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Background
Owing to differences in the image capturing distance and in the illuminationed envi-
ronment, the size of the subject’s pupil and the iris region of interest in the captured 
images are highly diverging. An accumulation of this, there is discrepancies of the same 
eye images owing to stretches of the iris. Additional criteria that cause dilation are eye 
rotary motion, revolving camera and head inclination. Such a deformation of the iris tex-
ture broadens intra-class dissimilarities and raises the FRR.

A survey of the existing normalization techniques found in the literature is presented 
in the following section.

Review of literature
From the perspective of iris texture feature extraction, the normalization techniques 
are classified into six categories such as Linear model (Daugman 1993; Lim et al. 2001; 
Joung et  al. 2005; Boles and Boashash 1998; Ma et  al. 2003; Subbarayudu and Prasad 
2008; Shamsi and Rasouli 2009, 2011), variant of linear model (Krishnamoorthi et  al. 
2012), non-linear model (Wildes 1997; Wyatt 2000), the combination of non-linear and 
linear-models (Wei et al. 2007; Yuan and Shi 2005), non-polar coordinate normalization 
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(Arvachech and Tizhoosh 2006) and irregular border normalization (Han et  al. 2009; 
Shah and Ross 2009).

Daugman (1993) employed linear rubber sheet model which projects the doughnut 
shaped iris region of interest into a fixed rectangle region. Lim et al. (2001) have used a 
fixed resolution model very similar to the Daugman’s pseudo polar transform approach. 
They have normalized the distance between the pupil border and the limbus border into 
[0, 60] according to the arbitrary radius r and normalized the angular resolution into [0, 
450] according to the step angle 0.8°. Joung et al. (2005) have unwrapped the iris with 
limbus center to define the polar coordinates of the points over the limbus border and 
used pupil center to define the polar coordinates of the pupil border. The coordinates of 
the other points between these two borders are obtained linearly in the radial direction. 
Boles and Boashash’s normalization technique (Boles and Boashash 1998) is also similar 
to Daugman’s method with the difference that it is performed at the time of matching. 
Their method is based on the virtual circles to map the iris features. Ma et al. (2003) have 
combined the Daugman’s method (Daugman 1993) and Bole’s method (Boles and Boa-
shash 1998). They have used the pupil center as a reference point in their mapping strat-
egy. Subbarayudu and Prasad (2008) have assumed that the pupil and limbus boundaries 
are two circles and utilized angular strips radial measure to map iris region. Shamsi and 
Rasouli (2009) have devised a new mapping strategy to rescale point. Shamsi and Rasouli 
(2011) have transformed iris disk to trapezium strip.

Krishnamoorthi et al. (2012) have devised a variation of trapezoidal model to avoid the 
under samples near the limbus border. Wildes (1997) has reported an image registration 
technique for compensating variations in rotation and scale. Wyatts et  al. (2000) have 
used the virtual arc concept and carried out the mapping from the reference annular 
zone into a fixed-size rectangle zone. Wei et al. (2007) have utilized Gaussian function to 
estimate the additive variation of a nonlinear iris stretch. Yuan and Shi (2005) have con-
sidered the nonlinear behavior of iris patterns with a predefined ratio of the radii of the 
pupil and limbus boundaries of the iris. Arvachech and Tizhoosh (2006) have merged 
the non-linear model and linear model to unwrap an iris region of interest properly. Han 
et al. (2009) have designed a normalization method that does not adopt the polar coor-
dinate transformation. They have preserved the original geometric structure and direc-
tional information. Shah and Ross (2009) have formulated the normalization technique 
for conical iris boundaries.

Motivated by the fact that iris boundaries are not in specific shapes, variable-size and 
fixed-size iris normalization techniques are proposed in this work for normalizing the 
irregular iris boundaries.

The important steps involved in the proposed normalization work are as follows:

• • Estimation of the center and radius of pupil
• • Estimation of the coarse radius of limbus
• • Estimation of the accurate radius of the limbus
• • Computation of the resolution angle of increment and
• • Identification of the sampling points.
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Preprocessing
Initially, the coarse estimation of pupil center is found as the point that corresponds to 
local minima of image intensity. The extraction of coarse pupil localization area on four 
sides from the coarse pupil center is modeled with approximation of pupil center and 
radius to confine the search for the pupil border. Then, an edge image is generated by 
applying negatively sloped zero-crossing point with orthogonal polynomials (Ganesan 
and Bhattacharya 1997). The fine pupil boundaries are then extracted after detecting 
radial border points in the angular direction of the projection curve. The pupil border 
points are fitted using the cubic smoothing spline.

