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Abstract
In this paper, we consider the logistic equation with piecewise constant argument of
generalized type. We analyze the stability of the trivial fixed point and the positive
fixed point after reducing the equation into a nonautonomous difference equation.
We also discuss the existence of bounded solutions for the reduced nonautonomous
difference equation. Then we investigate the stability of the positive fixed point by
means of Lyapunov’s second method developed for nonautonomous difference
equations. We find conditions formulated through the parameters of the model and
the argument function. We also present numerical simulations to validate our
findings.
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1 Introduction and preliminaries
Theory of ordinary differential equations plays an important role for solving fundamental
problems in population dynamics. However, in some cases, it may not provide consis-
tent results that meet the realities. This fact may arise from the negligence of time delays,
impacts or other specific phenomena that are not suitable to be modeled by classical dif-
ferential equations.

The logistic equation is one of the well-known models that describe the growth of a
single species population with limited resources. The general logistic population model is
described by

dx
dt

= x′(t) =
(
a – bx(t)

)
x(t), ()

where a is the intrinsic growth rate and a
b is the carrying capacity of the population, x(t)

represents the population density at time t. In (), it is assumed that the growth rate of a
population at any time t depends on the number of individuals at that time. In practice,
the process of reproduction is not instantaneous. For example, in a Daphnia a large clutch
presumably is determined not by the concentration of unconsumed food available when
the eggs hatch, but by the amount of food available when the eggs were forming, some time
before they pass into the broad pouch. Between this time of determination and the time of
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hatching many newly hatched animals may have been liberated from the brood pouches of
other Daphnia in the culture, thus increasing the population []. Hutchinson [] assumed
egg formation to occur τ units of time before hatching and proposed the following more
realistic logistic equation:

x′(t) =
(
a – bx(t – τ )

)
x(t), ()

where a and b have the same meaning as in the logistic equation (), τ is a positive con-
stant. Equation () is known as Hutchinson’s equation or (autonomous) delayed logistic
equation. There exist many studies about logistic equation with or without time delay [–
]. In general, delay differential equations exhibit much more complicated dynamics than
ordinary differential equations since a time delay could cause a stable equilibrium to be-
come unstable and lead the populations to fluctuate. There are also several papers [–]
that study the logistic equation with piecewise constant argument of the following form:

x′(t) =
(
a – bx

(
[t]

))
x(t), ()

where [·] denotes the greatest integer function. Here, the distance between the successive
switching moments is always constant and equal to . Differential equations with piecewise
constant argument [t] was introduced by Cooke and Wiener []. Akhmet has generalized
the concept of differential equations with piecewise constant argument by taking arbitrary
piecewise constant functions as arguments [] and thus it has been assumed that there
is no restriction on the distance between the consecutive switching moments of the argu-
ment. Later, this class of differential equations and its applications have been studied by
several authors [–].

Let N and R
+ be the set of natural numbers and nonnegative real numbers, respectively,

i.e., N = {, , , . . .}, R+ = [,∞). Denote by R
n the n-dimensional real space for a positive

integer n and by ‖ · ‖ the Euclidean norm in R
n. In [], Altıntan investigated the stability

for () by reducing it into the following autonomous discrete equation:

xk+ = F(xk) = xkea–bxk , ()

where xk = x(k), k ∈ N. It is indicated that the trivial fixed point x =  of () is asymptoti-
cally stable (resp., unstable) if ea <  (resp., ea > ) and the positive fixed point x = a

b of ()
is asymptotically stable (resp., unstable) if | – a| <  (resp., | – a| > ) since F ′() = ea and
F ′( a

b ) =  – a.
Our aim in this paper is to consider the logistic growth model with piecewise constant

argument of generalized type given by

x′(t) =
(
a – bx

(
β(t)

))
x(t), ()

where a and b are assumed to be nonzero constants of the same sign, β(t) = θk for t ∈
[θk , θk+), k ∈N and θk , k ∈N, is a real-valued sequence such that  = θ < θ < · · · < θk < · · ·
with θk → ∞ as k → ∞.

