
Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2
DOI 10.1186/s13673-014-0016-8

RESEARCH Open Access

An optimizing pipeline stall reduction
algorithm for power and performance on
multi-core CPUs
Vijayalakshmi Saravanan1*, Kothari Dwarkadas Pralhaddas1, Dwarkadas Pralhaddas Kothari2

and Isaac Woungang1

*Correspondence:
vsaravan@rnet.ryerson.ca
1WINCORE Lab, Ryerson University,
Toronto, Canada
Full list of author information is
available at the end of the article

Abstract

The power-performance trade-off is one of the major considerations in micro-architecture
design. Pipelined architecture has brought a radical change in the design to capitalize
on the parallel operation of various functional blocks involved in the instruction
execution process, which is widely used in all modern processors. Pipeline introduces
the instruction level parallelism (ILP) because of the potential overlap of instructions,
and it does have drawbacks in the form of hazards, which is a result of data
dependencies and resource conflicts. To overcome these hazards, stalls were
introduced, which are basically delayed execution of instructions to diffuse the
problematic situation. Out-of-order (OOO) execution is a ramification of the stall
approach since it executes the instruction in an order governed by the availability of
the input data rather than by their original order in the program. This paper presents a
new algorithm called Left-Right (LR) for reducing stalls in pipelined processors. This
algorithm is built by combining the traditional in-order and the out-of-order (OOO)
instruction execution, resulting in the best of both approaches. As instruction input, we
take the Tomasulo’s algorithm for scheduling out-of-order and the in-order instruction
execution and we compare the proposed algorithm’s efficiency against both in terms
of power-performance gain. Experimental simulations are conducted using
Sim-Panalyzer, an instruction level simulator, showing that our proposed algorithm
optimizes the power-performance with an effective increase of 30% in terms of energy
consumption benefits compared to the Tomasulo’s algorithm and 3% compared to the
in-order algorithm.

Keywords: Instruction pipeline; Stall reduction; Optimizing algorithm

Introduction
Instruction pipeline is extensively used in modern processors in order to achieve instruc-
tion level parallelism in pipelined processor architectures [1]. In a conventional pipelined
processor, there are 5- pipe stages, namely FETCH (FE), DECODE (DE), EXECUTE
(EXE), MEMORY (MEM) and WRITE-BACK (WB). In the first stage, the instruction is
read from the memory, loaded into the register, then the decoding of an instruction takes
place in the succeeding stage. In the third stage, the execution of an instruction is car-
ried out and in the fourth stage, the desired value is written into the memory; and finally,

© 2015 Saravanan et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193787147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto: vsaravan@rnet.ryerson.ca
http://creativecommons.org/licenses/by/4.0

Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2 Page 2 of 13

the computed value is written into a register file. For example, in pipelined processors, if
there is any dependency between two consecutive instructions, then the instruction in the
decode stage will not be valid. The Tomasulo hardware algorithm is used to overcome this
situation. Typically, it is a hardware dynamic scheduling algorithm, in which a separate
hardware unit (so-called forwarding) is added to manage the sequential instructions that
would normally stall (due to certain dependencies) and execute non-sequentially (This
is also referred to as out-of-order execution). Due to data forwarding, there is at least a
clock cycle delay and the stall is inserted in a pipeline. These no-operation (NOP) or stalls
are used to eliminate the hazards in the pipeline. The NOP instructions contribute to the
overall dynamic power consumption of a pipelined processor by generating a number of
unnecessary transitions. Our main goal is to minimize such stalls which in turn increases
the CPU throughput, thus saves the power consumption.
Generally, the time taken by computing devices is determined by the following factors:

• Processor cycle time.
• Number of instructions required to perform certain task.
• Number of cycles required to complete an instruction.

