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Abstract
For α > β – 1 > 0, we obtain two-sided inequalities for the moment integral
I(α,β) =

∫
R

|x|–β | sin x|α dx. These are then used to give the exact asymptotic behavior
of the integral as α → ∞. The case I(α,α) corresponds to the asymptotics of Ball’s
inequality, and I(α, [α] – 1) corresponds to a kind of novel “oscillatory” behavior.

MSC: Primary 52A20

Keywords: Ball’s inequality; asymptotics; cube slicing; moments

1 Introduction
Ball’s integral inequality [], in connection with cube-slicing in R

n, says that for all s ≥ ,

∫ ∞
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∣
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s
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√


s
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∫ ∞
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∣
∣
∣
sin x

x

∣
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∣

s

dx ≤ π

√

s

,

with strict inequality except when s = . In particular, it suggests that the integral decays
like √

s as s → ∞, and this is made precise by the following asymptotic []:

lim
s→∞

√
s


∫ ∞

–∞

∣
∣
∣
∣
sin(πx)

πx

∣
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s

dx =
√


π

.

Since
√


π

< , the asymptotic result implies the inequality for large values of s. But there
are no known “easy” proofs of the inequality for the full range of values, the main diffi-
culty being near small values of s, e.g., between  and  []. The asymptotic result, though
reasonably tame, presents new difficulties when we consider a more general integral, and
this is circumvented here by the proof of two new inequalities.

Our purpose here is to consider a generalization involving the “moment” integral

I(α,β) =
∫ ∞

–∞
| sin x|α

|x|β dx, α > β –  > .

We shall obtain useful upper and lower bounds for this integral and use them to obtain the
asymptotic behavior of this integral. In addition, the inequalities obtained are indispens-
able in obtaining the asymptotic behavior, especially in the interesting “oscillatory” cases
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I(α, [α]) if α ≥  and I([α],α – ) if α > , where [α] is the greatest integer in α. The oscil-
latory behavior makes it impossible to employ the standard methods used in connection
with Ball’s inequality.

We place no restrictions on the indices α and β beyond those necessary to ensure the
convergence of the integral I(α,β). Indeed, the condition β >  implies convergence in a
neighborhood of ∞, and near , the inequality | sin x|α

|x|β ≤ |x|α–β implies convergence since
α – β > –.

2 Weaker versions of Ball’s inequality
A natural way to deal with Ball’s inequality is to apply the sharp form of the Hausdorff-
Young inequality []. This leads to two inequalities for the relevant integral: the first works
for all s ≥ , but falls short of the required inequality by supplying the larger constant

√
e

in place of
√

. The second gives a constant smaller than
√

 but only works for s ≥ .

Proposition 
(a) If s ≥ , then

∫ ∞

–∞

∣
∣
∣
∣
sin(πx)

πx

∣
∣
∣
∣

s

dx ≤ √
s

·
√(

 +


s – 

)s–

<
√

e
s

.

(b) If s ≥ , q = s
 , and p is the index conjugate to q, then

∫

R

∣
∣
∣
∣

(
sinπξ

πξ

)∣
∣
∣
∣

s

dξ ≤
√


s

(
√p
p + 

)q/p

<
√


s

.

Proof For part (a), let χ = χ(–/,/) be the characteristic function of the interval (–/, /).
Then its Fourier transform is given by χ̂ (ξ ) =

∫ ∞
–∞ χ (x)e–π ixξ dx = sinπξ

πξ
. Applying the

sharp Hausdorff-Young inequality [], ‖χ̂‖s ≤ Cp‖χ‖p, where s ≥ , p = s′, the index con-
jugate to s, and Cp is given by C

p = p/p(s)–/s, we obtain

∫

R

∣
∣
∣
∣
sinπξ

πξ

∣
∣
∣
∣

s

dξ ≤ (
p/ps–/s)s/.