Since the discrete moments of time where the argument changes its constancy may not
be equally distanced, differential equations with piecewise constant argument of general-
ized type may lead to nonautonomous difference equations. To the best of our knowledge,
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it is the first time in the literature that a differential equation with piecewise constant ar-
gument of generalized type is reduced into a nonautonomous difference equation.

We investigate the stability of the fixed points x =  and x = a
b after reducing () into a

nonautonomous difference equation. We discuss the existence of bounded solutions for
the reduced nonautonomous difference equation. The boundedness of solutions enables
us to use Lyapunov’s second method developed for nonautonomous difference equations
of the following type []:

u(k + ) = f
(
k, u(k)

)
, k ∈N, ()

where u ∈R
n, f is a given function of k and the values u(k) at k ∈N.

2 Preliminaries
Let us give the necessary definitions and theorems [, , ] that will be useful in the
next section. Stability definitions for difference equations are similar to the ones given
for classical ordinary differential equations. Concepts of stability and their definitions for
difference equations can be found in the book [].

Let the function f in () satisfy f (k, ) =  for all k ∈N. Then () admits the trivial solu-
tion u = .

Definition . A function x(t) is a solution of () on R
+ if

(i) x(t) is continuous on R
+;

(ii) the derivative x′(t) exists for t ∈R
+ with the possible exception of the points θk ,

k ∈N, where one-sided derivatives exist;
(iii) () is satisfied by x(t) on each interval (θk , θk+), k ∈N, and it holds for the right

derivative of x(t) at the points θk , k ∈N.

Definition . A function φ(r) is said to belong to the class K if and only if φ ∈
C[[,ρ),R+], φ() =  and φ(r) is strictly increasing in r.

Define Sρ = {u ∈R
n : ‖u‖ < ρ}.

Definition . A continuous function w : Sρ →R is said to be positive definite if
(i) w() =  and

(ii) w(u) >  for all u �= , u ∈ Sρ .
It is negative definite if –w is a positive definite function.

Definition . A continuous function V : N × Sρ → R is said to be positive definite if
there exists a positive definite function w : Sρ →R such that

(i) V (k, ) =  for all k ∈N and
(ii) V (k, u) ≥ w(u) for all k ∈N and for all u ∈ Sρ .

It is negative definite if –V (k, u) is a positive definite function.

Without loss of generality of our results, consider solutions of (), whose initial value
is taken at k = . Let the solution u(k) = u(k, u) of () exist and satisfy ‖u(k)‖ < ρ for all
k ∈N. Along this solution u(k) of (), the variation of the function V (k, u) is defined by

�V()
(
k, u(k)

)
= V

(
k + , u(k + )

)
– V

(
k, u(k)

)

= V
(
k + , f

(
k, u(k)

))
– V

(
k, u(k)

)
.
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Theorem . If there exists a positive definite scalar function V (k, u) ∈ C[N×Sρ ,R+] such
that �V()(k, u(k)) ≤ , then the trivial solution u =  of the difference equation () is stable.

Theorem . If there exists a positive definite scalar function V (k, u) ∈ C[N × Sρ ,R+]
such that �V()(k, u(k)) ≤ –α(‖u(k)‖), where α ∈ K, then the trivial solution u =  of the
difference equation () is asymptotically stable.

3 Main results
Let us reduce () into a difference equation. For t ∈ [θ, θ), () takes the following form:

x′(t) =
(
a – bx(θ)

)
x(t).

