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Hyperglycemia enhances 
arsenic-induced platelet and megakaryocyte 
activation
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Abstract 

Objective: Low to moderate inorganic arsenic (iAs) exposure is independently associated with cardiovascular disease 
(CVD), particularly for patients with diabetes mellitus (DM). The mechanism of increased CVD risk from iAs exposure in 
DM has not been adequately characterized. We evaluated whether increasing concentrations of glucose enhance the 
effects of iAs on platelet and megakaryocyte activity, key steps in atherothrombosis.

Methods: Healthy donor whole blood was prepared in a standard fashion and incubated with sodium arsenite in a 
range from 0 to 10 µM. iAs-induced platelet activation was assessed by platelet receptor CD62P (P-selectin) expression 
and monocyte-platelet and leukocyte-platelet aggregation (MPA and LPA, respectively) in the presence of increas-
ing sodium arsenite and glucose concentrations. Megakaryocyte (Meg-01) cell adhesion and gene expression was 
assessed after incubation with or without iAs and increasing concentrations of d-glucose.

Results: Platelet activity markers increased significantly with 10 vs. 0 µM iAs (P < 0.05 for all) and with higher d-glu-
cose concentrations. Platelet activity increased significantly following co incubation of 1 and 5 µM iAs concentrations 
with hyperglycemic d-glucose (P < 0.01 for both) but not after incubation with euglycemic d-glucose. Megakaryocyte 
adhesion was more pronounced after co incubation with iAs and hyperglycemic than euglycemic d-glucose, while 
gene expression increased significantly to iAs only after co incubation with hyperglycemic d-glucose.

Conclusion: We demonstrate that glucose concentrations common in DM potentiate the effect of inorganic arsenic 
exposure on markers of platelet and megakaryocyte activity. Our results support recent observational cohort data 
that DM enhances the vasculotoxic effects of arsenic exposure, and suggest that activation of the platelet-megakar-
yocyte hemostatic axis is a pathway through which inorganic arsenic confers atherothrombotic risk, particularly for 
patients with DM.
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Background
The adverse cardiovascular and vasculotoxic effects of 
long-term exposure to high levels of inorganic arse-
nic in drinking water have been well characterized [1]. 
Recent studies have demonstrated an increased risk of 

cardiovascular disease (CVD), ischemic heart disease 
(IHD) and mortality from low-moderate drinking water 
inorganic arsenic (iAs) exposure (10–20  µg/L) common 
in the United States (U.S.), particularly for patients with 
diabetes mellitus (DM) [2]. Recent prospective cohort 
study data indicates the vasculotoxicity and cardiovas-
cular disease risk of environmental pollutants, including 
inorganic arsenic, may be greater for individuals with 
diabetes [2, 3]. However, the mechanism of this increased 
risk of environmental exposures for diabetic vasculopathy 
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has not been studied. Pathological and clinical studies 
consistently demonstrate that platelets play a key role in 
atherothrombosis [4], and have shown the importance of 
the platelet-megakaryocyte hemostatic axis for vascular 
disease and CVD events [5–7]. Patients with DM exhibit 
increased platelet activity both in vitro and in vivo, and 
heightened platelet function may contribute to excess 
macrovascular risk in patients with DM [8]. A previous 
in vitro study of iAs and atherothrombosis used very high 
concentrations of sodium arsenite and did not examine 
the effects of hyperglycemia on thrombotic risk [9]. We 
examined whether glucose concentrations common in 
DM potentiate the effects of iAs on in vitro measures of 
platelet and megakaryocyte adhesion and activity.

Methods
Subjects
Whole blood was collected from healthy donors in 
the fasting state. Subjects were not on any antiplatelet 
therapy nor did they have any history of cardiovascular 
disease, metabolic syndrome or DM. All human experi-
ments were performed in accordance with institutional 
and state guidelines. Phlebotomy was performed after 
10  min of quiet rest. Blood was collected following a 
clean, problem-free venipuncture, using a 21-gauge nee-
dle after a 5 cc discard (a tourniquet was used to obtain 
access and was removed before blood collection). Blood 
was collected into vacutainer tubes containing 3.2% 
(0.105 mol/l) sodium citrate for platelet activity measure-
ments. After collection, each tube was gently inverted 3 
times and immediately transferred to the laboratory for 
processing.

