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Abstract

Background: Estrogen receptor alpha36 (ERalpha36), a variant of estrogen receptor alpha (ER) is expressed in about
half of breast tumors, independently of the [ER+]/[ER-] status. In vitro, ERalpha36 triggers mitogenic non-genomic
signaling and migration ability in response to 17beta-estradiol and tamoxifen. In vivo, highly ERalpha36 expressing
tumors are of poor outcome especially as [ER+] tumors are submitted to tamoxifen treatment which, in turn,
enhances ERalpha36 expression.

Results: Our study aimed to validate ERalpha36 expression as a reliable prognostic factor for cancer progression
from an estrogen dependent proliferative tumor toward an estrogen dispensable metastatic disease. In a
retrospective study, we tried to decipher underlying mechanisms of cancer progression by using an original
modeling of the relationships between ERalpha36, other estrogen and growth factor receptors and metastatic
marker expression. Nonlinear correlation analyses and mutual information computations led to characterize a
complex network connecting ERalpha36 to either non-genomic estrogen signaling or to metastatic process.

Conclusions: This study identifies ERalpha36 expression level as a relevant classifier which should be taken into
account for breast tumors clinical characterization and [ER+] tumor treatment orientation, using a generic approach
for the rapid, cheap and relevant evaluation of any candidate gene expression as a predictor of a complex
biological process.

Keywords: ERalpha36, Breast tumor, Retrospective study, Gene network identification, Metastatic potential,
Nonlinear correlation, Distance based tumor classification
Background
Worldwide, breast cancer remains one of the main
causes of cancer-induced morbidity and mortality in
women. Breast tumors are usually classified according
to clinical parameters (size, grade, lymph node exten-
sion) and molecular expression status (ER, PR, HER2,
Claudin) [1]. Such a classification allows clinicians order-
ing the appropriate treatment. For instance, ER-positive/
negative ([ER+]/[ER-]) status refers to the expression of
the 66kDa nuclear estrogen receptor α (ERα66) in tumors,
which are consequently cured by endocrine therapeutic
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agents such as tamoxifen. Nevertheless, about 30 % thera-
peutic failure is observed due to unclear resistance mecha-
nisms [2].
Until the recent identification of new membrane

bound estrogen receptors, ERα66 has been considered
as the sole functional estrogen receptor in hormone sen-
sitive breast tumor. In 2005, Wang and colleagues [3]
cloned a 36-kDa variant of ER-alpha (ERα36) which
lacks both AF-1 and AF-2 transcription activation do-
mains but retains a truncated ligand-binding domain,
suggesting that ERα36 may have a spectrum of ligand se-
lectivity different from ERα66.
ERα36 is generated from a promoter located in the

first intron of the ESR1 gene, indicating that ERα36 ex-
pression is regulated independently from ERα66. This is
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consistent with the finding that ERα36 protein is present
in about 40 % of [ER+] and [ER-] breast tumors.
ERα36 triggers membrane-initiated mitogenic estrogen

signaling through non-genomic pathways not only in
breast, but also in gastric and laryngeal cancer cells both
in vitro and in vivo [4–7]. In the [ER+] MCF-7 breast
tumor cell line, ERα36 overexpression leads to tamoxifen
resistance and enhances metastatic potential [8, 9]. Thus,
tamoxifen does not act as a drug for cancer treatment
but serves as an ERα36 agonist, triggering proliferation,
migration and invasion. The adverse effect of tamoxifen
in ERα36 highly expressing [ER+] breast tumors may
explain why the affected patients display poor out-
come and require chemotherapy but not endocrine
therapy [10].
These findings raise the possibility that, in vivo, en-

hanced ERα36 expression could drive the growth status
switch from estrogen dependent mitogenic signaling to
estrogen dispensable migration/invasion ability and con-
sequently stimulates cancer progression. Therefore, we
designed a generic method to validate the hypothesis
that ERα36 expression may serve as a reliable thera-
peutic response prognosis marker for breast cancer
patients.
A retrospective study was performed on 118 breast

tumor samples in which the expression of genes in-
volved in non-genomic estrogen response as well as
metastatic process was analyzed. Potential relationship
between these genes was modeled by using nonlinear
correlation analyses, mutual information associated to
significance analysis [11, 12], which are proven to be
more accurate than linear statics techniques even if the
latter are simpler to implement [13–17]. These models
are represented by so-called “gene co-regulation graphs”
which can be drawn for any consistent subclass of the
considered 118 samples. Then, we used a metric com-
paring two gene co-regulation graphs to search the opti-
mal value of ERα36 expression providing two distinct
populations from a gene network point of view. The two
obtained graphs were compared and the differences ap-
peared to be of biological significance.