If we solve the last equation, we find x(t) = x(θ)e(a–bx(θ))(t–θ). It follows from the con-
tinuity of the solutions that x(θ) = x(θ)e(a–bx(θ))(θ–θ). For t ∈ [θ, θ), we have x(θ) =
x(θ)e(a–bx(θ))(θ–θ). Continuing the process on each interval [θk , θk+), k ≥ , in a similar
manner, it is easy to see that

x(θk+) = x(θk)e(a–bx(θk ))(θk+–θk ). ()

If we define a function h : N →R
+ given by the rule h(k) = θk , then we obtain the differ-

ence equation

u(k + ) = u(k)e(a–bu(k))(θk+–θk ), k ∈N, ()

where u = x ◦ h. It is easy to see that the difference equation () has two fixed points u = 
and u = a

b and the qualitative behavior of these solutions is equivalent to that of the fixed
points x =  and x = a

b of ().
First, we assume that the distance between the consecutive switching moments is any

constant, i.e.,
(A) there exists a positive constant θ such that θk+ – θk = θ for all k ∈N.
If the condition (A) is fulfilled, then () turns into an autonomous difference equation

of the following form:

u(k + ) = f
(
u(k)

)
= u(k)e(a–bu(k))θ , k ∈N. ()

Theorem . If a <  then the fixed point u =  of () is asymptotically stable and it is
unstable if a > . If  < aθ <  then the fixed point u = a

b of () is asymptotically stable, and
it is unstable if a <  or aθ > .

Proof For the fixed point u = , f ′() = eaθ <  if and only if a < . For the fixed point u = a
b ,

the conclusion follows from the equality f ′( a
b ) =  – aθ . It is clear that | – aθ | <  if and

only if  < aθ < . Thus, the proof is completed. �

Results of Theorem . can be seen in Figures -.
Henceforth, we assume unless otherwise stated that the distances between the succes-

sive elements of the sequence θk , k ∈ N, are not equal. Thus, the difference θk+ – θk is a
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Figure 1 u = 0 is asymptotically stable. Solutions
of (9) with a = –0.1, b = –0.2, and θi = 2i for different
initial values u0 = 0.4 (red dots), u0 = 0.3 (yellow
dots), u0 = 0.2 (blue dots), and u0 = 0.1 (green dots).

Figure 2 u = 0 is unstable. Solutions of (9) with
a = 0.1, b = 0.2, and θi = 2i for different initial values
u0 = 0.4 (red dots), u0 = 0.3 (yellow dots), u0 = 0.2
(blue dots), and u0 = 0.1 (green dots).

Figure 3 u = a
b = 0.5 is asymptotically stable.

Solutions of (9) with a = 0.1, b = 0.2, and θi = 2i for
different initial values u0 = 0.9 (red dots), u0 = 0.7
(yellow dots), u0 = 0.3 (blue dots), and u0 = 0.1
(green dots).

Figure 4 u = a
b = 0.5 is unstable. Solutions of (9)

with a = –0.1, b = –0.2, and θi = 2i for different initial
values u0 = 0.52 (red dots), u0 = 0.51 (yellow dots),
u0 = 0.49 (blue dots), and u0 = 0.48 (green dots).
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Figure 5 u = a
b = 0.5 is unstable. Solutions of (9)

with a = 1.1, b = 2.2, and θi = 2i for different initial
values u0 = 0.52 (red dots), u0 = 0.51 (yellow dots),
u0 = 0.49 (blue dots), and u0 = 0.48 (green dots).

function of k, k ∈ N. For convenience, we denote

θk+ – θk = g(k), k ∈ N,

where g is a non-constant function. Moreover, we shall use the following assumption.
(A) There exist positive constants θ and θ such that θ ≤ θk+ – θk = g(k) ≤ θ for all

k ∈N.
Since there is no restriction on the distance between the consecutive switching moments

of the argument, the reduced difference equation for () is of the nonautonomous type
given by

u(k + ) = f
(
k, u(k)

)
, k ∈N, ()

where f (k, u(k)) = u(k)e(a–bu(k))g(k).
Let u(k) be any solution of () with u() = u >  for biological reasons. From now on,

we shall investigate the stability of the fixed points u =  and u = a
b of the nonautonomous

difference equation (). We shall study the stability of the positive fixed point u = a
b by

means of Lyapunov’s second method.

