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Abstract. The ubiquitous problem of estimating the background of a measured spectrum is solved
with Bayesian probability theory. A mixture model is used to capture the defining characteristics
of the problem, namely that the background is smoother than the signal. The smoothness property
is quantified in terms of a cubic spline basis where a variable degree of smoothness is attained by
allowing the number of knots and the knot positions to be adaptively chosen on the basis of the
data. The fully Bayesian approach taken provides a natural way to handle knot adaptivity, allows
uncertainties in the background to be estimated and data points to be classified in groups containing
only background and groups with additional signal contribution. Our technique is demonstrated on
a PIXE spectrum from a geological sample and an Auger spectrum from an 10 monolayer iron film
on tungsten.

INTRODUCTION

Background estimation is an omnipresent problem for quantitative spectral analysis.
Numerous techniques for background subtraction were designed with the goal for best
performance for specific problems[1]. The results of these ad hoc methods are often
not in accordance with estimates from experienced persons obtained with the best tool
available: the brain. The question arises which information enters the brain calculator
independent of the various types of applications. Intuitively, most people search for
regions in the spectrum with data points containing only background and draw a smooth
function through the points. The data points consisting of both, background and signal,
are shortweighted. Usually the background can be distinguished from the signal because
the background is smoother than the signal. Though this criterion can be modified, most
sensible experiments are designed appropriately. The measured data and the information
used intuitively by our brain calculator is combined within a mixture model in the
framework of Bayesian probability theory.

In a previous paper, von der Linden et al. [1] presented a general approach to esti-
mating a background contained in spectral data that was based on the assumption that
the signal varies much more rapidly than the background. In that work the background
was represented by a sequence of cubic splines with equally spaced knots. The mini-
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mum knot spacing was determined by the width of the signal structure that one wishes
to exclude from the background curve.

This paper extends the earlier work in two important directions; first by employing
adaptive splines to represent the background, which is achieved by allowing the number
of spline knots to vary in accordance with the requirements of the data, and secondly,
by handling bipolar signals, i.e., signals with positive and negative components. We
also address several calculational issues, including the improvement in the convergence
procedure to determine the spline amplitudes. This is an extended version of a paper
recently published [2].

We motivate our improvements by referring to a graph of the results from Ref. [1]
showing a Particle Induced X-ray Emission (PIXE) spectrum and the estimated back-
ground function. The data in Fig. 1 are displayed on a logarithmic scale to exhibit a
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FIGURE 1. A PIXE spectrum for a geological sample with the background estimate obtained in Ref. 1
using 35 evenly spaced spline knots. The oscillations in the estimated background above the energy of
0.25 seem unwarranted, given the large uncertainties in the measurements in this region.

deficiency in the previous results, already pointed out in Ref. [3]. At the high-energy
end of the spectrum, which contains no apparent signal structure, the estimated back-
ground has many oscillations. These oscillations do not appear to be supported by the
data, given their large uncertainties. Although the wiggles in this tail region of the spec-
trum do not pose a problem for interpreting this data set, they demonstrate an inherent
problem in the previous approach, which could degrade its estimates underneath signal
peaks. Our primary goal here is to avoid this spurious behavior in the estimated back-
ground. The approach we take is to allow the number of knots and their placement to
adapt to the requirements of the data, similar to what was used before for deblurring [4].

Another objective of this paper is to demonstrate that, with a minor modification to
the method presented in Ref. [1], it is possible to cope with signals with positive and
negative components. We demonstrate this capability on an Auger spectrum.

We refer the reader to the earlier paper [1] for details that we omit here.
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BAYESIAN APPROACH TO BACKGROUND ESTIMATION

The general idea that we wish to capture with our Bayesian model is that a spectrum
consists of a smooth background with additive signal peaks that are relatively compact.
We seek a curve b(x), defined over an interval from xmin to xmax, that describes the
background under a spectrum, which is discretely sampled at positions Xi over the
same interval. The measured values of the spectrum at these points are designated
di, collectively referred to as the vector d. To cover a wide range of applications, we
identify the background by the fact that it is smoother than the signal. More restrictive
specifications are certainly possible for a restricted class of problems and can be dealt
with in a similar fashion. The smoothness of the background is ensured by expanding it
in terms of a set of cubic spline functions

$ijl,cl, (1)
v=l v=l

or in vector notation b = 3>c. The cv are the spline values at the E knot positions £„.
The transformation <j)(xi^v) depends on the vectors £ and x and, hence, the matrix <I>
depends on these vectors. Without going into detail, we use the results of spline theory
[5, 6, 7] to determine the elements of <&. An implicit assumption must be made about the
curve at the endpoints. We choose the natural spline condition, that is, assume that the
second derivatives of b(x) are zero at the ends of the interval. Other possible boundary
conditions are given in [5,6]. Although the basis set that we consider consists of cubic
splines, our approach can be easily adopted to other smooth basis functions.