It now remains to compute

(
p/ps–/s)s/ =

√
s

·
(

s
s – 

) s–


=
√
s

·
√(

 +


s – 

)s–

<
√

e
s

, s ≥ ,

and the inequality in (a) follows.
To prove part (b), we employ the convolution g = χ ∗ χ of the same characteristic func-

tion. A simple computation gives

g(x) =

⎧
⎪⎨

⎪⎩

 – x  ≤ x ≤ 
 + x – ≤ x ≤ 

 |x| ≥ 

⎫
⎪⎬

⎪⎭
.



Abi-Khuzam Journal of Inequalities and Applications  (2017) 2017:257 Page 3 of 8

Now ĝ(ξ ) = ( sinπξ

πξ
), ‖g‖p

p = 
p+ , and an application of the sharp-Hausdorff-Young inequal-

ity gives, for q ≥  and the conjugate index p = q′,

∫

R

∣
∣
∣
∣

(
sinπξ

πξ

)∣∣
∣
∣

q

dξ ≤ (
p/pq–/q)q/

(


p + 

)q/p

= q–/
(

√p
p + 

)q/p

<
√p
p + 

·
√


q

.

Since √p
p+ < , we obtain the inequality

∫ ∞
–∞ | sin(πx)

πx |s dx <
√


s for all s ≥ . �

3 Main results
In this section we consider the question of obtaining upper and lower bounds for the more
general integral, namely

∫ ∞
–∞

| sin x|α
|x|β dx. Those bounds are then used to obtain the precise

asymptotic behavior of the integral as α → ∞. In addition, the bounds make it possible to
employ discontinuous functions such as [α] in place of β , and then the asymptotic result
also captures the precise oscillations in the values of the integral, as α → ∞.

Theorem  Suppose α > β –  > , and put

I(α,β) =
∫

R

| sin t|α
|t|β dt = 

∫ ∞



| sin t|α
|t|β dt,

and

φ(α,β) =
α

α–β+
 �(α + )

�( α–β+
 + α + )

,

where � is the gamma-function. Then

(

α

) α–β+


�

(
α – β + 



)

φ(α,β) ≤ I(α,β) ≤
(


α

) α–β+


�

(
α – β + 



){

 +


β – 

}

.

In particular, if β = α, then

√

α

√
α�(α + )
�(α + 

 )
√

π ≤ I(α,α) ≤
(√


α

)√
π

{

 +


α – 

}

.

Proof We need first the following double inequality:

 –
x


≤ sin x

x
≤ e– x

 ,  ≤ x ≤ π .

The left-hand inequality is easily proved by calculus. It will be used with  ≤ x ≤ √
.

For the right-hand inequality, since  ≤ x ≤ π , we may use the inequality between the
geometric and arithmetic mean of positive numbers to obtain

n∏

k=

(

 –
x

πk

)

≤
(

 –
x

πn

n∑

k=


k

)n

≤ exp

(

–
x

π

n∑

k=


k

)

.
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Letting n → ∞ and recalling the product representation of the sine function and
∑∞

k=


k = π

 , we obtain the second inequality. The next step is to compare the full in-
tegral in the theorem to an integral over the interval [,

√
], or over [,π ].

∫ √




| sin t|α
|t|β dt ≤

∫ π



| sin t|α
|t|β dt ≤

∫ ∞



| sin t|α
|t|β dt

=
∫ π



| sin t|α
|t|β dt +

∞∑

k=

∫ (k+)π

kπ

| sin t|α
|t|β dt

=
∫ π



| sin t|α
|t|β dt +

∞∑

k=

∫ π



| sin t|α
|t + kπ |β dt

≤
{

 +
∞∑

k=


(k + )β

}∫ π



| sin t|α
|t|β dt

≤
{

 +


β – 

}∫ π



sinα t
tβ

dt.

Using the above inequalities for sin x
x ,

∫ √



tα–β

(

 –
t



)α

dt ≤
∫ π



sinα t
tβ

dt ≤
∫ π


tα–β exp

(

–
αt



)

dt.