Reagents
Sodium arsenite was dissolved in dH20 for a stock con-
centration of 1000  µM then added to whole blood at a 
concentration of up to 10 µM for a total of 30 min, simi-
lar to prior studies [10, 11]. Similar procedures were per-
formed to achieve concentrations of 0.1, 1, 5 µM sodium 
arsenite. d-glucose was dissolved in dH2O for a stock 
concentration of 500 mM then added to whole blood and 
megakaryocytes at concentrations of 5, 15 or 25 mM to 
approximate euglycemia (5  mM d-glucose  ≈90  mg/dl 
blood glucose) to a range of hyperglycemia common in 
DM (15 mM ≈ 270 mg/dl, 25 mM ≈ 450 mg/dl).

Flow cytometry
To examine the effect of iAs on platelet activity, we first 
measured platelet activation by assessing platelet P-selec-
tin exposure and the presence of monocyte and lympho-
cyte platelet aggregates (MPA and LPA, respectively) in 
whole blood samples. We began with a 10 µM concentra-
tion of sodium arsenite used in prior in vitro models with 

aortic endothelial [10, 11] and vascular smooth muscle 
cell cultures [12, 13], a concentration 50–75% less than 
that used in prior studies of arsenic and thrombosis [9]. 
P-selectin expression (CD62P) is a cell surface marker 
primarily expressed by activated platelets and involved 
in platelet adhesion. To identify platelet specific P-selec-
tin, we performed flow cytometry on whole blood with 
CD42b and CD61 to constitutively expressed platelet gly-
coproteins 1b (GP1b) and IIIa (GPIIIa), respectively. Flow 
cytometric analysis was performed using the BD Accuri 
flow cytometer (C6 Flow Cytometer). Whole blood was 
incubated in the dark for 30  min at room temperature 
with APC-conjugated mouse antibody specific for CD42b 
(glycoprotein Ib) and FITC—conjugated mouse antibody 
specific for CD62P (P-selectin) (BD Biosciences) before 
the mean fluorescence intensity of P-selectin–bound 
antibody per 10,000 events was measured. P-selectin is 
a component of the alpha granule membrane of resting 
platelets that is only expressed on the platelet surface 
membrane after alpha granule secretion. In-vivo circu-
lating degranulated platelets rapidly lose their surface 
P-selectin, but continue to circulate and function [14]. 
Monocyte and leukocyte platelet aggregates provide 
complementary information on in  vivo platelet activa-
tion; are independently associated with cardiovascular 
disease events; [15, 16] and were assessed as events posi-
tive to markers CD14-APC and CD45-APC, respectively, 
in addition to platelet marker CD-61. MPAs were defined 
as events positive to both monocyte markers (CD14-APC 
[BD Biosciences]) and the platelet marker CD61-FITC 
(Dako). Monocytes were identified by their staining with 
CD14-APC and by their characteristic orthogonal light 
scatter. Monocytes with adherent platelets were iden-
tified by CD14-APC positivity. LPAs were defined as 
events positive to both leukocyte markers (CD45-APC 
[BD Biosciences]) and the same platelet marker CD61-
FITC (Dako). The leukocytes with adherent platelets 
were identified by CD45-APC positivity. Appropriate 
color compensation was determined in singly labeled 
samples and matched nonspecific antibody controls 
(Mouse IgG1 FITC [BD Biosciences]). For the co-incuba-
tion experiments, whole blood was first incubated with 
5 and 15 mM d-glucose for 30 min. We then used lower 
concentrations of sodium arsenite at 0, 0.1, 1 and 5 µM 
which were added to solution and incubated for an addi-
tional 30  min. P-selectin expression with unstimulated 
and stimulated with thrombin 0.025  IU/ml (Sigma) was 
then assessed.