In our Bayesian approach we focus on the probability of the background having a
value bi at each measurement position x^ represented by p(bi \ d, M , X] . This probability
depends on the full data set d, an as-yet-unspecified model for the background, sum-
marized here simply as M, and all relevant information X concerning the nature of the
physical situation and knowledge of the experiment. We will include in T knowledge
of the noise in the experimental measurements. Also included in T is the knowledge of
the signal structure that we wish to exclude from background, summarized in our spline
model by the parameter Ax, the minimum distance between spline knots. Both of these
specifications play a crucial role since they provide the information that the model uses
to discriminate the signal from the background.

Equation (1) allows us to focus on the c as the fundamental set of parameters to
be estimated. According to Bayes law, [8, 9, 10] the desired probability for c can be
expressed as

P(d\c,£,E,X)p(c\£,E,X)

The likelihood, p ( d \ c J ^ J E J I), expresses the probability of the measurements, given
their uncertainties. The prior, p(c|£5 E, T), is a probabilistic statement of what we know
about the quantities of interest, c in this case, independent of the experimental data.
The denominator, p(d\^E, I) = / dEc p(d\c,£,E, T)p(c\£,E, X), called the evidence,
guarantees that the posterior has the correct normalization: j dEcp(c\d,£t,E1X] = 1. As
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we shall see, the evidence plays a central role in determining the number of spline knots,
E, in our adaptive model.

The prior probabilities

The distinguishing characteristic of the background that we wish to exploit is its
smoothness. In the earlier work [1], the prior on the background used to express its
smoothness was based on the integral of the square of the slope of the background. That
prior is inconsistent with the cubic splines used to represent the background, which are
known to minimize the integral of the square of the second derivative. Therefore, we
now use the more appropriate prior

(3)

where b" (x) is the second derivative of the background function at x. This prior has the
additional advantage over the previous one that it does not penalize linear backgrounds.
The factor Z is included for normalization. The positive parameter // controls the width
of this prior distribution.

The expansion in Eq. (1) yields for the prior

c} , (4)

where A/i,i/2 = f dx(j)tl1(x)(j)fl2(x). The matrix D can be evaluated analytically or nu-
merically.

The determinant of D provides the volume factor needed for the proper normalization
of the Gaussian. The tilde over the determinant symbol indicates the need for a special
treatment of the determinant evaluation. Because both constant and linear eigenvectors
have zero eigenvalue, D has two zero eigenvalues. Thus the actual determinant of
D is zero, which would make Eq. (4) useless. The proper interpretation is achieved
through the addition of — epcTc to the exponent in (4), which adds a very small c
to the diagonal elements of D. The modified determinant is det D = e2 • det£>, with
the understanding that detD is the product of the E — 2 nonzero eigenvalues of D.
For parameter estimation, e is an unimportant proportionality factor and for model
comparison the term drops out. Thus one obtains the same results as if one had started
with Eq. (4).

Since JJL is a nuisance parameter for our problem, according to the rules of probability,
it should be integrated out, that is, p(c «)=Jd//p(//,c •) = Jd//p(c|//«)p(//|«). The dot
indicates any applicable conditionals that do not need to be specified. This parameter
can be dealt with straight away. The appropriate prior for a scale parameter, such as JJL,
is Jeffreys' prior p(^\I) oc l//u, with the usual caveats [1]. The integration yields the
multivariate Student's t distribution

/2 . (5)
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In this paper we allow the positions of spline knots £v to vary, except for £1 and £#,
which are fixed at xmin and xmax, respectively. The objective is to allow a variable degree
of smoothing for the background. Since the £„ are now parameters that are subject to a
probabilistic treatment, we need a prior for them. We pick a general noncommittal prior
by assuming it is uniform over the phase space available to the ̂  [4]. For the interval
from £1 = xmin to £^ = xmax, taking into account the minimum spacing Ax and the
required ordering of the knot positions, that is £1 + Ax < £2; £2 + Ax < £3; • • • £E-I +
Ax < £E, the prior on £ is p(£\E, I) = Z~l J]fL2 #[f *-i + Ax < ffc], where the function
0 is unity when its argument conditions are met and zero otherwise. The normalization
integral

/

Xmax — (E— 2)AiC f*Xmax — (E—3)Ax rXmax—^X

<%* <%3- d£E-i (6)
_min+AoJ J&+&X J£E^2 + &X

is easily done, resulting in

I) ~ (£-2)!nf=2^-i + A*<6]
' ] ~ E-2 '

The denominator is simply the total volume of the space in which the (E — 2) ̂  param-
eters can vary. The factorial in the numerator accounts for the ordering requirement.