Theorem . If a >  then the trivial solution u =  of the difference equation () is un-
stable.

Proof Assume that a >  and u =  of the difference equation () is stable. Choose ε = a
b

and consider a solution u(k), k ∈ N, of () with u() = u > . Then there exists a δ > 
such that  < u(k) < a

b for all k ∈ N, whenever  < u < δ. Provided that  < u < δ, the
term a – bu(k) is positive for all k ∈N. Hence, it follows that

u(k + ) = u(k)e(a–bu(k))(θk+–θk ) ≥ u(k)e(a–bu(k))θ > u(k).

Thus, we see that the sequence u(k), k ∈N, is a strictly increasing sequence bounded above
by a

b . Then we must have limk→∞ u(k) = L ≤ a
b . Letting k → ∞ in the inequality u(k +) ≥

u(k)e(a–bu(k))θ , we find a contradiction. This completes the proof. �

Theorem . If a <  then the trivial solution u =  of the difference equation () is
asymptotically stable.
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Figure 6 u = 0 is unstable. Solutions of (10) with
a = 0.1, b = 0.2, and θi = i2+2i

i+1 for different initial
values u0 = 0.4 (red dots), u0 = 0.3 (yellow dots),
u0 = 0.2 (blue dots), and u0 = 0.1 (green dots).

Figure 7 u = 0 is asymptotically stable. Solutions
of (10) with a = –0.5, b = –1, and θi = i2+2i

i+1 for
different initial values u0 = 0.4 (red dots), u0 = 0.3
(yellow dots), u0 = 0.2 (blue dots), and u0 = 0.1
(green dots).

Proof Assume that a < . Let ε >  be given. Consider a solution u(k), k ∈ N, of () with
u() = u > . Choose δ = min{ε, a

b }. For  < u < δ, we can see that u(k), k ∈N, is a strictly
decreasing sequence. Thus u(k) < u < δ ≤ ε for all k = , , . . . . This shows that u =  is
stable. For the same δ, it can be shown easily that limk→∞ u(k) = . Therefore, the trivial
solution u =  of the difference equation () is asymptotically stable. �

Simulation results of Theorem . and Theorem . are given by Figures  and .

Theorem . If a <  then u = a
b of the difference equation () is unstable.

Proof We take a <  and suppose the contrary. Let u(k), k ∈ N, denote the solution of
() with u() = u > . Then for ε = a

b , we can find a δ >  such that |u – a
b | < δ implies

|u(k) – a
b | < a

b for all k ∈ N. For a
b < u < a

b + δ, u(k), k ∈ N, is a strictly increasing se-
quence bounded above by a

b . Thus, the solution converges to a number L ∈ ( a
b , a

b ]. How-
ever, when we take the limit of the inequality u(k + ) ≥ u(k)e(a–bu(k))θ as k → ∞, it gives
the contradiction L ≤ a

b . For a
b – δ < u < a

b , u(k), k ∈ N, is a strictly decreasing sequence
bounded below by a

b . Then a
b ≤ L = limk→∞ u(k) < a

b . Letting k → ∞ in the inequality
u(k + ) ≤ u(k)e(a–bu(k))θ , we find L ≥ a

b , a contradiction. As a consequence, u = a
b of the

difference equation () is unstable. �

The result of Theorem . is illustrated in Figure .
Now, we prove the existence of bounded solutions for (), which will be needed in

Theorem ..
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Figure 8 u = a
b = 0.5 is unstable. Solutions of (10)

with a = –0.1, b = –0.2, and θi = i2+2i
i+1 for different

initial values u0 = 0.6 (red dots), u0 = 0.55 (yellow
dots), u0 = 0.45 (blue dots), and u0 = 0.4 (green dots).

Definition . A set V ⊂ R is called a positively invariant set of () if u ∈ V implies
u(k) = u(k, u) ∈ V for all k ∈N.

Lemma . If  < aθ ≤ , then the set � = {u ∈R :  < u < a
b } is positively invariant for the

difference equation ().