The limbus border extraction is then carried out with gradient based edge detection 
on the same orthogonal polynomials model. Initially, the coarse limbus region is esti-
mated with approximation of pupil center and radius to confine the search for the lim-
bus border. This coarse limbus region is subjected to the orthogonal polynomials and 
after that the precise limbus border points are extracted with vertical and horizontal 
edge detection. The limbus curvature is approximated with cubic smoothing spline from 
the limbus border points.

Proposed variable‑size normalization model
First let us consider the pupil and limbus border points present in localized image of 
the iris image. The radius of irregular pupil border is estimated from the pupil border 
points with the following steps. Along the x(minor) axis, the extreme positions at lower 
end (Xmax_x, Xmax_y) and higher end (Xmin_x, Xmin_y) are extracted from the pupil border 
points. Similarly for y(major) axis, the extreme positions at lower end (Ymax_x, Ymax_y) and 
higher end (Ymin_x, Ymin_y) are extracted from pupil border points. The distance, x_dist, 
between the extreme positions in x axis are computed as follows

Similarly, the distance, y_dist, between the extreme positions in y axis are computed as 
follows

In this work, the radius of the pupil border rp is determined as

The center of the pupil border, 
(

x
p
c , y

p
c

)

, is calculated with the relation

After determining the coarse radius of pupil border, the radius of limbus border is 
calculated for iris normalization. If the obstruction owing to either the upper or lower 
eyelids is significant, in that case the circle that fits every point on the extorted con-
tour will be positioned within the exact border of the limbus. For this reason, merely 

(1)x_dist =

√

(
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)2

+
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the points resting on the border of the limbus are modeled in this research work to cal-
culate the radius and center of the limbus. To guarantee this, six points at the following 
angles [−30°, 0°, 30°, 150°, 180°, 210°] are chosen from the extorted contour as well as 
their mean distance from the center of the pupil is calculated and exploited as the coarse 
radius of the limbus (rl). A circle is subsequently fitted throughout every point on the 
contour that are within a distance of (rl ± 10) pixels from the center of the pupil 

(

x
p
c , y

p
c

)

 . 
The center and radius of such a circle is primarily modeled to be the center 

(

xlc, y
l
c

)

 and 
the radius (rl) of the limbus. When the limbus is detected in the corner of the eye, all 
six points preferred to calculate the rough limbus radius may not be positioned on the 
limbus border; some may be positioned on the eyelid. As the eyelid border is nearer 
to the center of the pupil, an approximate limbus radius is off-center and the same is 
demonstrated in Fig. 1a, b. Also the area beneath the segmented limbus curvature on 
either side of the perpendicular axis passing through the pupil is not uniform, is shown 
in Fig. 1c. The region with smaller area is heavily obstructed by the eyelids. Hence, if the 
differences among the two regions exceed 10 %, merely three points resting on the con-
tour related to the bigger region are preferred to calculate the limbus radius. This gives a 
superior estimate of the limbus radius (rl) and it increases the accuracy even in the case 
of off-angle iris.

The maximum degree (360°) is divided into small units of angle increment factor that 
enables to reach each limbus border positions of the iris. The circumference ̟ of the 
limbus border is calculated as

The distance between the pupil border and limbus border is normalized to [0, 360]. 
The resolution angle of increment φ is computed as

(5)̟ = 2πrl

(6)φ =
360◦

̟

Fig. 1  Estimation of limbus radius. a Points on the extracted contour. b Approximate limbus boundary. c 
Unequal area under the segmented limbus curve on either side of the vertical axis. d Accurate limbus bound-
ary
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By increasing the angle θ by φ for radius rl, the variable-size rectangular resolution iris 
image for the plane (θ, rl) is obtained. Also the degree of rotation (360°) is calibrated in 
such a way that it reaches each position in the limbus border.