The number of spline knots E is also variable. The prior on E is chosen to have a
uniform value of [Emax — Emin + 1]"1 for all integer values of E between the minimum
number, Emin = 2, and the maximum number, Emax = integer [(xmax — xmin)/Ax] + 1,
where the output of the integer function is the integral part of its argument. It is zero
elsewhere.

The Likelihood

The first factor in the numerator of Eq. (2), p(d|c,£,E1,!), is the likelihood of the
experimental data. The data generally consist of the sum of signal and background
components, plus a contribution from noise. The innovative idea presented in Ref. [1] is
to treat data points containing contributions from the signal as outliers when attempting
to fit the background. By incorporating it probabilistically and considering it to be a
nuisance variable, the signal is removed from the analysis by integrating over it. This
idea grew out of recent Bayesian approaches to the treatment of outlying data in which
it was recognized that the presence of a wide nonGaussian tail in the likelihood function
effectively reduces the influence of outliers [11, 12, 13, 14].
__We introduce the proposition Bi\ "datum di is purely background' and its complement
Bi\ 'di contains some signal contribution'. The likelihood is the probability distribution
corresponding to the measurement uncertainty, given the expected measurement, yif
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When Bi is true, the likelihood for the ith measurement is

exp[—(cl<i — i/ij j 2i@i\ j Oaussian
(8)

yi] , (yi > 0) ; Poisson ,

where the expected value is just the background function at x^ namely yi = bi. The
parameters E and £ do not appear here because their dependence is implicitly contained
in bi. We allow for the two most common types of measurement noise corresponding
to the uncorrelated Gaussian or Poisson distributions. When the measurement contains
a contribution from the signal, the likelihood p(di\SiJBiJbiJI) is given by the same
formula, but with yi = bi + s^

Similar to what was done in Ref. [1], rather than treating the signal as a variable to be
estimated, we describe the signal probabilistically in terms of a prior. We provide for the
possibility of signals with both positive and negative components by writing the prior as
a two-sided exponential function

A^ exp

Al1exp

Si

(9)

with the restrictions A+ > 0 and A_ > 0. In other words, we introduce two different scales
for the signal, dependent on its sign. According to the Maximum-Entropy principle the
exponential prior is the least informative prior being constrained only to a given scale
length A+/_ =< s+/_ >.

The likelihood for the case Bi is obtained by marginalizing over the signal

p(di\Bi,bi,X} = I dsip(di\Si,Bi,bi,X)p(si\\+,\-,I) . (10)
J — oo

For the Poisson case, the lower limit must be set to — bi to respect the nonnegativity
constraint of the Poisson likelihood. This integral can be evaluated analytically, yielding
for the positive part of the exponential of Eq. (9), i.e., (A = A+)

p(dl\B~ijbiJXJI) =
_c X(di-bi}-a, __ -A(4-fc)+ff,-/2 . Qaussian (n)

Poisson ,

where F[a,x] = J™ &"*ta~l dt (a > 0) is the incomplete Gamma-function and T[a] =
F[a50] is the Gamma function (F[n + 1] = n!). For the combined positive and negative
signals in Eq. (9), the likelihood is the sum of two contributions, one obtained by
substituting A+ for A in Eq. (11) and the other by substituting — A_. In the latter
substitution for the Poisson case, one must replace T[(di + !),&$(! + A"1)] by
1) — T[(di + !),&«(! — Al1)] to account for the finite lower limit of integration.
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FIGURE 2. The likelihood functions for the cases that there is no signal present, and for positive and
negative signals of scales A_ = lOcr and A+ = lOOcr. The relative contribution of the later to the mixture
model (12) for the likelihood is weighted by 1 — ft, and the former by ft.

To complete the specification of the likelihood, we employ a mixture model [10],
which effectively combines the probability distributions for the two possibilities, B{ and

~

(12)

where /? is the probability that a data point contains no signal contribution. We will
consider the parameters £", /3, A+, and A_ as auxiliary parameters for the adaptive spline
problem, whose specifications will be addressed in Sect. . The likelihood functions
contributing to the mixture model are plotted in Fig. 2. The sum of the two types of
likelihood in the mixture model for each datum results in a likelihood function with
a central peak plus a long tail. The presence of such a long tail has the effect of
reducing the influence of outlying data points when several data points are combined
[11, 12, 13, 14]. In the case of background estimation, the result is to reduce the
influence of points that lie outside the uncertainty band of the measurement errors, which
presumably contain significant signal contributions. Without this tail, the resulting curve
would be drawn significantly toward the signal structure and not be representative of the
background.
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Determining auxiliary parameters

There are numerous parameters, Aa:, 0% E, (3 and A's, that have so far been assumed
to be fixed. These must be specified to perform the data analysis. It is our view that as
many of these parameters as possible should be determined from information about the
experiment. Other parameters may have preferred values, based on general arguments,
and still others are appropriately determined from the data.