Cell culture and megakaryocyte gene expression
Meg-01 cells were purchased from American Type 
Culture Collection (VA) and cultured in RPMI-1640 
medium supplemented with 10% heat-inactivated fetal 
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bovine serum (FBS), 100  U/ml penicillin, and 100  μg/
ml streptomycin (Invitrogen, CA, USA) at 37 °C in a 5% 
CO2 humidified atmosphere, consistent with prior stud-
ies [17, 18]. For adhesion assays, 18 mm glass coverslips 
(Fisher Scientific) coated with collagen (Helena Labora-
tories, Beaumont, TX, USA) were blocked with 1% BSA 
in 12-well plates [17, 18]. Meg-01 cells were stained for 
10 min with 1 µM DiOC6 (Fisher Scientific), washed and 
incubated at 2.5  105  cells/ml for 3  h with and without 
addition of iAs (0, 1, 5 and 10  µM) in presence of 5 or 
25  mM d-glucose. After the supernatant was aspirated, 
adherent cells were gently washed with FBS. For each 
well, five random fields were captured and area of cover-
age was quantified using Image J (National Institutes of 
Health, Bethesda, MD).

Nuclear transcription factor kappa B (NFκB) gene 
expression was measured because of its roles in inflam-
mation, platelet activation, and arsenic vasculopathy 
[18–20]. Other genes measured include monocyte che-
moattractant protein-1 (CCL2) and CD36 that have also 
been associated with platelet degranulation, diabetes 
and inflammation. To measure these genes, total RNA 
was isolated from Meg-01 cells using the Direct-zol 
RNA Miniprep kit (ZymoResearch, Irvine, CA, USA) 
and quantified using a Nanodrop ND-2000 spectropho-
tometer (Wilmington, DE, USA). RNA was converted 
to cDNA using the iScript cDNA synthesis kit (Bio-
Rad). Gene expression of GAPDH and NFκB1 using 
the Sso fast Evagreen Supermix (BioRad) was assessed 
with real-time PCR (iCycler Real-Time Detection Sys-
tem, Eppendorf ). The sequences of the NFκB1, CCL2 
and CD36 primers used for qRT-PCR were CAGATGG 
CCCATACCTTCAAA and TTGCAGATTTTGACC 
TGAGGG, CCCAAAGAAGCTGTGATCTTCA and 
GCAGATTCTTGGGTTGTGGA, and CTATTGGGAA 
GGTCACTGCGA and CAGGTCTCCCTTCTTTGC 
ATT, respectively.

Statistical analysis
All experimental values are represented as mean ± stand-
ard error of the mean (SEM). Differences in selected cat-
egorical variables between the respective comparison 
groups were analyzed with the χ2 test of statistical sig-
nificance. Unpaired two-tailed t tests and ANOVA were 
used to examine differences in continuous variables over-
all and at each time point under study in the different 
comparison groups. A value of P < 0.05 was considered 
statistically significant.

Results
We first examined the effect of a 10 µM iAs concentration 
used previously in endothelial and smooth muscle cell 
culture to assess the effects of inorganic arsenic exposure 

[10–13]. There was a clear increase in platelets expressing 
P-selectin by flow cytometry following incubation with 
10 µM iAs (Fig. 1a, b). Compared to 0 µM iAs, the mean 
fluorescence intensity of P-selectin expression increased 
significantly after incubation with 10  µM iAs for both 
unstimulated and thrombin-stimulated platelets (Fig. 1c, 
d). We subsequently examined the effect of iAs on mono-
cyte and leukocyte platelet aggregation (MPA and LPA, 
respectively) a different measure of platelet activity pre-
dictive of CVD events [15]. Compared to 0 µM, incuba-
tion with 10  µM iAs significantly increased both MPA 
and LPA (Fig. 1e, f ). These experiments demonstrate that 
sodium arsenite concentrations below those used in prior 
studies of platelet activation have significant effects on 
multiple measures of platelet activity [9, 21].