The system performance can be enhanced by reducing one or more of these factors.
Pipelining does just that by dividing the workload into various sub units and by assigning
a processing time to each unit, thereby reducing the waiting time period which occurs if
the sequential execution was adopted. Various approaches can be to increase the pipeline
stages, and various strategies can be used to reduce the stalls caused by the pipeline haz-
ards. To solve this hazard, one can use a large and faster buffer to fetch the instructions
and perform an out of order execution. Though, this method increases the hardware com-
plexity cost. It also reduces the branch penalty by re-arranging the instructions to fill the
stalls due to branching instruction. But, this requires the use of a suitable scheduling algo-
rithm for the instruction [2]. There is an ongoing research on variable pipeline stages,
where it is advocated that processor’s pipeline stages can be varied within a certain range.
In this type of processors, one can vary the workload and power consumption as per our
requirement.
Our proposed work on the analysis of stall reduction of pipelined processors is moti-

vated by the following facts: (1) How to identify the power consumption of the instruction
execution in a pipelined processor, i.e. does the power consumption of a instruction exe-
cution caused by the number of instructions or the type of executions (such as in-order
or out-of-order execution) and why? (2) How to balance both the power and performance
in instruction execution.
Recently, a new trend has been established by multi-threaded and multi-core proces-

sors. The demand for these processors are due to the inability of the conventional pro-
cessor to meet higher performance memory-intensive workloads, which in turn may lead
to high cache miss rates. In addition, a conventional processor cannot utilize the pipeline
effectively, in the sense that a high percentage of the processor resources are wasted.
The state-of-the-art architectural methods and algorithms such as pre-fetching and
out-of-order execution are not suitable enough for these types of pipelined processors.
In this paper, an alternative strategic algorithm is proposed, in which the instructions

are divided into a number of stages, then sorted and executed simultaneously, thereby
increasing the throughput. In other words, our algorithm performs a combination of

Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2 Page 3 of 13

in-order and out-of-order execution for sequential instructions. Our algorithm is then
compared against two traditional benchmark algorithms, namely the in-order algorithm
and the Tomasulo algorithm.We have also pointed out that just increasing pipeline stages
will not always be beneficial to us.
The paper is organized as follows: Section ‘Related work’ presentssome related work.

In Section ‘Proposed algorithm’, our proposed algorithm for effective stall reduction
in pipeline design on multiprocessors is presented. In Section ‘Comparison of LR vs.
Tomasulo algorithm’, the simulation results are presented. Finally, Section ‘Conclusions’
concludes our work.

Related work
The length of the pipeline has an impact on the performance of a microprocessor. Two
architectural parameters that can affect the optimal pipeline length are the degree of
instruction level parallelism and the pipeline stalls [3]. During pipeline stalls, the NOP
instructions are executed, which are similar to test instructions. The TIS tests different
parts of the processor and detects stuck-at faults [4,5].
Wide Single Instruction, Multiple Thread architectures often require static allocation

of thread groups, executed in lockstep. Applications requiring complex control flow often
result in low processor efficiency due to the length and quantity of the control paths.
Theglobal rendering algorithms are an example. To improve the processor’s utilization, a
SIMT architecture is introduced, which allows for threads to be created dynamically at
runtime [6].
Branch divergence has a significant impact on the performance of GPU programs. Cur-

rent GPUs feature multiprocessors with SIMT architecture, which create, schedule, and
execute the threads in groups (so-called wraps). The threads in a wrap execute the same
code path in lockstep, which can potentially lead to a large amount of wasted cycles for
a divergent control ow. Techniques to eliminate wasted cycles caused by branch and ter-
mination divergence have been proposed in [7]. Two novel software-based optimizations,
called iterative delaying and branch distribution were proposed in [8], aiming at reducing
the branch divergence.
In order to ensure consistency and performance in scalable multiprocessors, cache

coherence is an important factor. It is advocated that hardware protocols are currently
better than software protocols but aremore costly to implement. Due to improvements on
compiler technologies, the focus is now placedmore on developing efficient software pro-
tocols [9]. For this reason, an algorithm for buffer cache management with pre-fetching
was proposed in [10]. The buffer cache contains two units, namely, the main cache unit
and the prefetch unit; and blocks are fetched according to the one block lookahead pre-
fetch principle. The processor cycle times are currently much faster than the memory
cycle times, and the trend has been for this gap to increase over time. In [11,12], new types
of prediction cache were introduced, which combine the features of pre-fetching and vic-
tim caching. In [13], an evaluation of the full system performance using several different
power/performance sensitive cache configurations was proposed.
In [14,15], a pre-fetch based disk buffer management algorithm (so-called W2R) was

proposed. In [16], the instruction buffering as a power saving technique for signal and
multimedia processing applications was introduced. In [17], another buffer management
technique called dynamic voltage scaling was introduced as one of the most efficient ways

Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2 Page 4 of 13

to reduce the power consumption because of its quadratic effect. Essentially, the micro-
architectural-driven dynamic voltage scaling identifies program regions where the CPU
can be slowed down with negligible performance loss. In [18], the run-time behaviour
exhibited by common applications with active periods alternated with stall periods due to
cache misses, was exploited to reduce the dynamic component of the power consumption
using a selective voltage scaling technique.
In [19], a branch prediction technique was proposed for increasing the instructions per

cycle. Indeed, a large amount of unnecessary work is usually due to the selection of wrong-
path instructions entering the pipeline because of branch mis-prediction. A hardware
mechanism called pipeline gating is employed to control the rampant speculation in the
pipeline. Based on the Shannon expansion, one can partition a given circuit into two sub-
circuits in a way that the number of different outputs of both sub-circuits are reduced,
and then encode the output of both sub-circuits to minimize the Hamming distance for
transitions with a high switching probability [20].
In [21], file Pre-fetching has been used as an efficient technique for improving the

file access performance. In [22], a comprehensive framework that simultaneously eval-
uates the tradeoffs of energy dissipations of software and hardware such as caches and
main memory was presented. As a follow up, in [23], an architecture and a prototype
implementation of a single chip, fully programmable Ray Processing Unit (RPU), was
presented.
In this paper, our aim is to further reduce the power dissipation by reducing the execu-

tion of the stall instruction passes through the pipe stages using our proposed algorithm.
Therefore, our algorithm aims at reducing the unnecessary waiting time of the instruc-
tion execution and clock cycles, which in turn will maximize the CPU performance and
save some amount of energy consumption.

Proposed algorithm
Performance improvement and power reduction are two major issues that are faced by
computer architects, and various methods and algorithms have been proposed to opti-
mize the performance and power. To add on these, other methodsrely on reducing the
pipeline hazards and increasing the efficiency of a processor. Processors have evolved into
two main categories, namely, in-order execution and out-of-order execution.

In-order execution: In this method, instructions are fetched, executed and completed
in a compiler generated order. Instructions are scheduled statically, and if one stall occurs,
the rest all are stalled. The Alpha and Intel Atom processors in-order models have been
implemented with peak performance. However, complex designs are required for the
integration of peak capacity and increase in clock frequency.

example of in-order instruction execution:

lw $3, 100($4) in execution, cache miss

add $2, $3, $4 waits until the miss is satisfied

sub $5, $6, $7 waits for the add

Out-of-order execution: In the previous method, data dependencies and latencies in
functional units can cause reduction in the performance of the processor. In order to over-
come this issue, we have uses an out-of-order (OOO)method which is the traditional way
to increase the efficiency of pipelined processors by maximizing the instruction issued by

Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2 Page 5 of 13

every cycle [24]. But, this technique is very costly in terms of its implementation. Most of
the high level processors (such as DEC and HP) execute the instructions in out-of-order.
In this method, the instructions are fetched in a compiler generated order and the execu-
tion of the instruction takes place in pipeline as one which is not dependent on the current
instruction, i.e. independent instructions are executed in some other order. The instruc-
tions are dynamically scheduled and the completion of instruction may be in in-order or
out-of-order.

Example of out-of-order instruction execution:

lw $3, 100($4) in execution, cache miss

sub $5, $6, $7 can execute during the cache miss

add $2, $3, $4 waits until the miss is satisfied

Tomasulo’s algorithm: As a dynamic scheduling algorithm, it uses a hardware-based
mechanism to remove the stalls at the runtime. It allows sequential instructions that
would normally be stalled due to certain dependencies to execute non-sequentially
(out-of-order execution). It also utilizes the concept of register renaming, and resolves
Write-after-Write (WAW), Read-after-Write (RAW) and Write-after-Read (WAR) com-
puter architecture hazards by register renaming, which allows the continual issuing of
instructions. This algorithm also uses a common data bus (CDB) on which the com-
puted values are broadcasted to all the reservation stations that may need it. This
allows for improved parallel execution of instructions, which may otherwise stall. The
Tomasulo algorithmwas chosen because its order of instruction execution is nearly equiv-
alent to that of our proposed algorithm. Both algorithms are scheduled statically at the
micro-architecture level.
Proposed algorithm (LR(Left-Right)): The above mentioned methods and algorithms

have their own merits and demerits while executing an instruction in a pipelined proces-
sors. Instead of using some other methods to reduce the power consumption, we have

Figure 1 Execution of LR (Left-Right) Algorithm.

Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2 Page 6 of 13

proposed an algorithm which performs the stall reduction in a Left-Right (LR) manner, in
sequential instruction execution as shown in Figure 1. Our algorithm introduces a hybrid
order of instruction execution in order to reduce the power dissipationl. More precisely,
it executes the instructions serially as in-order execution until a stall condition is encoun-
tered, and thereafter, it uses of concept of out-of-order execution to replace the stall with
an independent instruction. Thus, LR increases the throughput by executing independent
instructions while the lengthy instructions are still executed in other functional units or
the registers are involved in an ongoing process. LR also prevents the hazards that might
occur during the instruction execution. The instructions are scheduled statically at com-
pile time as shown in Figure 2. In our proposed approach, if a buffer in presence can hold
a certain number of sequential instructions, our algorithm will generate a sequence in
which the instructions should be executed to reduce the number of stalls while maximiz-
ing the throughput of a processor. It is assumed that all the instructions are in the form of
op-code source destination format.

Figure 2 Flow chart of Proposed Algorithm.

Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2 Page 7 of 13

Comparison of LR vs. Tomasulo algorithm
In this section, the performance and power gain of the LR and the Tomasulo algorithms
are compared.

Simulation and power-performance evaluation

As our baseline configuration, we use an Intel core i5 dual core processor with 2.40GHZ
clock frequency, and 64-bit operating system. We also use the Sim-Panalyzer simulator
[25]. The LR, in-order, and Tomasulo algorithms are developed as C programs. These C
programs were compiled using arm-linux-gcc in order to obtain the object files for each
of them, on an ARMmicroprocessor model.
At the early stage of the processor design, various levels of simulators can be used to

estimate the power and performance such as transistor level, system level, instruction
level, and micro-architecture level simulators. In transistor level simulators, one can esti-
mate the voltage and current behaviour over time. This type of simulators are used for
integrated circuit design, and not suitable for large programs. On the other hand, micro-
architecture level simulators provide the power estimation across cycles and these are
used in modern processors. Our work is similar to this kind of simulator because our
objective is to evaluate the power-performance behaviour of a micro-architecture level
design abstraction. Though, a literature survey suggests several power estimation tools
such as CACTI, WATTCH [26], and we have choose the Sim-Panalyzer [25] since it pro-
vides an accurate power modelling by taking into account both the leakage and dynamic
power dissipation.
The actual instruction execution of our proposed algorithm against existing ones is

shown in Algorithms 1 and 2. In the LR algorithm, an instruction is executed seri-
ally in-order until a stall occurs, and thereafter the out-of-order execution technique
comes to play to replace the stall with an independent instruction stage. Therefore, in
most cases, our proposed algorithm takes less cycle of operation and less cycle time
compared to existing algorithms as shwon in algorithm [2]. The comparison of our pro-
posed algorithm against the Tomasulo algorithm and the in-orderalgorithm is shown in
Table 1. The next section focusses on the power-performance efficiency of our proposed
algorithm.

Algorithm 1 Pseudo code of the proposed Left-Right (LR) algorithm.
1: Read the instruction into an array;
2: Separate the left operands and right operands of assignment sign into left array and

right array respectively;
3: Check if all the instructions have been scheduled. If yes goto step 7 else go to 4a.
4: 4a: Check if the instruction in the queue has completed two stalls. If yes go to

step 4b else go to step 5a; 4b: Schedule that instruction and send all the dependent
instruction into the queue. Go to step 5a.

5: 5a: Schedule the next independent and unscheduled instruction; 5b: Send all the
dependent instruction into the queue. Go to step 6.

6: If no instruction was scheduled in the last iteration then schedule a stall and go to
step 3.

7: Output the order of execution.

Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2 Page 8 of 13

Algorithm 2 Actual Instruction execution of proposed algorithm LR(Left-Right) vs. In-
order, Tomasulo
1: Instructions: 1) a=b + 1; 2) c=a + m; 3) k=m + p; 4) i=b + 1; 5) c=k + c; 6) a=0;
2: LEFT Operand: a, c, k, i, c, a
3: RIGHT Operand: [b,1] [a,m] [m,p] [b,1] [k,c] [0,0]
4: Cycle Operation: 1 2 3 4 5 6
5: First Step: Schedule 1st instruction. And put 2nd and 6th instruction in queue. Then,

schedule a 3rd instruction and 4th instruction.
6: Then, 2nd instruction from queue, schedule 6th instruction, WAIT for a cycle then

schedule 5th instruction.
7: This will give rise to the following sequence for proposed algorithm (LR): 1 3 4 2 6

Stall 5
8: In-order: 1 Stall 2 3 4 Stall 5 6
9: Tomasulo: 1 3 4 2 6 Stall 5. Though, tomasulo takes same cycle time as LR, due to

hardware unit high power dissipation to perform the same operation than LR.

Performance evaluation

In general, computer architects use simulation as a primary tool to evaluate the com-
puter’s performance. In this setting, instructions per cycle (IPC) represents a performance
metric that can be considered, and it is well-known [27] that an increase in IPC gener-
ally yields a good performance of the system. The use of instructions per cycle (IPC) to
analyze the performance of a system is challenged at least for the multi-threaded work-
loads running on multiprocessors. In [27], it was reported that work-related metrics (e.g.
time per transaction) are the most accurate and reliable way to estimate the multipro-
cessor workload performance. We have also proved that our algorithm produces less IPC
compared to that generated by the Tomasulo algorithm (see Figure 3(b)). According to
this result, work-related metrics such as time per program and time per workloads are the
most accurate and reliable methods to calculate the performance of the system. The time

Table 1 Comparison of algorithms

In-order execution Tomasulo’s algorithm Proposed algorithm (LR)

Static-scheduling Hardware dynamic-scheduling Static-scheduling

Compiler tries to reorder the
instructions during the compilation
time in order to reduce the pipeline
stalls

The dynamic scheduling of the
hardware tries to rearrange the
instructions during run-time to
reduce the pipeline stalls

Compilation time instruction
execution

Uses less hardware More hardware unit added Use more powerful algorithmic
techniques (sorting)

Sequential-order Register-renaming is used
to reduce the stall

Sorting takes place first, then
execution of an instruction

Bottom-up approach Re-ordering of CPU instructions Hybrid order of an in-order
and OOO

For ex: char x; //read x, starts on
cycle 1 & completes on cycle 2; int
a= 10 + 20; // assignment to a, starts
on cycle 3 & completes on cycle 4;
print char x; // starts on cycle 5 &
completes on cycle 6;

char x; // read x, starts on cycle 1
& completes on cycle 2; int a= 10 +
20; // assignment to a, starts on
cycle 2 & completes on cycle 3; print
char x; // starts on cycle 3 &
completes on cycle 4;

char x; // read x, starts on cycle 1 &
completes on cycle 2; int a= 10 +
20; // assignment to a, starts on
cycle 2 & completes on cycle 3; print
char x; // starts on cycle 3 & com-
pletes on cycle 4; Due to hardware
unit, more power dissipation

Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2 Page 9 of 13

a b
Figure 3 Performance comparison of LR, In-order vs. Tomasulo algorithm. a) Time/Program,
b) Instructions per cycle.

per program is calculated as shown in Eq. (1) and Eq. (2). We use time per program and
IPC as performance metrics.

Time/Program = Instructions/Program × Cycles/Instruction × Time/Cycle, (1)

Time/Program = CP × CPI × IPP
where TP- time per program, CP- clock period, CPI- Cycles per instruction and IPP-
instructions executed per program.We have executed our program on the samemachine,
therefore the clock period will be the same. Hence, Eq. (1) becomes,

Throughput(%) = 100 − [
(CPI × IPP)LR/(CPI × IPP)In−order

] × 100 = 98 (2)

Throughput(%) = 100 − [(CPI × IPP)LR/(CPI × IPP)Tomasulo] × 100 = 95 (3)
By using Eq. 1, we calculated the time per program for the proposed LR algorithm,

and its efficiency iscompared against the traditional in-order and Tomasulo’s algorithm
as shown in Table 2.

