSFNefdd 1
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that R5-tropic infection may be inherently as cytotoxic 
as X4-tropic infection but exhibits less drastic effects 
because of different cellular targets.

Another difference between LAI and JRCSF infection 
was that peak viral loads were reduced about sevenfold 
with LAINefdd infection compared to wild type but a 

only a twofold reduction in peak viral load was noted 
with JRCSFNefdd (Figure  2), [32]. HIV-1 JRFL (JRFL) 
is closely related to JRCSF and Usami and Gottlinger 
reported that JRFL and nef(−) JRFL have similar infec-
tivities. The B-C hairpin of the V2 region fails to respond 
to Nef and prevents the functioning of Nef to enhance 
virion infectivity [35]. JRCSF has 90% identical residues 
in the B-C hairpin to JRFL which may account for the low 
impact of the loss of Nef expression on JRCSFNefdd peak 
viral load. However, arguing against this explanation for 
the small impact of nef inactivation on viral replication is 
that JRCSF replicated to high viral loads with or without 
nef.

The T cell activation data (Figures 4, 5) in combination 
with the T cell loss in tissues data (Figure 3a) for JRCSF 
and JRCSFNefdd gives evidence for two mechanisms of 
JRCSF cell toxicity. One mechanism observed with JRCS-
FNefdd infection is Nef and systemic T cell activation 
independent. It results in a relatively low level of killing 
and is only found in tissues as CD4+ T cells in blood are 
not reduced. The second mechanism is Nef-dependent 
and may account for the parallel loss of CD4+ T cells 
in blood and increased PB CD8+ T cell activation. The 
higher level of killing in tissues by JRCSF is also likely 
to be the result of Nef expression and/or T cell activa-
tion (Figure 3a). Killing of CD4+ T cells has been linked 
to systemic T cell activation [30] and we found a strong 
association of PB CD4+ T cell loss with systemic T cell 
activation. Since PB CD4+ T cells are not productively 
infected by HIV-1 the mechanism of PB CD4+ T cell loss 
caused by JRCSF infection is likely to be indirect. Ele-
vated CD8+ T cell activation was first noted at 6 weeks 
when PB CD4+ T cell have clearly begun to decline and 
continued to increase to very high levels by 12  weeks 
(Figure 2b, 4b). The expression of Nef was necessary for 
these effects as JRCSFNefdd failed to cause activation or 
CD4+ T cell loss.

The percent of CD4+ T cells that express CCR5 is 
relatively high in bone marrow, lung and liver and these 
cells are lost with JRCSF infection [27]. It is not known if 
the cytotoxic effect of JRCSF in these organs is indirect 
through systemic T cell activation or direct as a result 
of one or more of Nef ’s numerous activities. Direct Nef 
effects have been proposed for killing bystander cells by 
induction of apoptosis [14, 15, 36–39]. However, we also 
observed reduced but significant losses of CD4+ T cells in 
tissues with JRCSFNefdd infection. To explain the loss of 
CD4+ T cells in tissues following JRCSFNefdd infection, 
mechanisms that are independent of Nef and systemic 
T cell activation are required. One possibility involves 
pyroptotic death of abortively infected cells [40, 41]. In 
JRCSFNefdd-infected mice, the combined effects of hav-
ing high peak viral loads in the absence of systemic T cell 
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Figure 6 Viral load time courses for JRCSFNefdd infected mice and 
JRCSF infected mice with Cohort 1 tissue. a The data in Figure 2a is re-
plotted to separate the four Cohort 1 mice from the other eight mice. 
Two Cohort 1 mice were infected with JRCSF and two were infected 
with JRCSFNefdd. b The remaining eight mice were plotted. These 
mice were from Cohorts 2–5; see Table 1).
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activation may be expected to favor abortive infection. 
An alternate mechanism could be the direct binding to 
bystander cells by Env [42, 43]. The full elucidation of the 
mechanism of Nef- and activation-independent CD4+ T 
cell loss will be important for complete understanding of 
CD4+ T cell loss in R5-tropic HIV-1 infection. The ability 
of Nef to modulate cellular protein kinases may be criti-
cal in this regard [5, 38, 44, 45].

