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                                                               ABSTRACT 

 

The thermal instability of a Rivlin-Ericksen viscoelastic fluid, acted upon by uniform 

vertical rotation and heated from below, is investigated. Following linearized stability 

theory and normal mode analysis, the mathematical analysis of the governing equations 

of Rivlin-Ericksen viscoelastic fluid convection with a uniform vertical rotation is 

performed. It is shown that for the cases of rigid boundaries the complex growth rate   

of oscillatory perturbations, neutral or unstable for all wave numbers, must lie inside a 

semi-circle, in the right-hand half of a complex  -plane with the center at the origin. 

This prescribes the upper limits to the complex growth rate of arbitrary oscillatory 

motions of growing amplitude in a rotatory Rivlin-Ericksen viscoelastic fluid heated 

from below. Furthermore, the conditions necessary for the existence of oscillatory 

motions of growing amplitude in the present configuration and the sufficient condition 

for the validity of the Principle of Exchange of Stabilities are established.  

     
Keywords: Thermal convection; Rivlin-Ericksen Fluid; rotation; PES; Rayleigh number; 

Taylor number. 

 

INTRODUCTION 

 

The stability of a dynamical system is closest to real life, in the sense that the realization 

of a dynamical system depends upon its stability. From the beginnings of 

conceptualizations of turbulence, the instability of fluid flows has been regarded as 

fundamental. The thermal instability of a fluid layer, which has an adverse temperature 

gradient that is maintained by heating from below, has an important role in Geophysics, 

the interior of the Earth, Oceanography, and Atmospheric Physics, and it has been 

investigated by several authors (Al- Doori, 2011; Bénard, 1900; Rayleigh, 1916; 

Jeffreys, 1926; Rana & Thakur, 2012; Satya Narayana, Ramireddy, & Venkataramana, 

2011) under different conditions. A detailed account of the theoretical and experimental 

study of the onset of Bénard Convection in Newtonian fluids, under varying 

assumptions of hydrodynamics and hydromagnetics, has been given by Chandrasekhar 

(1981). The use of the Boussinesq approximation has been made throughout, which 

states that density changes are disregarded in all other terms of the equation of motion, 

except the external force term. Bhatia and Steiner (1972) have considered the effect of 

uniform rotation on the thermal instability of a viscoelastic (Maxwell) fluid, and they 

found that rotation has a destabilizing influence in contrast to the stabilizing effect it has 

on a Newtonian fluid. The thermal instability of a Maxwell fluid in hydromagnetics has 

been studied by Bhatia and Steiner (1973). They found that the magnetic field stabilizes 
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a viscoelastic (Maxwell) fluid just as it does a Newtonian fluid. Sharma (1976) studied 

the thermal instability of a layer of viscoelastic (Oldroydian) fluid acted upon by a 

uniform rotation and found that rotation has destabilizing as well as stabilizing effects 

under certain conditions, in contrast to that of a Maxwell fluid, in which it has a 

destabilizing effect. In another study, Sharma (1975) investigated the stability of a layer 

of an electrically conducting Oldroyd (1958) fluid in the presence of a magnetic field, 

and found that the magnetic field has a stabilizing influence. 

Many elastico-viscous fluids cannot be characterized by Maxwell’s constitutive 

relations or by Oldroyd’s (1958) constitutive relations. Two such classes of fluids are 

Rivlin-Ericksen’s and Walter’s (model B’) fluids. Rivlin-Ericksen (1955) proposed a 

theoretical model for one such class of elastico-viscous fluids. Sharma and Kumar 

(1996) studied the effect of rotation on the thermal instability of a Rivlin-Ericksen 

elastico-viscous fluid, and found that rotation has a stabilizing effect and that it 

introduces oscillatory modes in the skystem. Kumar, Mohan, and Lal (2006) considered 

effects of rotation and magnetic field with free boundaries only, on a Rivlin-Ericksen 

elastico-viscous fluid, and found that rotation has a stabilizing effect, whereas a 

magnetic field has both stabilizing and destabilizing effects. A layer of such fluid, 

heated from below or under the action of a magnetic field or rotation or both, may find 

applications in Geophysics, interior of the Earth, Oceanography, and Atmospheric 

Physics.  