Power consumption evaluation

In simulation-based power evaluation methods, the system is integrated with various
components such ALU, level-1 I-cache, D-cache, irf (register files), and clock. The energy
consumption of a program is estimated as the sum of all these components as shown
in Table 3 and the mean power dissipation results from Sim-Panalyzer for the same
experiment are shown in Table 4.

Result analysis and discussions
To analyse the efficiency of our proposed algorithm, we have simulated both algorithms
on the Sim-Panalyzer and obtained the average power dissipation of the ALU, level-1
instruction (il1) and data (dl1) caches as well as the internal register file (irf) and the clock

Table 2 Performance estimation of LR vs. in-order

Metrics LR In-order Tomasulo

Instructions per cycle (IPC) 0.2462 0.2442 0.7327

Clocks per instruction (CPI) 4.061 4.09 1.3648

Simulation speed (inst/sec) 785 606 98021.9

Total number of instructions executed 40516 41004 2350639

Time/Program 164535.476 167706.36 3207982.549

Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2 Page 10 of 13

Table 3 Average power dissipation for LR, in-order vs. Tomasulo’s algorithm

Component Simulation parameters LR In-order Tomasulo

ALU alu avg power # Avg power
for alu

0.0001 0.0001 0.0003

dl1 dl1.avgswitching #dl1 avg
in switching power dissipation

0.0060 0.0079 0.0172

dl1.avginternal #dl1 avg internal
power dissipation

0.0192 0.0199 0.0431

dl1.avgleakage #dl1 avg leakage
power dissipation

0.0029 0.0029 0.0029

dl1.avgpdissipation #dl1 avg
power dissipation

0.223 0.2208 0.2459

il1 il1.avgswitching #il1 avg in
switching power dissipation

0.0343 0.0338 0.0950

il1.avginternal #il1 avg internal
power dissipation

0.0861 0.0849 0.2384

il1.avgleakage #il1 avg leakage
power dissipation

0.0029 0.0029 0.0029

il1.avgpdissipation #il1 avg
power dissipation

0.4274 0.4292 0.4525

irf irf.avgswitching # irf avg in
switching power dissipation

0.0063 0.0066 0.0162

irf.avginternal #irf avg internal
power dissipation

0.0085 0.0089 0.0218

irf.avgleakage #irf avg leakage
power dissipation

0.0001 0.0001 0.0001

irf.avgpdissipation #irf avg
power dissipation

0.041 0.0414 0.0407

Clock clock.avgleakage #clock avg
leakage power dissipation

191.13 191.13 191.13

power dissipation. We have plot the energy consumptions of the different components of
both algorithms as shown in Figure 4.
It can be observed that with Tomasulo’s algorithm, the absolute power dissipation dif-

fers significantly between LR and in-order. In terms of ALU power dissipation, it can
be observed there is not much improvement in power-performance. But on compar-
ing the results for dl1 and il1, it can be noticed that there is a significant difference in
power dissipation in the level-1 data and instruction caches. In both dl1 and il1, the aver-
age switching power dissipation (resp. the average internal power dissipation) show up
to 60% less power dissipation in LR than in the Tomasulo algorithm. Also, the power
dissipation generated by LR is 2.5% less compared to that generated by the Tomasulo
algorithm.
From Eq. 2 and Table 2, it can be concluded that LR performs 95% better than Tomasulo.

Figure 3a and 3b, Table 3 depict the IPC & time per program of both algorithms. The
instruction execution efficiency of the Tomasulo algorithm is 1% and the data efficiency is

Table 4 Total power dissipation of LR, In-order vs. Tomasulo algorithm

Component LR algorithm In-order algorithm Tomasulo (%) Improvement (Tomasulo)

ALU 0.0001 0.0001 0.0003 33.3

il1 0.5507 0.5508 0.3091 21.1

dl1 0.2527 0.2515 0.7888 33.5

irf 0.0559 0.057 0.0788 33.5

Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2 Page 11 of 13

Figure 4 Comparison of power dissipation LR, In-order vs. Tomasulo’s algorithm.

2% higher than that of the LR algorithm. In terms of overall power-performance benefits,
our proposed LR algorithm outperforms the Tomasulo algorithm. In our experiment, it
was also observed that the fraction of clock power dissipation is almost the same for both
algorithms. This significant increase of clock power in Sim-Panalyzer is mostly due to the
fact that it is dependent on the dynamic power consumption.