In general, we did not observe significant reductions 
in viral loads for JRCSFNefdd infected mice compared to 
JRCSF infected mice but there was a reduction of JRCS-
FNefdd viral load in BLT mice from one of six cohorts. 
Specifically, there was a 200-fold reduction of viral load in 
JRCSFNefdd infected mice compared to JRCSF infected 
mice sharing Cohort 1 reconstitution. The host factor 
responsible for the reduction in viral load has not been 
identified, however, B42:01 is one of the HLA haplotypes 
for Cohort 1 and B42:01 has a negative impact on viral 
loads of HIV-1 positive individuals [34]. The reduction in 
viral loads observed for the JRCSFNefdd infected Cohort 
1 mice suggest the intriguing possibility that a weak anti-
HIV effect by B42:01 in BLT mice is greatly enhanced when 
Nef is absent. The converse conclusion is that the all other 
haplotypes present in this study are ineffective in reducing 
viral load even with nef(−) virus. In future studies, it will 
be important to screen HLA haplotypes to determine the 
anti-viral effects of multiple HLA haplotypes, especially the 
well-known protective allele B57. In this regard, the Sydney 
Blood Bank Cohort of patients infected with nef(−) HIV-1 
all had greatly delayed disease progression, however of spe-
cial interest is patient C135 with the B57 haplotype that 
was negative for virus in blood for 29 years [46, 47].

Conclusions
We have demonstrated that in the context of the CCR5-
tropic HIV-1 infection the accessory protein Nef is 
required for peripheral blood CD4+ T cell depletion. In 
addition, we observed an association between periph-
eral blood CD8+ T cell activation and the loss of CD4+ 
T cells. Neither activation nor CD4+ T cell loss was 
observed in mice infected with JRCSFNefdd. The require-
ment of Nef expression for CD8+ T cell activation during 
of HIV-1 infection suggests that Nef plays a critical role 
in the widespread nature of HIV-1 cytotoxicity. Moreo-
ver, this Nef-dependent activation is linked to the loss of 
CD4+ T cells but the mechanism is not known. A rela-
tively small, Nef-independent cytotoxic T cell effect was 
also observed. This loss of CD4+ T cells was restricted to 
tissues. The significance of this finding is unknown but 
overall pathogenicity appears to be largely driven by Nef. 
Future investigations will pursue understanding the long-
elusive mechanism behind the fundamental phenomenon 
of CD4+ T cell loss during HIV-1 infection.

We also observed a reduced ability of JRCSFNefdd 
to replicate in mice from a specific cohort of identical 
engrafted human tissue. Of great interest, this cohort 
expressed B42:01 which is an allele significantly associated 
with reduced viral burdens by studies of large populations 
of HIV-1 infected individuals. Thus, the BLT humanized 
mouse infected with JRCSFNefdd may provide a platform 
to independently identify protective HLA alleles.

Methods
Preparation of humanized BLT mice
Humanized BLT mice were prepared as previously described 
[27, 29, 30, 32, 48–55]. Briefly, thymus/liver implanted 
NOD/SCID IL-2γ−/− mice (The Jackson Laboratories, 
Bar Harbor, ME, USA) were transplanted with autologous 
human CD34+ cells isolated from fetal liver (Advanced Bio-
science Resources, Alameda, CA, USA). Reconstituted mice 
have a highly representative human immune system. Mul-
tiple mice reconstituted from a single source of autologous 
thymus/liver implant and human CD34+ cells represent a 
single cohort. Mice from seven cohorts were used (Table 1). 
Human reconstitution in the peripheral blood of these mice 
was monitored periodically by flow cytometry prior to use 
(FACSCanto; BD Biosciences). Mice were maintained at 
the Division of Laboratory Animal Medicine, University of 
North Carolina at Chapel Hill (UNC-CH) in accordance 
with protocols approved by the UNC-CH Institutional Ani-
mal Care and Use Committee.