In the present background estimation situation, it is imperative that the minimum
knot spacing Ax be determined from knowledge of the experimental situation or by
examination of the spectrum. This parameter should be set on the basis of the physicist's
experience with the experiment and is certainly no less than the instrumental resolution.
Similarly, the experimentalist must choose between Poisson and Gaussian likelihood
functions, and, in the latter case, specify the rms deviation of the noise, which may
depend on the measured spectral amplitude. The scale of the signal expressed by the A's
should also be set by the physicist on the basis of the expected signal amplitudes. If the
signals are expected to be of one sign, that information should obviously be incorporated.
It is important to specify all these parameters, because they play a major role in helping
the spline model distinguish between background and signal.

The parameter /?, which is the probability that a data point contains just background,
is one that can be specified by a general argument. Clearly /? = 0.5 is the noncom-
mittal value, stating that each datum is equally likely to contain a signal contribu-
tion or not. This choice can also be motivated by an argument given in Ref. [13]. It
was shown there that if a separate fa is associated with each data point, marginal-
ization over the /3's results in an integral of the form J0 d/?i[(l — /3i)p(di\Bi*) +
fiip(di\Bi.)] /Q1 d/32[(l - /32)p(d2|^) + P2p(d2\B2*)] • • • . This integral can be done an-
alytically to obtain [\p(di T3[.) + ^p(d1\Bi.)][^p(d2\B^^ + ^p(d2\B2*)] • • • • The effect
is the same as setting all the fa equal to |.

The last parameter to deal with is the number of spline knots, E. This parameter
obviously cannot be set beforehand, since we want the spline model to adapt to the data.
However, E is a nuisance parameter, that is, we don't care what its value is, except to
estimate the c and | parameters. Probability theory requires that one integrates the joint
distribution over nuisance parameters. Beginning with the joint probability distribution
in c, £, and E, we integrate over the first two parameters to obtain

p(E\dJI) =

oc j

= p(E\I] j dEcdE-^p(d\c^E,I}p(c^\E,I} , (13)

where we have assumed that the priors on c and £ are logically independent from that
on E. The leading factor is the prior for E, given in Sect. . This integral is the same as
the denominator of Bayes, law for estimating the parameters, given in Eq. (2), which is
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called the evidence. We define the scalar

)] , (14)

which is the minus-logarithm of the integrand in the previous equation.
We approximate ty by expanding it to second order in c around its maximum value at

c yielding a Gaussian for its exponential. Because the Gaussian is restricted to a narrow
region, the integration can be extended to — oo < c < oo, so that the integral over dEc
can be evaluated analytically. Equation 13 becomes

p(E\d,I) * -i
(15)

The argument of the determinant is the Hessian, HC(£) = VcVcT^lc » the E by E
matrix of second partial derivatives of ^ with respect to c, evaluated at its maximum
with respect to c. Because ^ is a function of both c and £, Hc is a function of £. We
will use this technique to approximate integrals several more times.

Background probability

The goal is estimating the background from a set of data points. The mixture model
allows, furthermore, to decide whether a single data point arises purely from background
or if there is some additional signal contribution. The quantity of interest is the 'back-
ground probability', i.e. the probability for proposition B^ p(Bi\d,X), that datum di is
purely background. Similar to equation 15 we have to marginalize the parameters c, £
and E. Since the background probability is just a diagnostic tool, we approximate the
cumbersome multidimensional integral [1] and obtain:

i,c^E,I}

The background probability allows simple classification of the data points in the two
groups with and without signal contribution. While the present classification scheme is
given by simple smoothness criteria this approach is also powerful for other criteria to
separate the data in different design groups.
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Variance in background

The expectation value of the second moment matrix of 6 is obtained by integrating
over the posterior probability of the parameters c and £,

6 61 >

c CT]

where c is estimated as the mean value of p(c|£, d.) for a fixed £. The covariance matrix
expressing the uncertainties in the estimated background is then

< A6 A6T > = < b bT > - < b >< foT >

where A 6 = b— <b> and Aft = &(£) — < 6 >. We have again introduced a Gaussian
approximation for the integrand to do part of the integral analytically. The first term
within the square brackets stems from the covariances of c around c given by H c, the
Hessian of 1/1 with respect to c. The second term describes the covariance of the 6(£) due
to the variation of £. Since the c integration is treated analytically, only the | integration
needs to be done numerically, for example, by MCMC sampling [15] from p(£\d), as
explained in Sect. .