Consistent with prior data [8], platelet activity 
increased with increasing d-glucose concentrations 
(Fig.  2a, b). To investigate whether glucose and arsenic 
had a synergistic effect on platelet activation, we coin-
cubated euglycemic (5 mM ≈ 90 mg/dl) and hyperglyce-
mic (15  mM ≈  270  mg/dl) concentrations of d-glucose 
with lower concentrations of sodium arsenite than used 
to demonstrate platelet activation without glucose coin-
cubation. After incubation at hyperglycemic condi-
tions, exposure to 0.1, 1 and 5 µM sodium arsenite led to 
marked increases in platelet activation. In contrast, these 
sodium arsenite concentrations did not potentiate plate-
let activation at euglycemic concentrations of d-glucose 
(Fig. 2a, b).

Hyperglycemia may induce prothrombotic changes 
in megakaryocyte function and platelet thrombogenesis 
[6]. To test whether glucose and iAs also had a synergis-
tic effect on megakaryocyte adhesion, we coincubated 
megakaryocytes at euglycemic (5  mM) and hyperglyce-
mic (25 mM) concentrations of d-glucose with 0, 1, 5 and 
10 mM concentrations of sodium arsenite. Similar to the 
results observed for platelet activation, exposure to sub-
threshold sodium arsenite concentrations below 10  µM 
induced significantly greater megakaryocyte adhesion 
after incubation with a hyperglycemic compared to a 
euglycemic concentration of d-glucose (Fig. 3a, b). Prior 
studies have demonstrated megakaryocyte nuclear tran-
scription factor kappa B (NFκB) gene expression is an 
important regulator of inflammation and platelet acti-
vation [18, 19], and may also be an important transcrip-
tional factor for the vascular effects of inorganic arsenic 
exposure [20]. To verify the prothrombotic effect of iAs, 
we measured the gene expression of NFKB1 in Meg-01 
cells. monocyte chemoattractant protein-1 (CCL2) and 
CD36, genes involved in platelet activation and degran-
ulation [22, 23], were also measured [22, 23]. Following 
coincubation of hyperglycemic d-glucose with 5 and 
10 µM sodium arsenite, Meg-01 cells NFκB1 expression 



Page 4 of 8Newman et al. J Transl Med  (2017) 15:55 

increased significantly compared to coincubation with 
euglycemic d-glucose (Fig. 4). There were additional non-
significant increases in MCP-1 (CCL2) and CD36 (data 
not shown). No deleterious effects on Meg-01 cell toxic-
ity were observed within the range of concentrations of 
sodium arsenite used in this study (0–10 µM) up to con-
centrations 100-fold greater (Appendix, Fig. 5).

Discussion
There are four primary findings of this report. First, we 
show for the first time that a concentration of d-glucose 
common in DM potentiates sodium arsenite-induced 
platelet activation. Second, we demonstrate that hyper-
glycemia also potentiates the effects of sodium arsenite on 
megakaryocyte adhesion, a marker of atherothrombotic 
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risk [18]. Third, we demonstrate that lower concentra-
tions of sodium arsenite than previously studied are asso-
ciated with increased platelet activation and aggregation. 
Finally, we show that Meg01 NFκB transcription as a 
marker of megakaryocyte activation increases following 
exposure to hyperglycemia and sodium arsenite. These 
findings suggest that alterations in the platelet-megakar-
yocyte axis may be a pathway through which exposure to 
environmental toxicants such as iAs increase CVD risk, 
particularly for patients with DM.

Despite advances in effective medical therapy to reduce 
CVD events, nearly 70% of patients with DM will die 
of CVD [24]. The etiology of this excess CVD risk for 
DM patients remains unclear. The vasculotoxicity and 
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cardiovascular disease risk of environmental pollutants, 
including iAs, may be greater for individuals with dia-
betes [2, 3], and suggests that low-level environmental 
exposures may be a novel risk factor for CVD risk in DM. 
Environmental pollutants enhance inflammation and the 
generation of reactive oxygen species, steps also impor-
tant in the pathogenesis of diabetic vasculopathy [25]. 
While prior studies have indicated that environmental 
exposures increase oxidative stress and platelet activa-
tion [26, 27], to our knowledge this is the first report to 
describe a potential link between diabetic hyperglycemia 
and enhanced atherothrombotic risk to iAs exposure.