Cell lines and culture conditions
293T and TZM-bl cells were maintained in Dulbecco’s 
modified Eagle’s medium (DMEM; Cellgro, Herndon, VA, 
USA) supplemented with 10% fetal bovine serum (FBS; 
Cellgro), 100 IU/ml of penicillin, 100 μg/ml streptomycin, 
and 2 mM glutamine (Cellgro) in 10% CO2 at 37°C.

Proviral clones
The proviral clone, pYK-JRCSF (accession #M38429), was 
described by Koyanagi et al. [56]. pYK-JRCSFNefdd was 
constructed by first creating a 5′ deletion upstream of the 
PPT. The XhoI/Acc65I fragment was removed and blunt 
ends were made with Klenow followed by religation. The 
reconstituted XhoI site was cut and treated with Klenow 
and religated. In the 3′ half of nef 288 bases were deleted 
by site directed mutagenesis as previously described for 
pLAInefdd [32].

Exposure of BLT humanized mice to JRCSF 
and JRCSFNefdd, assay of viral production, tissue 
harvesting and cytometric analyses
Stocks of JRCSF and JRCSFNefdd were prepared as 
previously described [44, 57]. Briefly, proviral clones 
were transfected into 293T cells. Viral supernatant was 
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collected 48 h after transfection and diluted in Dulbecco’s 
modified Eagle’s medium (DMEM) supplemented with 
10% fetal bovine serum, 100  IU penicillin/ml, 100  μg/
ml streptomycin, and 2  mM glutamine. TZM-bl cells 
were infected in 12-well tissue culture plates with 0.4 ml 
of virus at multiple dilutions in medium for 2  h. Then, 
1.0 ml of supplemented DMEM was added and the plates 
incubated overnight. Virus containing medium was 
removed the next day, replaced with fresh DMEM plus 
10% fetal bovine serum and the incubation continued for 
24  h. The cells were fixed and stained with 5-bromo-4-
chloro-3-indolyl-β-d-galactopyranoside (40  h after first 
exposure to virus). Blue cells were counted directly to 
determine infectious particles per mL. Each titer of these 
viral stocks was performed in triplicate and at least two 
different titer determinations were performed for each 
batch of virus. p24gag was determined for each virus prep-
aration with the ELISA HIV-1 p24 antigen capture assay 
from Advanced Bioscience Laboratories Inc. (Cat. No. 
5421).

Intravenous exposure of BLT mice with infectious virus 
was conducted via tail vein injection with indicated tis-
sue culture infectious units (TCIU). Viral load in periph-
eral blood of infected mice was monitored longitudinally 
by quantitative real-time PCR using Taqman RNA to-CT™ 
1-step kit from Applied Biosystems, USA [50, 58]. The 
sequences of the forward and reverse primers and the 
Taqman probe for PCR were: 5′-CATGTTTTCAGCAT-
TATCAGAAGGA-3′, 5′-TGCTTGATGTCCCCCCACT-3′, 
and 5′-FAM CCACCCCACAAGATTTAAACACCAT-
GCTAA-Q-3′, respectively.