After determining the resolution angle of increment, the sampling points are extracted 
by tracing points from limbus border to pupil border. Let us initialize θ as 0, xi as xpc , and 
yi as ypc . Let the number of tracing points be n from limbus border to pupil border with 
the length 

(

rl − rp
)

. Consider (xs, ys) and (xe, ye) as start and end positions respectively of 
a line identity and traverse along the line and obtain each position co-ordinates in the 
iris Region of Interest (ROI) by decrementing n by 1. The starting point (xs, ys) of tracing 
process is computed as follows

The end point (xe, ye) of tracing process is computed as

The x(minor) axis width is computed as

The y(major) axis width is computed as

The initial point in the limbus border is stored in angular resolution array R[n][θ]. 
Consider (xs, ys) and (xe, ye) as start and end positions respectively of a line identity and 
traverse along the line and obtain each position co-ordinates in the iris ROI by decre-
menting n by 1. If the absolute value of dx is larger than dy, the point R[n][θ] of the slope 
m and y_intercept b is computed using the Eqs. (13) through (16).

The b (y_intercept) is computed as

(7)xs = xi + rlCos

(

πθ

180

)

(8)ys = yi + rlSin

(

πθ

180

)

(9)xe = xi + rpCos

(

πθ

180

)

(10)ye = yi + rpSin

(

πθ

180

)

(11)dx = xe − xs

(12)dy = ye − ys

(13)m =
dy

dx

(14)b = ys −m ∗ xs

(15)If (dx < 0) then, dx = −1; else dy = 1;
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Considering xs as xs + dx, continue the following process step through xs + dx and 
n − 1 times and until xs becomes xe.

If the absolute value of dx is not larger than dy and the value of dy is not equal to 0, the 
point R[n][θ] from the slope m is computed as follows using the Eqs. (17) through (20).

The b (y intercept) is computed as

Considering ys as ys + dx, continue the following process step through ys + dx and n − 1 
times and until ys becomes ye.

In this way, points from limbus border to pupil border for each position are traced and 
stored in angular resolution array with step φ times until θ becomes 360°.

The algorithm of the proposed variable-size normalization is given hereunder:

(16)R[n][θ ] = [xs][m ∗ xs + b]

(17)m =
dx

dy

(18)b = xs −m ∗ ys

(19)If
(

dy < 0
)

then, dx = −1; else dy = 1;

(20)R[n][θ ] = [m ∗ xs + b][ys]

Input:

Algorithm:

Iris localized image of size ROW × COL, pupil and limbus border position 

points. 

Output: Iris image of variable size rectangle 

Begin

Find the extreme positions at lower and higher in minor(x) axis from the 

pupil border points and denote as ( xX max_ , yX max_ ) and ( xX min_ ,

yX min_ ). 

Find the extreme positions at lower and higher in major (y) axis from the 

pupil border points and denote as ( xYmax_ , yYmax_ ) and ( xYmin_ , yYmin_ ).

Find distx _ using the distance between ( xX max_ , yX max_ ) and ( xX min_ ,

yX min_ )

( ) ( )2min_max_
2

min_max__ yyxx XXXXdistx −+−=
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Find disty _ using the distance between ( xYmax_ , yYmax_ ) and ( xYmin_ , 

yYmin_ )

( ) ( )2min_max_
2

min_max__ yyxx YYYYdisty −+−=

Calculate ( ) 2/_,_max distydistxrp =

Find the center position ( )p
c

p
c yx , of the chosen extremes for the pupil 

border.

max_ min_ max_ min_( , ) ,
2 2

x x y yp p
c c

X X Y Y
x y

+ + 
= 



Find the arbitrary radius of the limbus border, lr

Fit the limbus border points as circles within a distance of 10±lr pixels

Find the exact radius of the limbus border from circles lr

Find circumference of the limbus border as lrπϖ 2=

Calculate the calibration degree  
ϖ

φ
o360=

Initialize values to θ as 0, p
ci xx = , p

ci yy = .