Proof Let  < aθ ≤  and u(k), k ∈ N, be the solution of () starting at u() = u ∈ �. As-
sume that  < u(m) < a

b for some m ∈N. We have u(m) < u(m+) = u(m)e(a–bu(m))(θm+–θm) ≤
u(m)e(a–bu(m))θ . Define H(u(m)) = u(m)e(a–bu(m))θ . Since  < aθ ≤ , we see that H(u(m)) < a

b
on the interval (, a

b ). Thus, we get u(m) < u(m + ) < a
b , which implies that u(m + ) ∈ �.

It is seen by induction that u(k) ∈ � for all k ∈N. �

Lemma . If  < aθ ≤  then the set � = {u ∈ R :  < u ≤ κ ,κ ≥ a
b } is positively invariant

for the difference equation ().

Proof Let  < aθ ≤  and u(k), k ∈N, be the solution of () starting at u() = u ∈ �. If u =
a
b ∈ � then u(k) = a

b ∈ � for all k ∈ N. If u ∈ (, a
b ) ⊂ �, then we know from Lemma .

that u(k) ∈ (, a
b ) ⊂ � for all k ∈ N. Let us consider the case a

b < u ≤ κ . Then either a
b <

u(k) ≤ u ≤ κ for all k ∈N, or  < u(m) ≤ a
b for some natural number m ≥ , which implies

that  < u(m) ≤ u(k) ≤ a
b ≤ κ for all k ≥ m. In any case, we see that the conclusion is true.

Thus, the proof is completed. �

Lemma . If aθ ≥  then the set � = {u ∈R :  < u ≤ κ ,κ ≥ 
bθ

eaθ–} is positively invariant
for the difference equation ().

Proof Let aθ ≥  and u(k), k ∈N, be the solution of () starting at u() = u ∈ �. Assume
that u(m) ∈ � for some m ∈ N. If  < u(m) ≤ a

b , then  < u(m) ≤ u(m + ) ≤ H(u(m)) =
u(m)e(a–bu(m))θ ≤ 

bθ
eaθ– ≤ κ . If a

b ≤ u(m) ≤ κ , then  < u(m + ) ≤ u(m) ≤ κ . Thus, u(k) ∈
� for all k ∈N by induction. �

If we combine the results of Lemma . and Lemma ., we can state the next result.

Corollary  If a >  then the set � = {u ∈R :  < u ≤ κ ,κ ≥ 
bθ

eaθ–} is positively invariant
for the difference equation ().

Theorem . If a > ,  < u ≤ κ , where κ > 
bθ

eaθ– and bθ
(κ – a

b ) < θ (lnκ – ln a
b ), then

the fixed point u = a
b of the difference equation () is asymptotically stable.
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Proof Let u(k), k ∈N, be the solution of () satisfying  < u ≤ κ , where κ > 
bθ

eaθ–. Then
Corollary  results in  < u(k) ≤ κ for all k ∈N. Define y = u – a

b . Note that – a
b < y ≤ κ – a

b .
It is clear that the fixed point u = a

b of () is transformed to the trivial solution y =  of
the difference equation

y(k + ) =
(

y(k) +
a
b

)
e–by(k)g(k) –

a
b

. ()

Let V (y) = [ln(y + a
b ) – ln a

b ]. We see that V is positive definite. For this function V , we
have

�V()
(
k, y(k)

)
= –bg(k)y(k) ln

y(k) + a
b

a
b

+ bg(k)y(k). ()

Since ln
y+ a

b
a
b

≤ b
a y for y > – a

b , we have for – a
b < y ≤ ,

�V()(k, y) ≤ –bθy ln
y + a

b
a
b

+ bθ
y

≤ –
b

a
θy + bθ

y

= –
b

a
(
θ – aθ

)y.