Simple substitutions to change variables bring this double inequality to the form





α–β+



∫ 


x

α–β–
 ( – x)α dx ≤

∫ π



sinα t
tβ

dt ≤ 


(

α

) α–β+


∫ πα



x

α–β–
 e–x dx.

If we extend the right most integral to [,∞), and then express both sides through the
gamma function, we arrive at





α–β+


�( α–β+

 )�(α + )
�( α–β+

 + α + )
≤

∫ π



sinα t
tβ

dt ≤ 


(

α

) α–β+


�

(
α – β + 



)

.

This gives the first inequalities for I(α,β), and so, the inequalities for I(α,α). �

Corollary  Let I(α,β) be the integral in the theorem.
(a) If α – β = c is constant, while α → ∞, then

lim
α→∞α

c+
 I(α,β) = 

c+
 �

(
c + 



)

, c > –.

In particular, the asymptotic for the integral in Ball’s inequality is

lim
α→∞

√
αI(α,α) =

√
π .

(b) If α – β = c, and c remains bounded as α → ∞, then

I(α,β) �
(


α

) α–β+


�

(
α – β + 



)

, α → ∞.
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In particular,

I
(
α, [α]

)
�

(

α

) α–[α]+


�

(
α – [α] + 



)

, α → ∞.

Proof (a) In the very special case where β = α, Stirling’s formula gives

φ(α,α) =
√

α�(α + )
�(α + 

 )
∼

αα+e/

(α + /)α+ =
e/

( + 
α

)α+
∼ , α → ∞.

From this, the case where α – β = c, a constant, is handled similarly:

φ(α,β) =
α

c+
 �(α + )

�( c+
 + α + )

∼
αα+ c+

 + 
 e–α

(α + c+
 )α+ c+

 + 
 e–(α+ c+

 )

=
e c+



( + c+
α

)α+ c+
 + 


∼ , α → ∞.

(c) If α – β = c > –, and c is only bounded, then Stirling’s formula followed by the in-
equality ( + c+

α
)α ≤ e c+

 , gives

lim inf
α→∞ φ(α,β) = lim inf

α→∞
α

c+
 �(α + )

�( c+
 + α + )

= lim inf
α→∞

e c+


( + c+
α

)α+ c+
 + 


≥ lim inf

α→∞


( + c+
α

) c+
 + 


= .

So that

lim inf
α→∞

[(

α

) α–β+


�

(
α – β + 



)]–

I(α,β) ≥ .

The corresponding lim sup being clearly ≤ , we obtain

I(α,β) �
(


α

) α–β+


�

(
α – β + 



)

, α – β bounded,β → ∞. �

4 Conclusion
For α > β – > , we have obtained two-sided inequalities for the moment integral I(α,β) =
∫
R

|x|–β | sin x|α dx and used them to predict and then prove the exact asymptotic behavior
of the integral as α → ∞. In particular, we showed that the asymptotic behavior I(α, [α]–)
corresponds to the oscillations of �( α–[α]+

 ) between its extreme values. We would like to
end by a generalization of the asymptotic result for a class of infinite products. Let g be a
function having an infinite product representation of the form

g(t) =
∞∏

n=

(

 –
t

t
n

)

,
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where tn >  and c =
∑∞

n= t–
n < ∞. We are interested in investigating limp→∞

∫ ∞


|g(t)|p
tβ dt,

where  ≤ β < . Two examples of such a function are

f (x) =
∫ 


cos(xt)h(t) dt, J(x) =


π

∫ 



cos xt√
 – t

dt.

[Where in the first integral h is continuously differentiable, h(t) > , h′(t) < , and h′′(t) < 
for  ≤ t ≤ .] The first function f was considered in [] in connection with maximal
measures of sections of the n-cube. The second is the Bessel function of order .

In studying the asymptotics of
∫ ∞


|g(t)|p

tβ dt, it appears instructive to consider first the
case where β = .