There are a number of pathways of platelet activa-
tion shared between hyperglycemia and iAs exposure. 
Hyperglycemia and diabetes is associated with plate-
let hyperreactivity, and coupled with enhanced levels 
of thromboxane, may partially explain increases in car-
diovascular disease morbidity and mortality seen among 
patients with DM [8]. High levels of drinking water inor-
ganic arsenic (500  ppb) increase platelet thromboxane 
formation and adhesion protein expression [28]. Other 
synergistic pathways between hyperglycemia and iAs 
exposure include increases in aldose reductase activ-
ity and oxidative stress signaling. During hyperglycemia 
aldose reductase activity increases significantly, lead-
ing to abnormal activation of the polyol pathway and 
enhanced oxidative and osmotic stress [8]. In turn aldose 
reductase increases thromboxane formation and platelet 
activation [8]. Inorganic arsenic has also been shown to 
increase aldose reductase activity [29]. Taken together 
enhanced aldose reductase activity and thromboxane 
generation may represent a synergistic pathway of throm-
botic risk for both hyperglycemia and inorganic arsenic 
exposure. Platelet and endothelial mitochondrial func-
tion may be another synergistic pathway of risk for iAs 
exposure in diabetes. Recent studies have indicated the 
importance of platelet mitochondrial function in cardio-
vascular disease [30], and have suggested that alterations 
in platelet mitochondrial function may increase the risk 
of diabetic atherothrombosis [31]. Inorganic arsenic has 
also been shown to alter endothelial cell mitochondrial 
function [13]. Future studies might consider the synergy 
of inorganic arsenic exposure and diabetes on mitochon-
drial function in platelets and vascular endothelium as 
novel pathways of cardiovascular disease risk.

Strengths of the current study include the use of mul-
tiple validated measures of the platelet-megakaryo-
cyte axis associated with incident CVD; use of sodium 
arsenite concentrations below those used in previous 
models of iAs-induced atherothrombosis; and an inves-
tigation of the synergy between hyperglycemia and iAs 
exposure on atherothrombotic risk. Although we used 
a lower sodium arsenite concentration than previous 

atherothrombosis studies [9, 21], we recognize the con-
centrations of sodium arsenite used may not correspond 
to current levels of iAs exposure in the U.S. Future stud-
ies should further investigate effects at very low con-
centrations corresponding to levels more prevalent in 
human populations. The discrepancy between expo-
sure levels relevant to naturally contaminated drinking 
water and in  vitro concentrations of sodium arsenite 
may reflect the lack of an accepted biomarker of inter-
nal iAs dose. Other limitations include the use of in vitro 
models and the inability to model in  vivo differences 
in hyperglycemia and insulin resistance seen in type 
1 and 2 diabetes. Further study is also needed to bet-
ter estimate internal inorganic arsenic dose relevant for 
in vitro modeling; to examine the effect of environmen-
tal exposures on the platelet-megakaryocyte axis across 
the spectrum of diabetes control; and to study the effects 
of iAs and hyperglycemia on mitochondrial function in 
platelets and other relevant systems. Treatment studies 
could consider the use of aldose-reductase inhibitors to 
attenuate platelet activation and megakaryocyte adhe-
sion [8].

Conclusion
Our findings suggest that increased platelet activation 
and megakaryocyte adhesion may be pathways through 
which hyperglycemia in DM can enhance the vascu-
lotoxicity of inorganic arsenic exposure. While intensive 
glycemic control has failed to significantly reduce macro-
vascular risk in DM, exposure to environmental toxicants 
such as inorganic arsenic may represent a novel class of 
modifiable CVD risk factors, particularly for patients 
with diabetes. Future studies should investigate platelet 
activation in patients with and without diabetes, at vary-
ing levels of glycemic control, following exposure to envi-
ronmentally relevant concentrations of inorganic arsenic 
and other environmental exposures.
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