CALCULATIONAL PROCEDURE

We describe in this section the separate steps in a complete calculation for any particular
data set. In the innermost loop, we need to be able to find the spline values that maximize
the posterior (2), namely c. The next higher level involves finding the best knot locations
for a fixed E and the highest level loop over E to marginalize over E.

Estimation of spline values

The most basic calculation is to find the spline values c that maximize the posterior
(2), assuming particular values for the knot positions £ and the auxiliary parameters
(E, ft, A+5 A_). The denominator in (2) can be ignored at this point because it does not
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depend on c. What is actually done is to minimize i/j, defined in Eq. (14), with respect
to the knot values c, which is a nonlinear optimization problem. To evaluate i/j, we
use the likelihood given in Eq. (12), inserting the appropriate expression in Eq. (11)
and the prior given in Eq. (5). Both the gradient (first derivative) and curvature matrix
(second derivative) of i/j are evaluated analytically. A gradient-based quasi-Newton
optimization algorithm is employed to minimize ip. The optimization algorithm we
use can impose a nonnegativity constraint of the background curve. We find that the
optimization occasionally stalls and the appropriate global minimum in c is not reached
because of the existence of local minima.

We have developed a new technique to enhance the convergence behavior of the op-
timization algorithm. Our technique is based on artificially broadening the background-
only part of the likelihood function during the early part of the optimization process,
which effectively eliminates local minima by forcing all data points to belong to the
background. This broadening is easily accomplished for the Gaussian likelihood by in-
creasing the value of the a in the likelihood for the background term in Eq. (11). We
do not find it necessary to resort to this technique for our Poisson examples, the PIXE
data. However, a similar scheme might be used for the Poisson case, e.g., by dividing
the expected number of counts yi and the measured counts di in the likelihood Eq. (8)
by a common factor. The effect of our approach is to increase the reach of the function
being minimized, which is quadratic in the case of the Gaussian likelihood, and promote
larger steps in the Newton-type optimization algorithm. In a little more detail, we begin
the optimization by multiplying cr by a common factor, which is chosen to make the rms
value of <T the same as A. After convergence, a is divided by two and the optimization is
resumed from the last operating point. This process is repeated until the nominal values
for cr are reached. We find that this procedure, which resembles a multiscale approach
used to solve geometrical optimization problems [16], yields very robust and speedy
convergence to the global minimum.

Estimation of knot positions

The knot positions £ are to be found by minimizing -0, given in Eq. (14). This
optimization problem is somewhat harder than the one associated with finding c. The
reason lies in the numerous constraints on the knot positions, namely that they must
be ordered and they must be no closer to each other than a specified Arc. Furthermore,
there are many local minima in i/j. Therefore, we use another optimization strategy, that
of simulated annealing [17], to find the most probable knot positions. Throughout this
process, the number of knots E is held fixed.

The simulated annealing technique is based on a Markov Chain Monte Carlo algo-
rithm (MCMC) [15], described in more detail in the next section. The widths of the
Cauchy distribution for calculating the Markov steps are fixed throughout the cooling
process. The probability distribution is flattened by dividing ̂  by T, a fictitious temper-
ature. The initial temperature is T = 500. When a step is accepted, T is decreased by
multiplying it by 0.95 if the new value of if) is smaller than any previous value, or by
0.995 if it is not. At the end of the full annealing sequence, the estimated knot position
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vector £ is the one that had the smallest value for i/j.

Marginalization over number of knots

In probability theory, as explained in Sect. , it is proper to marginalize over nuisance
parameters that we don't care about knowing, such as E. The probability of E is given
in Eq. (15). Again the integrand is approximated as a Gaussian in £

p(E\d,I] c<

t)] , (19)

where H £ is the (E — 2) by (E — 2) Hessian matrix for i/j with respect to the variable
£, calculated at the optimal knot positions £. The prior probability in (15) p(c,£ E,I)
has been replaced with the product of the prior on c and the prior on £, which is valid
because these are logically independent priors. The integration here is complicated by
the ordering restrictions placed on the &'s by the prior on £ given in Eq. (7). Thus,
the integration is over a restricted volume V defined by the ordering requirement. The
integral can not be evaluated analytically because it is impossible to simply extend the
integration limits to infinity. Therefore, H£ is replaced by an effective Hessian H >,
which must reflect the complicated integration volume V,

p(E\d,I) «
-1/2 . (20)