Discussions

With this simulator, we are able to obtain power-performance of various belowmentioned
components , and compared our results.

1. ALU: As shown in Table 1, the average power dissipation in ALU indicates the
usage of ALU during the simulation of both algorithms. The maximum power
dissipation is noticed to be equal for both the algorithm but the average power
dissipation in LR shows a 66% improvement against Tomasulo. This simply states
that for the processing LR requires less computation as compared to Tomasulo to
order the instructions.

2. DL1: dl1 represents the level -1 data caches and in the experiment, LR shows an
overall improvement of 21% as compared to Tomasulo in the average power
dissipation in dl1. This exemplifies that the usage of cache and the cache hit ratio is
improved in LR then in the Tomasulo.

3. IL1: il1 represents the level -1 instruction caches and in the experiment LR shows
an overall improvement of 33% as compared to Tomasulo in the average power
dissipation in il1. Hence, we can deduce that the cache used for holding
instructions performs better while processing for LR as compared to Tomasulo.

4. IRF: IRF indicates the usage of the internal register file. The average power
dissipation in LR is 33% less than Tomasulo’s. IRF indicates that the register’s usage
is less in LR and hence the power consumption is less than the Tomasulo.

Overal, thel improvement in average power dissipation of LR comes out to be 30% bet-
ter than that of the Tomasulo algorithm. Also, a slight performance-power improvement
of LR against in-order is also achieved. Hence, it can be concluded that our algorithm

Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2 Page 12 of 13

increases the throughput of the pipelined processor by reducing the stalls, and the
power-performance of our algorithm is better than that of the Tomasulo’s algorithm.

Conclusions
We have presented a stall reduction algorithm for optimizing the power-performance in
pipelined processors. Our algorithmic technique is based on the hybrid order of instruc-
tion execution and it operates at a higher level of abstraction than more commonly
used hardware level algorithms in instruction level power-performance estimation do.
Simulation results have been conducted to validate the effectiveness of our proposed algo-
rithm, revealing the following findings: (1) Our proposed algorithm is able to optimize
the stall reductions during instruction scheduling in the pipelined processor; (2) It can
also help preventing the data hazards that might occur; (3) Compared to the Tomasulo
algorithm chosen as benchmark, it can achieve up to 30% of power and 95% of perfor-
mance improvement on simulation in a pipelined processor; (4) the performance-power
exhibited by in-order execution are relatively low compared to that performed by our
algorithm; and (5) Our algorithm is statically scheduled, and it performs better in terms
of power and performance than the existing stall reduction algorithm. As futre work, the
proposed algorithm can further be enhanced by using more advanced sorting techniques,
for instance, techniques that can help overlapping the instructions, making them more
data dependable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Author details
1WINCORE Lab, Ryerson University, Toronto, Canada. 2I.I.T. Delhi, India.

Received: 11 February 2014 Accepted: 28 August 2014

References
1. Kogge PM (1981) The Architecture of pipelined computers. McGraw-Hill advanced computer science series,

Hemisphere, Washington, New York, Paris, Includes index
2. Johnson WM (1989) Super-scalar processor design. Technical report
3. Hartstein A, Puzak TR (2002) The optimum pipeline depth for a microprocessor. SIGARCH Comput Archit News

30(2):7–13
4. Shamshiri S, Esmaeilzadeh H, Navabi Z (2005) Instruction-level test methodology for cpu core self-testing. ACM

Trans Des Autom Electron Syst 10(4):673–689
5. Patterson DA, Hennessy JL (2006) In praise of computer architecture: a quantitative approach. Number 704. Morgan

Kaufmann
6. Steffen M, Zambreno J (2010) Improving simt efficiency of global rendering algorithms with architectural support

for dynamic micro-kernels. In: Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. MICRO ’43, IEEE Computer Society, Washington, DC, USA. pp 237–248

7. Frey S, Reina G, Ertl T (2012) Simt microscheduling: Reducing thread stalling in divergent iterative algorithms. In:
Proceedings of the 2012 20th Euromicro International Conference on Parallel, Distributed and Network-based
Processing PDP ’12. IEEE Computer Society, Washington, DC, USA. pp 399–406