Forθ = 0 to 360 stepφ

{

Initialize n as pl rr −

Calculate 




+=
180
πθCosrxx lis

Calculate 




+=
180
πθSinryy lis

Calculate 




+=
180
πθCosrxx pie

Calculate 




+=
180
πθSinryy pie

Find minor axis width distance sex xxd −=

Find major axis width distance sey yyd −=

Store starting point ( )ss yx , in [ ][ ]θnR
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Proposed fixed‑size normalization model
First let us consider the pupil and limbus border points present in iris localized image. 
The radius of the pupil and the limbus border are computed as described in section “Pro-
posed variable-size normalization model”. But in this fixed-size normalization model, 

Else

if ( )0≠yd then

{

Compute slope 
y

x

d
dm =

Find ss ymxb *−=

If ( )0<yd then, 1−=xd else 1=yd

Repeat {

Find yss dyy +=

Store [ ][ ]ss ybym +* in [ ][ ]θnR

Decrement n by 1

} until sy becomes ey

}

}

End

Find ss xmyb *−=

If ( )0<xd then, 1−=xd else 1=yd

Repeat {

Find xss dxx +=

Store [ ][ ]bxmx ss +* in [ ][ ]θnR

Decrement n by 1

} until sx becomes ex

}

Compute slope 
x

y

d
d

m =

if ( ) ( )( )yx dabsdabs > then

{
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the resolution angle of increment φ is in the interval 0–1. The maximum degree (360°) 
is divided into small units of angle increment factor φ that enables to reach more lim-
bus border positions of the iris. Iris is normalized using pupil as the reference point. By 
increasing the angle θ by φ for radius rl, the fixed-size rectangular resolution iris image 
for the plane (θ, rl) is obtained. After fixing the resolution angle of increment, the sam-
pling points are extracted by tracing points from pupil border to limbus border. Initialize 
θ as 0, n as 0, xi as xpc , and yi as ypc . Let the number of tracing points n from pupil border 
to limbus border with the length 

(

rl − rp
)

. The starting point (xs, ys) of tracing process is 
computed as

The end point (xe, ye) of tracing process is computed as

In this way, points from pupil border to limbus border for each position are traced and 
stored in angular resolution array step φ times until θ becomes 360°.

The algorithm of the proposed fixed-size normalization is given hereunder:

(21)xs = xi + rpCos

(

πθ

180

)

(22)ys = yi + rpSin

(

πθ

180

)

(23)xe = xi + rlCos

(

πθ

180

)

(24)ye = yi + rlSin

(

πθ

180

)

Input: Iris localized image of size ROW × COL, pupil and limbus border position 

points. 

Output: Iris image of fixed size rectangle 

Begin
Find the extreme positions at lower and higher in minor(x) axis from the 

pupil border points and denote as ( xX max_ , yX max_ ) and ( xX min_ , yX min_

). 

Find the extreme positions at lower and higher in major (y) axis from the 

pupil border points and denote as ( xYmax_ , yYmax_ ) and ( xYmin_ , yYmin_ ).

Algorithm:

Find distx _ using the distance between ( xX max_ , yX max_ ) and ( xX min_ ,

yX min_ )

( ) ( )2min_max_
2

min_max__ yyxx XXXXdistx −+−=
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max_ min_ max_ min_( , ) ,
2 2

x x y yp p
c c

X X Y Y
x y

+ + 
= 



Find the arbitrary radius of the limbus border lr

Fit the limbus border points as circles within a distance of 10±lr pixels

Find the exact radius of the limbus border from circles lr

Let the calibration degree [ ]1,0∈φ
Initialize values to θ as 0, p

ci xx = , p
ci yy = .

Forθ = 0 to 360 stepφ

{

Initialize n as 0

Calculate 




+=
180
πθCosrxx pis

Calculate 




+=
180
πθSinryy pis

Calculate 




+=
180
πθCosrxx lie

Calculate 




+=
180
πθSinryy lie

Find minor axis width distance sex xxd −=

Find major axis width distance sey yyd −=

Store starting point ( )ss yx , in [ ][ ]θnR

Find disty _ using the distance between ( xYmax_ , yYmax_ ) and ( xYmin_ , 

yYmin_ )