The effective Hessian H*+ is actually estimated using MCMC to draw knot
positions from the probability distribution in the integral in Eq. (15), i.e.,
p(d\c^E,X)p(£\E,I} (2n)E/2 det(ffc(£))~1/2. The covariance matrix (Hl)~l

is estimated as the matrix of second moments of the resulting set of MCMC samples of
€•

The aim of an MCMC algorithm [15] is to generate a sequence of parameters
ykJ (k = 1, 2, • • • 5 K) that represent random draws from a specified probability density
distribution, let's say ?r(y). To add a new member to the sequence 2/fe+1, the Metropolis
algorithm consists of trying a proposed step away from the present yk. The proposed
step Ay is drawn randomly from a symmetric distribution, and is either accepted or re-
jected on the basis of the value of TT at the new position compared to the old position.
If the step is rejected, t/&+i *s set eclual to yk. For the step distribution we use a Cauchy
distribution, i.e., oc [1 + (lAyl/W)2]"1, where W is the full- width at half -maximum
(FWHM) of the distribution [18]. With its wide tails, the Cauchy distribution occasion-
ally proposes large steps, which can be useful for getting out of local minima. In our
algorithm, only one knot position is moved at a time. When a knot is moved to within
Ax of another knot, the move is rejected. When a knot is moved past other fixed knots,
the knots are renumbered to maintain the required knot ordering.
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The FWHM of the Cauchy distribution is started at a value of about one tenth the
interval width (xmax — xmin)/(E — 1) and the width for each knot position is adaptively
adjusted during a training run to obtain an approximate 50% acceptance rate for pro-
posed steps. For the PIXE spectrum in Fig. 4, the final FWHM values ranges from 1CT4

to 0.02. For the MCMC runs to draw samples from the probability distribution of £ cited
above, on the order of 105 cycles through the full parameter set are taken. We check
the performance of our MCMC procedure by calculating the autocorrelation function
for each knot position [15]. The estimated correlation lengths range from 10 to 1000
MCMC iterations. The pivotal knot position is chosen randomly. From this, the number
of effectively independent samples from the probability density function for a run of 105

iterations is from 50 to 5000. The simulated annealing procedure used to find the most
likely knot positions described in the preceding section proceeds similarly, but with the
introduction of the artificial temperature.

As we shall see in our results, there are competing factors in Eq. (20). The likelihood
factor p(d|c,£, E,T] should always increase with increasing E because the data must
always be matched better by the spline model with more knots when the knots are
allowed to move. The Ockham factors for c, p(c\^ E,I) (27r)£J/2 det(Jf c)"1/2 (Eq. (5))
and for £, p(^|E5J)(27r)^-2)/2det(lf|)-1/2 typically decrease as E increases. This
competition between likelihood and the priors is the action of Ockham's razor [19, 20,
21], named after William of Ockham, whose principle states that models should be no
more complex than necessary to explain the available data. The overall effect is that
there will be a maximum in the probability of E beyond which the addition of more
knots does not help represent the background significantly better.

Estimation of uncertainties in background

The uncertainty bound on the estimated background function may be calculated as
described in Sect. . Equation (17) shows how the covariance in the estimates for 6 is
obtained by splitting the covariance into two terms, one arising from the uncertainties in
c for fixed £, and the other from uncertainties in £. The contribution from the first term
is based on the analytic expression for the Hessian Hc, which can be evaluated for any
£. The rest of the calculation involves randomly drawing samples from p(£\d) using the
Markov Chain Monte Carlo (MCMC) technique described above. For each | drawn, the
optimum c has to be found using the minimization procedure described above. Then,
the spline values at the data points are obtained: 6 = <&c. The integration in Eq. (17) is
accomplished by averaging the quantity within the square brackets in the integrand over
the £ samples.

RESULTS

We now describe the results of applying the analysis outlined in the preceding section to
the PIXE data shown in Fig. 1. For this analysis the underlying auxiliary parameters,
described in Sect. , are the same as used in the previous analysis shown in Fig. 1.
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FIGURE 3. The probability for the parameter E (the number of spline knots) given by Eq. (15), shown
as the solid curve, with its various contributions. The maximum probability occurs at E = 14 knots.