8. Han TD, Abdelrahman TS (2011) Reducing branch divergence in gpu programs. In: Proceedings of the Fourth
Workshop on General Purpose Processing on Graphics Processing Units, GPGPU-4, ACM, New York, NY, USA.
pp 3:1–3:8

9. Lawrence R (1998) A survey of cache coherence mechanisms in shared memory multiprocessors
10. Chaudhary MK, Kumar M, Rai M, Dwivedi RK (2011) Article: A Modified Algorithm for Buffer Cache Management. Int J

Comput Appl 12(12):47–49
11. Bennett JE, Flynn MJ (1996) Reducing Cache Miss Rates Using Prediction Caches. Technical report
12. Schnberg S, Mehnert F, Hamann C-J, Hamann Clj, Reuther L, Hrtig H (1998) Performance and Bus Transfer Influences.

In: In First Workshop on PC-Based Syatem Performance and Analysis

Saravanan et al. Human-centric Computing and Information Sciences (2015) 5:2 Page 13 of 13

13. Bahar RI, Albera G, Manne S (1998) Power and performance tradeoffs using various caching strategies. In:
Proceedings of the 1998 international symposium on Low power electronics and design, ISLPED ’98, ACM, New
York, NY, USA. pp 64–69

14. Jeon HS, Noh SH (1998) A database disk buffer management algorithm based on prefetching. In: Proceedings of the
seventh international conference on Information and knowledge management, CIKM ’98, ACM, New York, NY, USA.
pp 167–174

15. Johnson T, Shasha D (1994) 2Q: A Low Overhead High Performance Buffer Management Replacement Algorithm. In:
Proceedings of the 20th International Conference on Very Large Data Bases. VLDB ’94, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA. pp 439–450

16. Bajwa RS, Hiraki M, Kojima H, Gorny DJ, Nitta K, Shridhar A, Seki K, Sasaki K (1997) Instruction buffering to reduce
power in processors for signal processing. IEEE Trans. Very Large Scale Integr Syst 5(4):417–424

17. Hsu C-H, Kremer U (2003) The design, implementation, and evaluation of a compiler algorithm for cpu energy
reduction. SIGPLAN Not 38(5):38–48

18. Marculescu D (2000) On the Use of Microarchitecture-Driven Dynamic Voltage Scaling
19. Manne S, Klauser A, Grunwald D (1998) Pipeline gating: speculation control for energy reduction. In: Proceedings of

the 25th annual international symposium on Computer architecture. ISCA ’98, IEEE Computer Society, Washington,
DC, USA. pp 132–141

20. Ruan S-J, Tsai K-L, Naroska E, Lai F (2005) Bipartitioning and encoding in low-power pipelined circuits. ACM Trans
Des Autom Electron Syst 10(1):24–32

21. Lei H, Duchamp D (1997) An Analytical Approach to File Prefetching. In: In Proceedings of the USENIX 1997 Annual
Technical Conference. pp 275–288

22. Li Y, Henkel Jrg, Jrghenkel Y (1998) A Framework for Estimating and Minimizing Energy Dissipation of Embedded
HW/SW Systems

23. Woop S, Schmittler J, Slusallek P (2005) Rpu: a programmable ray processing unit for realtime ray tracing. In: ACM
SIGGRAPH 2005 Papers. SIGGRAPH ’05. ACM, New York, NY, USA. pp 434–444

24. Johnson M, William M (1989) Super-Scalar Processor Design. Technical report
25. Whitham J (2013) Simple scalar/ARM VirtualBox Appliance. Website. http://www.jwhitham.org/simplescalar
26. Brooks D, Tiwari V, Martonosi M (2000) Wattch: a framework for architectural-level power analysis and optimizations.

SIGARCH Comput Archit News 28(2):83–94
27. Alameldeen AR, Wood DA (2006) Ipc considered harmful for multiprocessor workloads. IEEE Micro 26(4):8–17

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.jwhitham.org/simplescalar

	Abstract
	Keywords

	Introduction
	Related work
	Proposed algorithm
	Comparison of LR vs. Tomasulo algorithm
	Simulation and power-performance evaluation
	Performance evaluation
	Power consumption evaluation

	Result analysis and discussions
	Discussions

	Conclusions
	Competing interests
	Authors' contributions
	Author details
	References