Pellow and Southwell (1940) proved the validity of the Principle of Exchange of 

Stabilities for the classical Rayleigh-Bénard convection problem. Banerjee, Katoch, 

Dube, and Banerjee (1981) presented a new scheme for combining the governing 

equations of thermohaline convection. This is shown to lead to the bounds for the 

complex growth rate of the arbitrary oscillatory perturbations, neutral or unstable for all 

combinations of dynamically rigid or free boundaries. In addition, Banerjee and 

Banerjee (1984) established a criterion for the characterization of non-oscillatory 

motions in hydrodynamics, which was further extended by Gupta, Sood, and Bhardwaj 

(1986). However, no such result exists for non-Newtonian fluid configurations, in 

general and for Rivlin-Ericksen viscoelastic fluid configurations, in particular. Banyal 

(2011) characterized the non-oscillatory motions in a couple-stress fluid. Bearing in 

mind the importance of non-Newtonian fluids, the present paper attempts to prescribe 

the upper limits to the complex growth rate of arbitrary oscillatory motions of growing 

amplitude in a layer of incompressible Rivlin-Ericksen viscoelastic fluid, which is 

heated from below in the presence of uniform vertical rotation, opposite to force of 

gravity, when the bounding surfaces at the top and bottom of the fluid are rigid with 

infinite horizontal extension.  

 

FORMULATION OF THE PROBLEM AND PERTURBATION EQUATIONS 
 

Consider an infinite horizontal incompressible Rivlin-Ericksen viscoelastic fluid layer 

of thickness d, heated from below, such that the temperature and density at the bottom 

surface z = 0, are 0T  and 0  and at the upper surface z = d, are dT  and d , respectively, 

and that a uniform adverse temperature gradient 









dz

dT
  is maintained. The fluid is 

acted upon by a uniform vertical rotation  


,0,0  parallel to the force field of gravity 

 gg 


,0,0 . 
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The equations of motion, continuity, and heat conduction, governing the flow of 

the Rivlin-Ericksen viscoelastic fluid in the presence of rotation are (Rivlin & Ericksen, 

1955; Chandrasekhar, 1981; Kumar et al., 2006): 
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                                                   TTq
t

T 2).( 


 

                                        (3)                                                                                

where  , p, T,  , ' , and  wvuq ,,


 denote the density, pressure, temperature, 

kinematic viscosity, kinematic viscoelasticity, and velocity of the fluid, respectively, 

and where ),,( zyxr


.                                                                                                                                          

The equation of state for the fluid is 

                               00 1 TT                                                     (4) 

where the suffix zero refers to the values at the reference level z = 0. Here,  gg 


,0,0  is 

the acceleration due to gravity and   is the coefficient of thermal expansion. In writing 

Eq. (1), we made use of the Boussinesq approximation, which states that the density 

variations are ignored in all terms of the equation of motion, except the external force 

term. The thermal diffusivity   is assumed constant. 

The initial state is one in which the velocity, density, pressure, and temperature 

at any point in the fluid are given by 

             0,0,0


q ,  z  , p = p(z), T = T(z)                              (5)                                                                                                                                                       

Assume small perturbations around the basic solution and let  , p ,  , and 

 wvuq ,,


 denote the perturbations in density  , pressure p, temperature T and velocity 

)0,0,0(


q , respectively. The change in density  , caused mainly by the perturbation   

in temperature, is given by 

             000 1  TT , i.e.  0                (6)                                                                                                                             

            Then, the linearized perturbation equations are: 

             

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                                   0. 


q                                                         (8)                                                                                                                                                                                                                                                                   

                                
 2



w

t
                                            (9)                                                                                                                

Within the framework of the Boussinesq approximation, Eqs. (6)–(9) become: 
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where 2

2

2

2

2

2
2

zyx 












  and 

y

u

x

v









  denote the z-component of 

vorticity. 

  

NORMAL MODE ANALYSIS 
   

Analyzing the disturbances into normal modes, we assume that the perturbation 

quantities are of the form: 

             zZzzWw ,,,,  exp  ntyikxik yx  ,                                                 (13)                                                                               

where yx kk ,  are the wave numbers along the x- and y-directions, respectively, 

 2
1

22

yx kkk   is the resultant wave number, and n is the growth rate that in general, is 

a complex constant. 