Results
[ER+] versus [ER-] gene networks
Since breast tumors are usually classified according to
their hormone receptor status, tumor samples were first
split into two classes according to their respective [ER]
status, thus defining a first group of 60 ERα66 express-
ing samples ([ER+]), and a second group of 58 samples
devoid of ERα66 expression ([ER-]). [ER+] breast cancer
cell lines such as MCF-7 are considered non metastatic
and weakly express ERα36 whereas [ER-] cell lines such
as MDA-MB-231 or MDA-MB-235 are highly metastatic
and display higher levels of ERα36 expression. In order
to assess if such a link between ERα36 expression level
and metastatic ability may be observed in vivo, nuclear
(ERα66) or membrane-associated estrogen receptors
(ERα36, GPER), their counterparts in non-genomic estro-
gen signaling (EGFR, HER2) as well as metastatic marker
(SNAIL1, CXCR4, RANKL, VIM and MMP9) mRNA
expression levels were determined by real-time PCR
analyses. Among the growing amount of biomarkers re-
lated to the ER status (DDB2), the migration/invasion
process (MMP9, VIM, CXCR4, RANKL, SNAIL) or the
estrogen-response pathways (GPR30, EGFR), those
listed above were picked up because they were previ-
ously shown to be related to ERα36 [18–20]. Then, we
identified the gene networks for each class of tumors by
using nonlinear correlation analyses and transfer en-
tropy computation (see Additional file 1: Table S1A and
Additional file 2: Table S1B). The processed data ob-
tained from [ER+] samples indicated that ERα36 was a
key node of a complex gene network, which involves
other steroid and growth factor receptors as well as
metastatic markers as a whole (Fig. 1a). On the other
hand, ERα36 was connected to the single metastatic
marker VIM in the [ER-] network (Fig. 1b). These huge
differences displayed by the two networks implied dif-
ferent functioning modes according to the tumor [ER]
status and suggested that there could be a quantifiable
link between ERα36 position into the network and/or
its expression level and tumor metastatic progression.

ERα36 based classification of breast tumor samples
To check if ERα36 mRNA expression level could be a
relevant classifier of a particular breast tumor pheno-
type, we drew a gene network for each ERα36 expression
value. Then, we quantified the differences between the
networks as a function of ERα36 relative expression, and
designed a metric playing the role of a distance between
graphs. The metric is an integer number standing for
the structural differences between two graphs. More pre-
cisely, we compared the edges in the two graphs: when
an edge existed in a graph and not in the other the dis-
tance was incremented with 1, if the edge existed in both
graphs but did not represent the same linking way, the
distance was incremented with 2. The obtained distance
is then a metric.
According to this metric, we determined the best

threshold for ERα36 to subdivide the samples into two
populations, in order to obtain the most different net-
works probably defining the most different tumor pheno-
types related to ERα36 expression (Fig. 2a). Among ERα36
expressing samples, the “best” threshold (which leads to
the highest network difference score) was ΔC (t) = 8.35
and allowed to segregate a high ERα36 expressing class
([ERα36++]) of 24 tumors and a low ERα36 expressing
class ([ERα36+]) of 84 tumors.