( ) ( )2min_max_
2

min_max__ yyxx YYYYdisty −+−=

Calculate ( ) 2/_,_max distydistxrp =

Find the center position ( )p
c

p
c yx , of the chosen extremes for the pupil 

border.
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Else

{

if ( )0≠yd then

Compute slope 
y

x

d
dm =

Find ss ymxb *−=

If ( )0<yd then, 1−=xd else 1=yd

Repeat 

{

Find yss dyy +=

Store [ ][ ]ss ybym +* in [ ][ ]θnR

Increment n by 1

} until sy becomes ey

}

}

End

Compute slope 
x

y

d
d

m =

Find ss xmyb *−=

If ( )0<xd then, 1−=xd else 1=yd

Repeat 

{

Find xss dxx +=

Store [ ][ ]bxmx ss +* in [ ][ ]θnR

Increment n by 1
} until sx becomes ex

}

if ( ) ( )( )yx dabsdabs > then

{
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Orthogonal polynomials based iris recognition
With a view to extract iris texture feature, the normalized iris is further subjected to 
the orthogonal polynomials to extract the transformed coefficients (Ganesan and Bhat-
tacharya 1997). The variance is computed from the transformed coefficients and the 
sets such as main effects, interaction effects are obtained (Krishnamoorthi and Kannan 
2009). The spatial variation that causes the interaction effects are owing to micro texture 
present in the iris region. To investigate whether a specified region possesses texture 
characteristics, the Hartley’s criteria are applied for testing the homogeneity amongst 
variances (Krishnamoorthi and Anna Poorani 2012). Once, texture regions are identi-
fied, the F-ratio test is applied for computing the SNR and the result of the F-ratio test 
for determining significance towards the micro texture is encoded as a binary string. The 
corresponding decimal numeral is found subsequently to characterise the micro texture 
(Krishnamoorthi et al. 2013). The numerical characterization sequence is used as feature 
vector for further processing in iris recognition.

The dimension of features in feature vector is reduced by means of LDA (Liu and Xie 
2006). It is employed to discard the null space of between_class_scatter Sb, by first diago-
nalizing between_class_scatter Sb and then diagonalizing within_class_scatter Sw. The 
support vectors of the query image are computed to match the query image with the 
database images from the reduced feature vector using Nonlinear asymmetrical support 
vector machine (SVM) matching scheme (Roy and Bhattacharya 2006).

Empirical results and discussion
The proposed normalization techniques have been experimented with the BITIRIS 
Database (2013) and existing standard iris databases. CASIA Database V 1.0 and V 3.0 
Interval (2013), Bath Database (2013) and MMU Database V 1.0 and V 2.0 (2013) are 
also exploited in experiments. Few sample images from these databases, used for nor-
malization experiments are shown in Fig. 2.

Fig. 2  Sample test images considered for iris normalization from different databases such as a BITIRIS data-
base, b CASIA V 1.0, c CASIA V 3.0 Interval, d BATH, e MMU V 1.0, f MMU V 2.0
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Initially, the input images are preprocessed as described in section “Preprocessing”. 
The corresponding resultant iris localized images for test images shown in Fig.  2a–f, 
after iris localization process with orthogonal polynomials, are presented in Fig. 3a–f. 
The result of the iris segmentation corresponding to the pre-processed images are pre-
sented in Fig. 4a–f. The iris segmented image is subjected to the proposed variable-size 
normalization scheme as depicted in section “Proposed variable-size normalization 
model”. The approximate radius of pupil border is calculated from the radius of irregular 
pupil border. After determining the radius of limbus border points, the sampling points 
are found by tracing points from limbus border to pupil border using the coordinate 
conversion. The corresponding normalization result for the images shown in Fig. 2a–f, 
are presented in Fig. 5a–f.

Fig. 3  Outcomes of iris localization. a BITIRIS. b CASIA Version 1.0. c CASIA Version 3.0 Interval. d BATH. e 
MMU Version 1.0. f MMU Version 2.0

Fig. 4  Outcomes of segmented iris image. a BITIRIS. b CASIA Version 1.0. c CASIA Version 3.0 Interval. d BATH. 
e MMU Version 1.0. f MMU Version 2.0
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Similarly, the iris localized eye image is subjected to the proposed fixed-size normal-
ization scheme as depicted in section “Proposed fixed-size normalization model”. The 
sampling points are found by tracing points from pupil border to limbus border in a 
fixed fashion. The corresponding normalization outcomes for the images shown in 
Fig. 2a–f, after normalization process with the proposed fixed size normalization scheme 
are presented in Fig. 6a–f. It is viewed from the Fig. 6 that the fixed-size model tends to 
produce fixed texture information. In this experiment, the calibration degree φ is varied 
and its impact in the overall precision of iris recognition is analyzed. It is observed that 
when φ < 0.6 there is a strong raise in the recognition error rate, stimulated as a result of 
aliasing taken place in the normalization process.