Using Eq. (13), Eqs. (10)–(12), in non-dimensional form, transform to: 

          DZTRaWaDFaD A 22222 1                             (14)                                                                                                                               

          DWZaDF   221                                              (15) 

        WpaD  1
22                                                    (16)                                                                                                                                                       

where we have introduced new coordinates  ',',' zyx  = (x/d, y/d, z/d) in new units of 

length d and '/ dzdD  . For convenience, the dashes are dropped hereafter. In addition, 

we have substituted ,,
2




nd
kda 




1p , which is the thermal Prandtl 

number; 



2p  is the magnetic Prandtl number, 

2

'

d
F


  is the Rivlin-Ericksen 

kinematic viscoelasticity parameter, 


 4dg
R   is the thermal Rayleigh number, and 

2

424



d
TA


  is the Taylor number. Furthermore, we have substituted WW , 




 2d
, 


 Z

d
Z



2
, and dDD  , and dropped    for convenience. 

We now consider the case where both boundaries are rigid, perfectly conducting 

and maintained at constant temperature. Thus, the perturbations in temperature at the 

boundaries are zero. The appropriate boundary conditions with respect to which Eqs. 

(14)–(16), must possess a solution are: 

 W = DW = 0, 0  and Z=0 at z = 0 and z = 1.                                                    (17)                                           

Eqs. (14)–(16), together with boundary conditions (17), pose an eigenvalue 

problem for   and we wish to characterize i  when 0r . 
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We first note that W  and Z  satisfy )1(0)0( WW   and )1(0)0( ZZ   in addition to 

satisfying the governing equations and hence, we have from the Rayleigh-Ritz 

inequality (Schultz, 1973) 

  

1

0

22

1

0

2
dzWdzDW                                         (18) 

and                                                                                                                                                                                                        

 

1

0

22

1

0

2
dzZdzDZ  .                                      (19) 

Furthermore, for )1(0)0( WW   and )1(0)0( ZZ  , Banerjee, Gupta & Prakash 

(1993) have shown that 

 

1

0

22

1

0

2
2 dzDWdzWD   And  

1

0

22

1

0

2
2 dzDZdzZD                  (20) 

 

MATHEMATICAL ANALYSIS 

 

We prove the following lemma: 

 

Lemma 1: For any arbitrary oscillatory perturbation, neutral or unstable: 
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Proof: Multiplying Eq. (15) with its complex conjugate and integrating by parts, for an 

appropriate number of times, each term on both sides of the resulting equation and by 

making use of boundary condition on Z , namely )1(0)0( ZZ  , together with Eq. 

(17), we get: 

 

   
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dzZaDZaZDFF rr


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                    (21) 

 

On utilizing the inequalities Eqs. (19) and (20), Eq. (21) gives: 

 

  
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2
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1
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2 1
dzDWdzZ


 and    

1

0

2

222

1

0

222 1
dzDW

F
dzZaDZ


           (22)                                             

 

We prove the following theorem: 

 

Theorem 1: If R  0 , F  0, AT 0, 0r , and 0i , then the necessary condition for 

the existence of non-trivial solution  ZW ,,  of Eqs. (16)–(18), together with the 

boundary conditions of Eq. (19), is that 

 



 

 

Thermal Convection of Rivlin-Ericksen Fluid in the Presence of Vertical Rotation 

467 

 

 

                                        














)1(
1)1(

24

22

2

F

T
FF

T

A

A




  .  

Proof: Multiplying Eq. (14) by W  (the complex conjugate of W) throughout and by 

integrating the resulting equation over the vertical range of z, we get 

 

    
 
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222)1( DZdzWTdzWRaWdzaDWWdzaDWF A .    (23)                                                                                                                                        

 

Taking the complex conjugate on both sides of Eq. (16), we get 

 

    WpaD 1
22 .                                          (24) 

Therefore, by using (24), we get  

      
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22 dzpaDdzW  .                                    (25) 

Furthermore, by taking the complex conjugate on both sides of Eq. (15), we get 

 

     DWZaDF  22* )1( .                                 (26) 

 

Therefore, by using Eq. (26) and the appropriate boundary conditions of Eq. (17), we 

get  
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Substituting Eqs. (25) and (27) in the right-hand side of Eq. (23), we get 
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Integrating the terms on both sides of Eq. (25) for an appropriate number of times, by 

making use of the appropriate boundary conditions of Eq. (19), together with Eq. (17), 

we get 

    

1

0

222
1

0

2422
2

2 2)1( dzWaDWdzWaDWaWDF 

      

1

0

2*

1

0

222*

1

0

2

1

2222 )1( dzZTdzZaDZFTdzpaDRa AA  .           (29) 

Then, by equating the imaginary parts on both sides of Eq. (29) and cancelling )0(i  

throughout, we get 
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Now, R  0, F  0, and AT  0 and by utilizing the inequalities of Eqs. (19), (20), and (22), 

Eq. (30) gives 
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is positive definite.                                                                                                                                                       

 

Therefore, we must have 
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Hence, if 

                 0r  and 0i , then 
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and this completes the proof of the theorem. 