CD4+ and CD8+ T cell levels were monitored by flow 
cytometric analysis as previously described [27, 53, 55]. 
Immunophenotyping was performed on blood samples 
collected longitudinally and on mononuclear cells iso-
lated from tissues at harvest. Whole peripheral blood (PB) 
from humanized mice was analyzed according to the BD 
Biosciences Lyse/Wash protocol (Cat. No. 349202) as we 
have previously described [59]. Briefly, following antibody 
labeling of whole blood, red blood cells were lysed. The 
remaining cells were washed, fixed and the sample was 
analyzed by flow cytometry. Tissue mononuclear cell iso-
lations and immunophenotyping analyses were also per-
formed according to published methods [27, 53, 55]. Flow 
cytometric gating for CD4 and CD8 cell surface expression 
was performed as follows: (step 1) forward and side scatter 
properties were utilized to set a live cell gate; (step 2) live 
cells were then analyzed for expression of the human pan-
leukocyte marker CD45; (step 3) human leukocytes were 
then analyzed for hCD3 and (step 4) T cells or thymocytes 
were analyzed for hCD4 and hCD8 expression.

The panel of antibodies for analysis of CD8+ T cells 
double positive for CD38+ and HLA-DR+ was CD8 FITC 

(SK1), HLA-DR, PE (TU36) or IgG2bκ PE, CD4 PerCP 
(SK3), CD3 PE-Cy7 (SK7), CD38 APC (HB7) or IgG1κ 
APC, and CD45 APC-Cy7 (2D1) (all purchased from BD 
Biosciences). Gating was performed as follows: (step 1) 
forward and side scatter properties were utilized to set 
a live cell gate; (step 2) live cells were then analyzed for 
expression of the human pan-leukocyte marker CD45; 
(step 3) human leukocytes were then analyzed for CD3; 
(step 4) T cells were analyzed for CD4 and/or CD8 
expression; (step 5) activation of human CD8+ T cells was 
analyzed for HLA-DR and CD38 expression [30]. Gates 
defining HLA-DR and CD38 expression were set with 
isotype-matched fluorophore-conjugated antibodies.

Viral replication in vitro
The human T cell line, CEM (NIH AIDS Reagent Pro-
gram), was modified to express CCR5 [33]. Cells were 
infected with virus stocks at 1 ×  105 TCUI at an MOI 
of 0.01 in complete RPMI containing 2 µg/ml polybrene 
at 37°C, 5% CO2 for 4  h. The cells were washed exten-
sively with PBS and cultured at 37°C, 5% CO2 in complete 
RPMI. Cell cultures were passaged at 0, 5, 8, 13, 18, and 
21 days post-infection and a sample of the culture super-
natant was collected for quantification of viral capsid 
protein by p24gag ELISA.

HLA haplotyping
HLA haplotypes were determined by sequence based 
typing using SeCore HLA typing reagents (Life Technol-
ogies) on an ABI3500 capillary sequencer. Data analysis 
was performed using uType software (Life Technologies). 
When necessary, ambiguous allele combinations were 
resolved with sequence specific oligonucleotide probe 
hybridization (ThermoFisher). DNA was extracted a Pro-
mega Maxwell automated DNA extractor and kits.

Statistical analysis
Student t test was conducted using Prism Version 5 
(Graph Pad). All data were plotted as mean ± SEM.

Additional files

Additional file 1: Figure S1. Viral loads plotted for individual mice 
(A). The viral loads for each of the six BLT humanized mice infected with 
JRCSF from Figure 2A are plotted separately. (B) The viral loads for the 
six BLT humanized mice infected with JRCSFNefdd from Figure 2A are 
presented as individual plots. JRCSF infected mice are from four different 
cohorts and JRCSFNefdd infected mice are from five different cohorts. The 
cohorts were distributed as follows. Cohort 1—JRCSF 3, 4 and JRCSFNefdd 
4,5; Cohort 2—JRCSF 2, and JRCSFNefdd 3; Cohort 3—JRCSF 1; Cohort 
4—JRCSF 5, 6 and JRCSFNefdd 6; Cohort 5—JRCSFNefdd 2; Cohort 6—
JRCSFNefdd 1.

Additional file 2: Figure S2. Time course of T cell activation plotted 
for individual mice. (A) Individual JRCSF infected mice are shown. (B) 
Individual JRCSFNefdd mice are shown.
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