The assumption bθ
(κ – a

b ) < θ (lnκ – ln a
b ) implies that aθ

 < θ . Hence, we get
�V()(k, y) ≤ –w(y), where w(y) = b

a (θ – aθ
)y is a positive definite function. Then we

conclude that �V()(k, y) is negative definite.
For  ≤ y ≤ κ – a

b , consider the function F(y) = –bθ ln
y+ a

b
a
b

+ bθ
y. It can easily be seen

that F(y) < , y �= , whenever bθ
(κ – a

b ) < θ (lnκ – ln a
b ) and F() = . Since F(y) is negative

definite, we derive that �V()(k, y) is negative definite.
Consequently, �V()(k, y) is negative definite independent of the sign of y. Then, accord-

ing to Theorem ., the fixed point y =  of the difference equation () is asymptotically
stable. Thus, the fixed point u = a

b of the difference equation () is asymptotically stable.
�

We present the numerical simulation of the result of Theorem . in Figure .

Figure 9 u = a
b = 0.5 is asymptotically stable.

Solutions of (10) with a = 1.6, b = 3.2, and θi = i2+10i
i+11

for different initial values u0 = 0.6 (red dots) and
u0 = 0.4 (blue dots).
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4 Conclusion
We see that a differential equation with piecewise constant argument, whose distance
between the two consecutive switching moments is equal, can be reduced into an au-
tonomous difference equation. However, if we have a differential equation with general-
ized piecewise constant argument whose switching moments are ordered arbitrarily, then
it generates a nonautonomous difference equation. This fact stimulates us to study the
effects of generalized piecewise constant arguments on the stability of the fixed points of
the logistic equation. Our results show that the existence of a generalized piecewise con-
stant argument influences the behavior of the solutions. As far as we know, it is the first
time in the literature that one reduces a differential equation with piecewise constant ar-
gument of generalized type into a nonautonomous difference equation. This idea can be
used for the investigation of differential equations with piecewise constant argument of
generalized type.
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Council of Turkey (TÜBİTAK), TÜBİTAK 2209-A.

Received: 8 January 2015 Accepted: 27 May 2015

References
1. Ruan, S: Delay Differential Equations and Applications. Springer, Dordrecht (2006)
2. Hutchinson, GE: Circular causal systems in ecology. Ann. N.Y. Acad. Sci. 50, 221-246 (1948)
3. Petropoulou, EN: A discrete equivalent of the logistic equation. Adv. Differ. Equ. 2010, Article ID 457073 (2010)
4. Gopalsamy, K, Liu, P: Persistence and global stability in a population model. J. Math. Anal. Appl. 224, 59-80 (1998)
5. Berezansky, L, Braverman, E: Oscillation of a logistic difference equation with several delays. Adv. Differ. Equ. 2006,

Article ID 82143 (2006)
6. Altıntan, D: Extension of the logistic equation with piecewise constant arguments and population dynamics. MSc

thesis, Middle East Technical University (2006)
7. Muroya, Y: Persistence, contractivity and global stability in logistic equations with piecewise constant delays. J. Math.

Anal. Appl. 270, 602-635 (2002)
8. Wang, Z, Wu, J: The stability in a logistic equation with piecewise constant arguments. Differ. Equ. Dyn. Syst. 14,

179-193 (2006)
9. Cooke, KL, Wiener, J: Retarded differential equations with piecewise constant delays. J. Math. Anal. Appl. 99, 265-297

(1984)
10. Akhmet, MU: Integral manifolds of differential equations with piecewise constant argument of generalized type.

Nonlinear Anal. 66, 367-383 (2007)
11. Akhmet, MU: On the reduction principle for differential equations with piecewise constant argument of generalized

type. J. Math. Anal. Appl. 336, 646-663 (2007)
12. Akhmet, MU: Stability of differential equations with piecewise constant arguments of generalized type. Nonlinear

Anal. 68, 794-803 (2008)
13. Akhmet, MU: Asymptotic behavior of solutions of differential equations with piecewise constant arguments. Appl.

Math. Lett. 21, 951-956 (2008)
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