The minimum distance between knots is Ax = 0.015, the approximate width of the
conspicuous signal peaks at their base. Because we know that the signal peaks in the
PIXE spectrum must be positive, we exclude the contribution of negative signals to the
likelihood, in effect setting A_ = 0. The scale A+ should be derived from the signal
[1]. As the signal is much larger than the background, we set A+ equal to the average
value of the data set, about 270 in this case. Figure 3 shows the probability distribution
for E given in Eq. (20). Note the extremely large dynamic range of this plot. The
likelihood, p(d|c, £5 E,X) increases monotonically with E since the fit to the data always
improves with more knots. The Ockham factor for c, p(c\^, E,I) (2n)E/2 det( Jfc)"1/2

(Eq. (5)) decreases gradually over the range of E shown. The corresponding factor for
£, p(£\E, J)(27r)(E~2)/2det(J:f£)~1/2 decreases substantially. The net result is a strong
peak in the probability at E = 14, which contains a probability of 80%. Since most of
the probability falls into the single E = 14 bin, we may legitimately fix E at 14, instead
of marginalizing over E, to obtain the final background estimates.

The background estimate with the highest posterior probability obtained in the simu-
lated annealing search for the most probable knot position is shown in Fig 4. The high-
energy portion of the spectrum is now fit with a smooth background, consistent with
a physicist's expectation. It is remarkable that our model requires only one additional
spline knot to fit the energy region above 0.25. It is also interesting to note that the back-
ground under the first significant peak at an energy of approximately 0.06 is smoother
and more plausible than for the previous analysis. The placement of the knots is of in-
terest. The highest knot density occurs in the vicinities of the three major peaks in the
background. While these seem like fairly smooth sections of the background on this
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FIGURE 4. The same PIXE spectrum as in Fig. 1, showing the most probable background estimate
obtained using adaptive splines in which the optimal number of knots is found to be 14. In the energy
region above 0.25, the estimated background is now smooth, indicating a lack of evidence in the data for
the oscillations visible in Fig. 1.
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:*
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• data with signal
o data without signal

0.2 0.3
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FIGURE 5. Data points classified with a background probability greater than 50% as background-only
points are depicted by open circles while data points carrying a signal contribution are marked by solid
circles.

semi-log plot, the curve varies somewhat more rapidly in the linear space in which it is
modeled. These adaptive background estimates are very plausible.

The mixture model allows one to quantify the probability that a datum di is purely
background. In Fig. 5 those data points are depicted by open circles for which the
background probability p(Bi\d,T) is greater than 50%. This threshold is arbitrary and
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FIGURE 6. The uncertainties in the background function displayed in Fig. 4. The separate contributions
to the rms deviation of the background values are shown; from the uncertainties in the c and the variance
arising from the knot positions £.

serves only for simple classification. For the present example the average background
probability, -^ ̂ =1p(£^|d,2T), is 0.86. This quantity shows that most of the data points
have no signal contribution.

The rms uncertainties in the estimated background curve are summarized in Fig. 6
as uncertainty bounds. These are derived from Eq. (17) by combining the variances
from uncertainties in c using the analytic part for fixed knots plus uncertainties arising
from the knot positions £, obtained by numerical integration over the possible knot
positions. First of all, we see that the uncertainties are quite small compared with the
background itself, on the order of a few percent in the peak regions and about an order
of magnitude smaller in the high-energy end of the spectrum. The uncertainties due to
those in c dominate at the first significant peak and in the high-energy tail. However,
the uncertainties arising from knot placement are most important around the two signal
peaks in the spectrum around an energy of 0.2. Clearly, no simple formula based on a
single contribution to the total uncertainty applies.

The uncertainty bands shown in Fig. 6 actually correspond to the square root of the
diagonal terms of the covariance of b given in Eq. (17). These are useful for showing the
limits of uncertainty of the curve, but are not applicable for estimating the consequences
of these uncertainties in the background on further computation, e.g., on the areas under
a signal peak. For that, the full covariance matrix is required because one expects a
significant degree of correlation in the uncertainties from one position to another. For
example, when two points lie near each other in the same spline interval, there is a strong
positive correlation in their uncertainties because both their estimates rely on the same
cubic spline curve. It is feasible to calculate the full covariance matrix using Eq. (17),
but not so easy to display it.