Proposition  If g is the function defined above, then we have the double inequality

 – ct ≤ ∣
∣g(t)

∣
∣ ≤ e–ct , c =

∞∑

k=

t–
k ,

where the left inequality is used when  ≤ t ≤ √
c , and the right inequality when  ≤ t ≤ t.

Furthermore,

lim
p→∞

√
p
∫ ∞

–∞

∣
∣g(t)

∣
∣p dt =

√
π

c
.

Proof In general, if  < ak < , k = , , . . . , n, then

 – (a + a + · · · + an) ≤
n∏

k=

( – ak) ≤
(

 –

n

n∑

k=

ak

)n

.

The inequality on the left is proved by induction. The inequality on the right is the AGM
(arithmetic-geometric mean) inequality. Taking ak = ( t

tk
), with  ≤ t ≤ t, gives

(

 – t
n∑

k=

t–
k

)

≤
n∏

k=

(

 –
t

t
k

)

≤
(

 –
t

n

n∑

k=

t–
k

)n

≤ exp

(

–t
n∑

k=

t–
k

)

,

and passing to the limit as n → ∞, we arrive at the required inequalities.
The left-hand inequality gives

∫ ∞



∣
∣g(t)

∣
∣p dt ≥

∫ √
c



(
 – ct)p dt =



√

c

∫ 


( – x)px–/ dx =



√

c
�(p + )

√
π

�(p + 
 )

.

By Stirling’s formula we obtain

lim inf
p→∞

√
p
∫ ∞

–∞

∣
∣g(t)

∣
∣p dt ≥

√
π

c
,

which suggests that the order of decay of the integral is √p , and this leads naturally to
a consideration of √p

∫ ∞
 |g(t)|p dt =

∫ ∞
 |g( t√p )|p dt. Now a substitution in the two-sided
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inequalities above gives

(

 – c
t

p

)p

≤
∣
∣
∣
∣g

(
t√p

)∣
∣
∣
∣

p

≤ e–ct
,

where the left-hand inequality holds true for  ≤ t ≤
√p√

c , and the right-hand inequal-
ity holds true for  ≤ t ≤ t

√p. It now becomes possible to use, exactly as done in
[], Lebesgue’s dominated convergence theorem to conclude that actually limp→∞

√p ×
∫ ∞

–∞ |g(t)|p dt =
√

π
c . �

Our final result handles the general case where  < β < .

Theorem  If g is the function considered above, and  < β < , then

lim
p→∞ p

–β


∫ ∞



|g(t)|p
tβ

dt =
�( –β

 )

√

c–β
.

Proof In following the same approach as in the proof of Proposition  above, we need to
know beforehand the expected rate of decay. Thus, using one of the inequalities in Propo-
sition , we obtain

∫ ∞



|g(t)|p
tβ

dt ≥
∫ √

c



(
 – ct)pt–β dt =



√

c–β

∫ 


( – x)px– +β

 dx

=



√

c–β

�(p + )�( –β

 )
�( –β

 + p + )
,

leading to a sharp lower asymptotic, namely

lim inf
p→∞ p

–β


∫ ∞



|g(t)|p
tβ

dt ≥ �( –β

 )

√

c–β
.

Once again this suggests that the expected decay is like p
β–

 . So we make the substitution
t = ( – β)


–β p–/x


–β and find that

p
–β



∫ ∞



|g(t)|p
tβ

dt =
∫ ∞



∣
∣
∣
∣g

(
( – β)


–β x


–β

√p

)∣
∣
∣
∣

p

dx.

The inequalities

(

 – c
( – β)


–β x


–β

p

)p

≤
∣
∣
∣
∣g

(
( – β)


–β x


–β

√p

)∣
∣
∣
∣

p

≤ exp
(
–c( – β)


–β x


–β

)

make it possible to use Lebesgue’s theorem, and we arrive at the asymptotic

lim
p→∞ p

–β


∫ ∞



|g(t)|p
tβ

dt =
�( –β

 )

√

c–β
. �
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