Fig. 6  Outcomes of proposed fixed size normalization. a BITIRIS. b CASIA Version 1.0. c CASIA Version 3.0 
Interval. d BATH. e MMU Version 1.0. f MMU Version 2.0

Fig. 5  Outcomes of proposed variable size normalization. a BITIRIS. b CASIA Version 1.0. c CASIA Version 3.0 
Interval. d BATH. e MMU Version 1.0. f MMU Version 2.0
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The performance of the proposed algorithms is calculated for BITIRIS with com-
putation time intended for the normalization process. For this purpose, the proposed 
experiments are conducted on a Intel (R) core (TM) i7 CPU 965@3.20  GHz system 
with 4.00  GB RAM. These outcomes are obtained and tabulated in Table  1. From the 
Table 1, it is apparent that, the proposed variable-size normalization model takes more 
computation time when compared with the proposed fixed-size normalization model. 
The proposed variable-size normalization has positive impact on the feature extraction 
stage due to the presence of more texture. However the suitability of the proposed vari-
able-size normalization model and proposed fixed-size normalization model for feature 
extraction, matching, etc. requires rigorous experimentation.

For an unbiased comparison, the orthogonal polynomials based iris recognition has 
been experimenting with the proposed variable-size normalization model and proposed 
fixed-size normalization model using images in BITIRIS database. For recognition, 
a query image was matched against the entire database of stored iris representations. 
The results of the matching process yield the highest similarity across the registered 
images for each class were chosen as the matching iris. The performance of the proposed 
variable-size normalization model and fixed-size normalization models are evaluated 
with orthogonal polynomials based iris recognition system in terms of standard FAR, 
FRR and CRR. The empirical outcomes of the proposed variable size normalization for 
the identification with FAR, FRR and CRR are tabulated in Table 2. A recognition per-
formance of FAR = 0.010 %, FRR = 0.112 % and CRR = 99.88 % is obtained with the 
proposed variable size normalization model with orthogonal polynomials based iris 
recognition system. A recognition performance of FAR = 0.015 %, FRR = 0.165 % and 
CRR = 99.82 % is also obtained with the proposed fixed size normalization model with 
orthogonal polynomials based iris recognition system.

It is clear from Table 2, that the proposed variable-size normalization scheme outper-
forms the proposed fixed-size normalization scheme.

Table 1  Computation time for normalization process, with the proposed scheme on BITI‑
RIS database images

Method used Time taken for normalization (s)

Proposed variable size normalization model 2.234

Proposed fixed size normalization model 1.586

Table 2  Outcomes of  proposed iris normalization schemes on  BITIRIS database images 
in terms of FAR, FRR and CRR

Method BITIRIS database

FAR (%) FRR (%) CRR (%)

Proposed variable size normalization model + orthogonal polynomials based iris 
recognition system

0.010 0.112 99.88

Proposed fixed size normalization model + orthogonal polynomials based iris 
recognition system

0.015 0.165 99.82
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For verification, ROC curves are drawn by plotting the GAR as a function of the FAR 
in semi-logarithmetic scale. The ROC curves of proposed variable-size normalization 
model and proposed fixed-size normalization model are plotted for the BITIRIS data-
base and these outcomes are presented in Fig. 7.

It is exemplified from the Fig.  7 that the proposed variable size iris normalization 
scheme attains higher GAR with an extremely low EER than fixed size iris normalization 
scheme on the BITIRIS database.

The EER of the proposed variable-size normalization model and proposed fixed-size 
normalization model is observed from the ROC curve and are tabulated in the Table 3. 
The EER of the proposed variable size normalization is only 0.100 % as against 0.145 % 
for fixed-size normalization model on the BITIRIS database.