To demonstrate how well our background method works for signals with both positive
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FIGURE 7. (a) An MVV Auger spectrum for iron. The estimated background shown is that obtained for
the transformed spectrum shown in (b). (b) A logarithmic transformation of the Auger spectrum shown in
(a) reduces the curvature of the background, rendering it suitable for the general approach presented here.
The estimated background is shown, (c) The signal determined by subtracting the estimated background
from the original spectrum. The inset in (c) shows the autocorrelation of the signal vs. energy difference.
A significant secondary peak is seen at an energy offset of 39 eV.

and negative contributions, we turn to the Auger spectrum shown in Fig. 7 a. This
spectrum was obtained for a 10 monolayer iron film evaporated on a tungsten substrate.
The spectrum was measured with four-grid low-energy electron diffraction (LEED)
optics, operated in the retarding-field mode. Harmonic modulation of the retarding
potential and lock-in detection of the transmitted current on the second harmonic of the
modulation frequency result in spectra as shown in Fig. 7a. Such spectra constitute the
energy derivative of the sum of the Auger electron energy distribution, the signal, and the
slowly varying, much larger secondary electron energy distribution, the background. The
signal contains both positive and negative components. For quantitative Auger analysis
it is mandatory to separate the two contributions to the total signal [22,23]. The principal
signal seen at 47 eV comes from an M253VV Auger transition.

It is evident from Fig. 7 that, while the background may be smooth, it varies quite
rapidly at low energies. This behavior is inconsistent with our general background
model, whose prior is based on the second derivative of the background. However, a sim-
ple transformation of the measured spectrum brings the background into conformance
with our background model and does not dilute the signal characteristics unduly. By tak-
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ing the logarithm of the measured spectrum, the nearly exponential rise of the spectrum
is transformed into an approximately linear dependence that is more easily accommo-
dated by the background model. Furthermore, such a transformation of the ordinate does
not change the width of the signal structure, leaving unchanged the minimum knot sep-
aration criterion. As a general principle for applying our model to a specific spectrum,
it may be transformed to bring the background into conformance with the background
model, provided the signal contributions do not lose their assumed rapid and localized
characteristics. For example, we find that taking the square root of the horizontal scale,
after a suitable offset, yields a data record that also provided reasonable estimates of the
background.

Figure 7b shows the Auger spectrum after the transformation z(k) = log[a — y(k)],
where y(k) is the original spectral amplitude and a is a constant (= 340 in this case). The
uncertainties in the transformed spectrum are obtained by dividing the uncertainties in
the original spectrum, <j$, by a — y ( k ) . a^ is estimated to be approximately 35 over the
entire spectrum. The transformed spectrum is analyzed using the background models
described earlier. The minimum knot separation is set at Ax = 15 eV. In this analysis, A+
and A_ are assumed to be equal because the positive and negative signals are expected
to have approximately the same amplitudes. They are set to a typical value of about
0.1. The evidence evaluation of Eq. (20) shows that p(E\d,X] is rather flat for the
number of nodes between E = 8 and E = Emax = 12. The lack of a strong peak in
the evidence, as seen in the earlier PIXE analysis, may be explained as follows. The
prior on £, given in Eq. (7), increases considerably as E approaches Emax because
of the decreasing available volume for knots. This effect is partly counteracted by
the decreasing volume given by Jf>, but not completely. Thus, the Ockham factor
pertaining to £ may effectively increase with increasing E, a behavior that is unexpected,
but plausible. It is not the number of parameters that define the penalizing Ockham
factor but the phase space of the prior covered by the high-likelihood region, which
may increase when the parameters are highly correlated. As the likelihood probability
increases insignificantly for E > 8, we show the background estimated for E = 8.
The results for E > 8 lie within the line thickness of the results for E = 8. Thus
marginalization over E would yield quite the same result. The estimated background is
shown in Fig. 7b, and is transformed back into Fig. 7a for comparison with the original
spectrum.

After plotting the difference between the original spectrum and its estimated back-
ground shown in Fig. 7c, a possible secondary peak is observed. This small peak is
demonstrated in the autocorrelation of this background subtracted spectrum, shown as
an inset in Fig. 7c. A secondary peak with an amplitude of about 2% of the main peak is
convincingly shown at an energy offset of 39 eV, which corresponds to an MI VV Auger
transition for iron.

While the second iron emission structure is visible to the naked eye, a third structure
arises at 38 eV which simply is not visible in the data. The structure in the slope of the
measured intensity is an Auger transition of the tungsten substrate deeply buried under
the iron film. In this case, a proper background subtraction even helps one recover the
presence of less apparent signals in an Auger spectrum.
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SUMMARY

We have developed a probabilistic model to separate the background from signals in
spectra. The general assumptions are that the background varies smoothly and that each
rapidly varying signal peak is confined to a well-defined interval. The background is rep-
resented by a cubic spline basis. In order to allow the smoothness of the background to
accommodate the data, we have allowed the number of spline knots and their position to
vary. Our Bayesian approach provides a straightforward way to deal with this adaptivity
by marginalizing over the probability of the number of knots. The effect of Ockham's
factor is to produce a maximum in this probability. We have further extended the earlier
work by incorporating signals with either positive or negative components, or both. The
uncertainties in the estimated background have also been shown.
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