Fig. 1 Gene expression network modeling in [ER+] and [ER-] samples. Graphs were designed by computing nonlinear correlation and mutual
information between each gene expression pair in either ER-positive (a) or ER-negative (b) samples. The vertices represent genes. The edges
linking the vertices indicate that independence between gene expressions is less than 0.05 and links for ERα36 are in bold. P-values are given in
Additional file 1: Table S1A and Additional file 2: Table S1B, respectively
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ERα36 and metastatic progression
In a last step, the previous modeling procedure was ap-
plied to either [ERα36+] or [ERα36++] subgroups. When
ERα36 expression was low (Fig. 2b), it was clearly related
to other receptors (GPER, EGFR) and DDB2 as well as
inversely correlated to metastatic markers (MMP9, VIM)
Fig. 2 Gene expression network modeling depending on ERα36 expression
expression level (see text for details). Expression level varied between 0 and
ERα36 expression level, population was divided into two sub-groups for wh
networks was calculated (y-axis). The ERα36 expression threshold correspon
equal to 8.35. b–c Graphs were designed by computing nonlinear correlati
either low ERα36 [ER α36+] expressing (b) or high ERα36 [ERα36++] expres
vertices indicate that independence between gene expressions is less than
Correlation values are given in Additional file 3: Table S2A and Additional f
Additional file 6: Table S3B, respectively
(see Additional file 3: Table S2A and Additional file 4:
Table S2B). Conversely, in the context of a high ERα36
expression (Fig. 2c), the network indicated a positive rela-
tionship to metastatic markers (SNAIL1, VIM and MMP9)
independent from other receptors (see Additional file 5:
Table S3A and Additional file 6: Table S3B).
level. a Network distance characterization as a function of ERα36
20 in the samples expressing ERα36 (x-axis). With step of 0.5 on
ich networks were computed. A distance between corresponding
ding to the most different gene networks was computed and was
on and mutual information between each gene expression pair in
sing (c) samples. The vertices represent genes. The edges linking the
0.05. Positive correlations are in blue and negative correlations in red.
ile 4: Table S2B and P-values in Additional file 5: Table S3A and
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Discussion
In the present study, we examined ERα36 expression in
breast tumor specimens from 118 patients. We report
that the majority of [ER+] tumors also express high
levels of ERα36.
In a previous clinical study, ERα36 expression was

shown to correlate with poor outcome in patients with
[ER+] tumors treated by tamoxifen and the same ten-
dency was observed in patients with [ER-] tumors [10].
Therefore, a high level of ERα36 expression seemed to
be an unfavorable factor of survival in breast cancer pa-
tients, independently of ER status. Besides, recent
in vitro data indicate that ERα36 expression (i) controls
metastatic potential in [ER-] HCC38 cells and (ii) con-
fers estrogen-hypersensitivity to [ER+] MCF-7 cells [9, 18].
In order to confirm that ERα36 can trigger the progres-
sion of breast cancer in the primary tumor as well as
during metastasis and to characterize the underlying
mechanisms of high ERα36-dependent phenotypes, we
developed modeling tools. Expression analyses and net-
work modeling of estrogen and growth factor receptor
encoding genes, well known markers involved in tumor
cell migration or invasion, and selected ERα36 target
genes [18] suggest that ERα36 could be a key node of es-
trogen responsive pro-metastatic gene network in [ER+]
tumors. These results are in line with recent in vitro
analyses in MCF-7 cells, which show that the activation
of ERα36 expression triggers adaptive changes character-
ized by enhanced survival and migration during acquired
tamoxifen resistance process [8, 21]. Similar data were
obtained from endometrial cancer cells wherein ERα36
was shown to promote tamoxifen agonist action via the
MAPK/ERK and PI3K/Akt pathways [22–24]. Taken to-
gether, our results and others clearly suggest that [ER+]
tumors highly expressing ERα36 should not be cured by
tamoxifen because the treatment could drive metastatic
progression.
The developed approach to validate ERα36 as relevant

prognostic marker is quite generic and can be applied to
other genes as well as to a subset of genes G0. Indeed,
the only modification, in this case, is to consider that we
search for the maxima of multivariable function. Then, a
classification can be done according to the expression of
each gene to obtain 2n classes, where n is the cardinality
of the considered subset G0. Moreover, the robustness of
the proposed method is attested by the fact that we
proceed as described in [25], by using a shuffling
method which generates more than 20 000 data for each
of the dependency computation done between each pair
of the studied genes.
Among the genes tested in this study, ERα36 was iden-

tified as the best classifier candidate based on its ability
to discriminate between two separate networks: one
connecting ERα36 to membrane receptors and the
second relating ERα36 expression to those of metastatic
markers. Therefore, comprehensive analysis and modeling
of gene expression combined to colocalization analysis
of ERα36 and ERα66 in breast tumors will contribute to
characterize the cascade and timing of events that trig-
ger ERα36 expression during [ER+] metastatic tumor
progression.

Conclusions
In conclusion, this study (i) identifies ERα36 as a rele-
vant classifier whose expression level should be taken
into account for breast tumors clinical characterization
and [ER+] tumor treatment orientation, (ii) confirms
ex vivo previous in vitro data connecting high ERα36 ex-
pression to enhanced expression of migration/invasion
markers and (iii) generates a novel approach for the
rapid, cheap and relevant evaluation of any candidate
gene expression as a predictor of a complex biological
process.