It is evident from Table 3 that the EER of the variable size iris normalization scheme 
is found to be superior than fixed size iris normalization scheme. It is also well-known 
from Table 3 that the proposed variable size normalization scheme is able to attain close 
proximity to zero EER. Extremely low EER of 0.100 % reveals the robustness of the vari-
able size iris normalization scheme in verification mode.

Similarly, the proposed iris normalization schemes are also used to authenticate the 
person in other database images viz CASIA V 1.0, CASIA V 3.0 Interval, BATH, MMU 
V 1.0 and MMU V 2.0. The performance of the proposed iris normalization schemes is 
evaluated with standard FAR, FRR and CRR for various database images and their out-
comes are tabulated in Table 4. The ROC curves are plotted for the above mentioned 
database and these outcomes are presented in Figs. 8, 9, 10, 11 and 12. The EER of the 
iris normalization schemes are observed from the ROC curve and are tabulated in the 

Table 3  Outcomes of  proposed iris normalization schemes on  BITIRIS database images 
in terms of EER

Method EER (%)

Proposed variable size normalization model + orthogonal polynomials based iris recognition system 0.100

Proposed fixed size normalization model + orthogonal polynomials based iris recognition system 0.145
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Table 5. It is inferred from the empirical outcomes that the proposed variable size nor-
malization model outperforms proposed fixed size normalization model, showing their 
robustness across different imaging environments.

Table 4  Outcomes of proposed iris normalization schemes on various iris database images 
in terms of FAR, FRR and CRR

Iris data base Method FAR (%) FRR (%) CRR (%)

CASIA V 1.0 Proposed variable size normalization model + orthogonal 
polynomials based iris recognition system

0.011 0.354 99.635

Proposed fixed size normalization model + orthogonal poly-
nomials based iris recognition system

0.013 0.523 99.464

CASIA V 3.0 Interval Proposed variable size normalization model + orthogonal 
polynomials based iris recognition system

0.021 0.312 99.667

Proposed fixed size normalization model + orthogonal poly-
nomials based iris recognition system

0.025 0.399 99.576

BATH Proposed variable size normalization model + orthogonal 
polynomials based iris recognition system

0.032 0.343 99.625

Proposed fixed size normalization model + orthogonal poly-
nomials based iris recognition system

0.037 0.409 99.554

MMU V 1.0 Proposed variable size normalization model + orthogonal 
polynomials based iris recognition system

0.019 0.156 99.825

Proposed fixed size normalization model + orthogonal poly-
nomials based iris recognition system

0.021 0.171 99.808

MMU V 2.0 Proposed variable size normalization model + orthogonal 
polynomials based iris recognition system

0.031 0.16 99.809

Proposed fixed size normalization model + orthogonal poly-
nomials based iris recognition system

0.032 0.171 99.797
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Fig. 8  ROC curve of proposed iris normalization schemes on the CASIA V 1.0 database images
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Conclusion
In this paper, two different normalization methods are proposed that compensate the 
change in size of the iris due to the action of stretching or enlarging the pupil in iris 
acquisition process and camera to eyeball distance. In the first method, the variable 
dimension is used for irregular iris images to avoid under the samples near the limbus 
border. In the second method, the fixed dimension is used for irregular iris images with 
a rectangular model to circumvent the dimensional discrepancies among the iris images. 
The proposed normalization methods are compared along with the orthogonal poly-
nomials based iris recognition and analyzed to enhance the normalization stage. The 
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Fig. 10  ROC curve of proposed iris normalization schemes on the BATH database images
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Fig. 9  ROC curve of proposed iris normalization schemes on the CASIA V 3.0 Interval database images
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Fig. 12  ROC curve of proposed iris normalization schemes on the MMU V 2.0 database images

impacts of proposed variable-size normalization versus rectangular normalization 
on extracted features are presented. From the empirical outcomes, it is examined that 
the variable-size normalization scheme performs better than the fixed-size normali-
zation approach in terms of matching. It is concluded that the proposed variable-size 
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Fig. 11  ROC curve of proposed iris normalization schemes on the MMU V 1.0 database images
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normalization makes orthogonal polynomials based iris recognition system more robust 
to the illumination variations than the proposed fixed-size normalization model.
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