 

In the context of the existence of instability in ‘oscillatory modes’ and that of 

‘overstability’ in the present configuration, we can state prove a theorem as follows. 

 

Theorem 2: The necessary condition for the existence of instability in ‘oscillatory 

modes’ and that of ‘overstability’ in a Rivlin-Ericksen viscoelastic fluid, heated from 

below in the presence of uniform vertical rotation, is that the Taylor number AT  and the 

viscoelasticity parameter of the fluid F, must satisfy the inequality 1
)1( 24


 F

TA


, 

when both the bounding surfaces are rigid. 

 

Proof: The inequality Eq. (32) for 0r  and 0i , can be written as: 
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We necessarily have 1
)1( 24


 F

TA


, 

which completes the proof. 

 

Presented otherwise, from the point of view of the existence of instability as stationary 

convection, the above theorem can be put in the form as follows. 

 

Theorem 3: The sufficient condition for the validity of the ‘exchange principle’ and the 

onset of instability as non-oscillatory motions of non-growing amplitude in a Rivlin-
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Ericksen viscoelastic fluid, heated from below in the presence of uniform vertical 

rotation, is that 1
)1( 24


 F

TA


, where AT  is the Taylor number and F is the 

viscoelasticity parameter, when both bounding surfaces are rigid. 

 

Or, the onset of instability in a Rivlin-Ericksen viscoelastic fluid, heated from below in 

the presence of uniform vertical rotation, cannot manifest itself as oscillatory motions of 

growing amplitude if the Taylor number AT  and the viscoelasticity parameter F, satisfy 

the inequality 1
)1( 24


 F

TA


, when both bounding surfaces are rigid. 

 

Theorem 4: For stationary convection, the Rivlin-Ericksen viscoelastic fluid behaves 

like an ordinary Newtonian fluid, i.e., 0AT  implies that 0r  and 0i , when 

both bounding surfaces are rigid. 

 

Proof: The inequality Eq. (32), can be written as: 














)1(
1)1(

24

22

22

F

T
FF

T

A

A
ir




 . 

If 0AT , then we necessarily have 0r  and 0i . Thus, for stationary 

convection, the Rivlin-Ericksen viscoelastic fluid behaves like an ordinary Newtonian 

fluid, when both the bounding surfaces are rigid and it mathematically establishes the 

result of Kumar et al. (2006). This completes the proof. 

 

CONCLUSION 
 

The inequality Eq. (32) for 0r  and 0i , can be written as: 














)1(
1)1(

24

22

22

F

T
FF

T

A

A
ir




 . 

The essential content of the theorem, from the point of view of linear stability theory, is 

that for the configuration of a Rivlin-Ericksen viscoelastic fluid of infinite horizontal 

extension, heated from below in the presence of uniform vertical rotation parallel to the 

force field of gravity, and having rigid top and bottom bounding surfaces, the complex 

growth rate of arbitrary oscillatory motions of growing amplitude, must lie inside a 

semi-circle in the right-hand half of the r i  - plane, whose center is at the origin and 

whose radius is 
 A

A

TFF

T

 )1( 24

2




, where AT  is the Taylor number and F is the 

viscoelasticity parameter. 

Furthermore, it follows from inequality Eq. (32) that a sufficient condition for the 

validity of the Principle of Exchange of Stabilities in rotatory Rivlin-Ericksen 

viscoelastic fluid convection is that 1
)1( 24


 F

TA


. It is therefore clear that the 
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existence of oscillatory motions of growing amplitude in the present configuration 

depends crucially upon the magnitude of the non-dimensional number 
AT

F)1( 24  
, in 

the sense that as long as 1
)1(

0
24





AT

F
, no such motions are possible, and in 

particular, the Principle of Exchange of Stabilities is valid and provides significant 

improvement to Banyal (2012).  
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