Methods
Patients
Tumor specimen from 118 women with primary breast
cancer expressing the canonical long form of ERα
(ERα66) [ER+] or not [ER-] were collected between 1980
and 1998, stored in the Paul Strauss Cancer Center bio-
bank and used with the patients’ verbal informed con-
sent with the approval of the hospital ethic committee.
Since the tumor pieces used in this study were regarded
as post-operative waste materials, verbal consent was re-
corded by the surgeon during the preoperative examin-
ation. The Hospital Ethic Committee for Clinical Research
localized into the Paul Strauss Center for Anticancer
Research, 3 rue Porte de l’Hôpital, 67000 Strasbourg,
France, approved the procedure. 60 [ER+] as well as 58
[ER-] tumor samples were included in the retrospective
study. Immediately after resection, one half of each
tumor was cryogenized into liquid nitrogen whereas
the other part was fixed in 4 % formalin and further
used for immunohistological analyses. [ER] status was
assayed by standard ligand binding assay. In short, snap
frozen tumor samples were pulverized and cytosols
were extracted by ultracentrifugation. Human serum al-
bumin was used as a standard control for protein
normalization. Cytosol (10 μL) was incubated with 5
nmol/L [H3] estradiol. After incubation, 100 μL super-
natant were transferred to an isoelectric focusing gel, in
order to separate bound, unbound and unspecifically
bound hormone. Samples with >10 fmol/mg bound ER
were considered to be [ER+].

RT-QPCR analysis
ERα66, ERα36, GPER, EGFR and HER2, as well as
SNAIL1, CXCR4, RANKL, DDB2, VIM and MMP9
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expression levels were determined by real-time PCR
analyses. Large ribosomal protein (RPLPO) encoding
gene was used as a control to obtain normalized values.
Primers are listed in [see Additional file 7: Table S4].
Assays were performed at least in triplicate, and the mean
values were used to calculate expression levels, using the
ΔC (t) method referring to RPLPO housekeeping gene ex-
pression. Briefly, total RNA was extracted using RNeasy
Plus Universal tissue Mini (Qiagen, Courtabœuf, France)
and reverse transcribed (GoScript Reverse Transcription
System, Promega, Charbonnières-les-Bains, France).
Real-time PCR analyses were then performed by using
iTaq Universal SYBR Green Supermix (Bio-Rad, France)
in Opticon2 thermocycler (Bio-Rad) as described else-
where [26].

Statistical analysis and modeling
Mathematical modeling of biological processes has re-
cently emerged and developed as an essential tool to
help cancer biologists and clinician pathologists im-
proving personalized diagnosis, therapy and prognosis.
Mainly, the first step in many gene regulation network-
modeling task is the identification of the co-regulated
or co-expressed genes. To this purpose, most of the
works are based on a linear correlation computation
and statistical hypothesis tests. Nevertheless, these
tools do not detect nonlinear relationship between
gene expressions, which is generally the case [13, 14].
That is why we propose to use nonlinear correlation
and conditional mutual information techniques on the
gene expressions in order to detect more accurately
and exhaustively the co-regulated genes. More pre-
cisely, to confirm that there exists a relationship be-
tween two gene expressions, we cross two hypothesis
tests. The first one is based on a nonlinear correlation
computation based on the Spearman’s rank correlation
coefficient. We associate to this number a hypothesis
test on the dependence of the considered gene expres-
sions. When the p-value of this test is less or equal to a
fixed threshold (0.05 or 0.01 for our study), we con-
clude on the possible link between these genes that
must be confirmed by a second computation based on
the mutual information value associated to a signifi-
cance analysis.
We consider statistical significance testing for the mu-

tual information measurement M (X, Y), where X and Y
represent the random variables associated to the consid-
ered two gene expressions. The null hypothesis H0 of
this test is that X and Y are independent. The Mutual
Information is a measure of the variables’ mutual de-
pendence. Here we use it to measure this dependence
for every pair of genes. In this context, we consider two
random variables X and Y associated to the expression
of two genes among the target genes.
The expression of M (X, Y) is given by:
M (X, Y) = H (X) + H (Y) −H (X, Y), where H (X) and

H (Y) are the marginal entropies and H (X, Y) is the
joint entropy (or the Shannon entropy) of X and Y.
Here, the computation of marginal entropy is given by,

for the samples (xi)i = 1,.., n

H Xð Þ ¼ −
Xn
i

P xið Þlog2 P xið Þð Þ

and the joint entropy is computed by

H X;Yð Þ ¼ −
Xn
i

P xi; ; yj
� �

log2 P xi; ; yj
� �� �

Intuitively, mutual information measures how much
knowing one of these variables reduces the uncertainty
about the other. For example, if X and Y are independ-
ent, then knowing X does not give any information
about Y and vice versa. So their mutual information is
zero. At the other extreme, if X is a deterministic func-
tion of Y and Y is a deterministic function of X, then all
information conveyed by X is shared with Y: knowing X
determines the value of Y and vice versa. As a result, in
this case the mutual information is the same as the un-
certainty contained in Y (or X) alone, i.e. the entropy of
Y (or X).
First we estimate the distribution of the mutual infor-

mation under H0. The main problem using the mutual
information measurement is that we do not have a “ref-
erence” to say that from a certain value (0.8 for example)
the two variables are dependent. In order to decide
whether or not the two variables are dependent, we have
to make a hypothesis test using the experimental data
compared to randomly generated data. These surrogate
series of data are obtained by permuting the elements of
one of the studied gene expression. Thus, we compare
the obtained Mutual Information results: if the one ob-
tained by using the original computation is significantly
high w.r.t. the generated ones, we conclude to the de-
pendence of the two variables (here: gene expressions).
Importantly, these surrogates are computed from the

same number of observations, and the same distribu-
tions for X and Y (Fig. 3). We can then determine a
one-sided p-value of the likelihood of our observation of
the mutual information i.e. the probability of observing a
greater mutual information value than that actually mea-
sured assuming H0. This can be done either by directly
counting the proportion of surrogates or assuming a
normal distribution of the mutual information and com-
puting the p-value under a z-test.
For a given p-value, which is often 0.05 or 0.01, indi-

cating that the observed results would be highly unlikely
under the null hypothesis H0, we reject the latter



Fig. 3 Significance analysis method. Considering the mutual information value for two data vectors, we used a shuffling method on one of these
two vectors to estimate the distribution of the mutual information as a random variable. The significance test consists in comparing the obtained
value of mutual information for the considered non shuffled data vectors to a function of the standard deviation. Dependence test between two
random variables X and Y associated to two gene expressions: By shuffling the data of gene Y (random row permutations), we compared the
obtained Mutual Information M (X, Y) results. If the one obtained by using the original computation was significantly high (p-value < a, which is in
our case equal to 0.01) w.r.t. the generated ones, we concluded to the dependence of the two variables. Thus we could conclude on the
independence hypothesis of the two data vectors. X (green), Y (red): Original data. Y1, Y2, YK: Surrogate data (yellow)
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hypothesis concluding then that a significant relation-
ship between the two gene expressions does exist.
From these networks, we evaluate the pertinence for a

unique gene to be assimilated to a breast tumor classifier
in three steps. First, after choosing the gene and a classi-
fication threshold to separate the samples into two cat-
egories, we identify two networks connecting the gene
to separate markers by using nonlinear correlation and
mutual information techniques. Then, we define and
compute the distance between the two networks, which
takes into account both the structural differences be-
tween the networks (existence or not of relations be-
tween the markers, sense of the linking when it exists)
and the compartmental differences (behavioral differ-
ences in the relationship between genes). Therefore, the
distance between both networks represents the classifi-
cation performance of the classifier gene and allows us
finding the more pertinent classifiers.

Additional files

Additional file 1: Table S1A. P-values given for each gene pair in the
[ER+] tumor gene network.

Additional file 2: Table S1B. P-values given for each gene pair in the
[ER-] tumor gene network.
Additional file 3: Table S2A. P-values given for each gene pair in the
[ERα36+] tumor gene network.

Additional file 4: Table S2B. Correlation values given for each gene
pair in the [ERα36+] tumor gene network.

Additional file 5: Table S3A. P-values given for each gene pair in the
[ERα36++] tumor gene network.

Additional file 6: Table S3B. Correlation values given for each gene
pair in the [ERα36++] tumor gene network.

Additional file 7: Table S4. Primer list.
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