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Abstract
This paper gives growth properties of Green-Sch potentials at infinity in a cone, which
generalizes results obtained by Qiao-Deng. The proof is based on the fact that the
estimations of Green-Sch potentials with measures are connected with a kind of
densities of the measures modified by the measures.
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1 Introduction andmain results
Let R and R+ be the set of all real numbers and the set of all positive real numbers, re-
spectively. We denote by Rn (n ≥ ) the n-dimensional Euclidean space. A point in Rn is
denoted by P = (X,xn), X = (x,x, . . . ,xn–). The Euclidean distance of two points P and
Q in Rn is denoted by |P –Q|. Also |P –O| with the origin O of Rn is simply denoted by
|P|. The boundary, the closure and the complement of a set S in Rn are denoted by ∂S, S,
and Sc, respectively. For P ∈ Rn and r > , let B(P, r) denote the open ball with center at P
and radius r in Rn.
We introduce a system of spherical coordinates (r,�), � = (θ, θ, . . . , θn–), in Rn which

are related to cartesian coordinates (x,x, . . . ,xn–,xn) by

x = r

(n–∏
j=

sin θj

)
(n≥ ), xn = r cos θ,

and if n≥ , then

xn–m+ = r

(m–∏
j=

sin θj

)
cos θm ( ≤ m ≤ n – ),

where  ≤ r < +∞, – 
π ≤ θn– < 

π , and if n≥ , then  ≤ θj ≤ π (≤ j ≤ n – ).
The unit sphere and the upper half unit sphere in Rn are denoted by Sn– and Sn–+ , re-

spectively. For simplicity, a point (,�) on Sn– and the set {�; (,�) ∈ �} for a set �,
� ⊂ Sn–, are often identified with � and �, respectively. For two sets � ⊂ R+ and
� ⊂ Sn–, the set {(r,�) ∈ Rn; r ∈ �, (,�) ∈ �} in Rn is simply denoted by � × �. In
particular, the half space R+ × Sn–+ = {(X,xn) ∈ Rn;xn > } will be denoted by Tn.
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By Cn(�), we denote the set R+ ×� in Rn with the domain� on Sn– (n≥ ).We call it a
cone. Then Tn is a special cone obtained by putting� = Sn–+ .We denote the sets I×� and
I × ∂� with an interval on R by Cn(�; I) and Sn(�; I). By Sn(�; r) we denote Cn(�) ∩ Sr .
By Sn(�) we denote Sn(�; (, +∞)), which is ∂Cn(�) – {O}.
Let Cn(�) be an arbitrary domain in Rn and Aa denote the class of nonnegative radial

potentials a(P), i.e.  ≤ a(P) = a(r), P = (r,�) ∈ Cn(�), such that a ∈ Lbloc(Cn(�)) with some
b > n/ if n ≥  and with b =  if n =  or n = .
If a ∈ Aa, then the stationary Schrödinger operator

Scha = –� + a(P)I = ,

where� is the Laplace operator and I is the identical operator, can be extended in the usual
way from the space C∞

 (Cn(�)) to an essentially self-adjoint operator on L(Cn(�)) (see [,
Ch. ]). We will denote it Scha as well. This last one has a Green-Sch function Ga

�(P,Q).
Here Ga

�(P,Q) is positive on Cn(�) and its inner normal derivative ∂Ga
�(P,Q)/∂nQ ≥ ,

where ∂/∂nQ denotes the differentiation at Q along the inward normal into Cn(�). We
denote this derivative by PIa�(P,Q), which is called the Poisson-Sch kernel with respect to
Cn(�).
We shall say that a set E ⊂ Cn(�) has a covering {rj,Rj} if there exists a sequence of balls

{Bj} with centers in Cn(�) such that E ⊂ ⋃∞
j= Bj, where rj is the radius of Bj and Rj is the

distance from the origin to the center of Bj.
For positive functions h and h, we say that h � h if h ≤ Mh for some constant

M > . If h � h and h � h, we say that h ≈ h.
Let � be a domain on Sn– with smooth boundary. Consider the Dirichlet problem

(	n + λ)ϕ =  on �,

ϕ =  on ∂�,

where 	n is the spherical part of the Laplace opera �n

�n =
n – 
r

∂

∂r
+

∂

∂r
+

	n

r
.

We denote the least positive eigenvalue of this boundary value problem by λ and the nor-
malized positive eigenfunction corresponding to λ by ϕ(�),

∫
�

ϕ(�)dS = . In order to
ensure the existence of λ and a smooth ϕ(�). We put a rather strong assumption on �: if
n≥ , then � is a C,α-domain ( < α < ) on Sn– surrounded by a finite number of mutu-
ally disjoint closed hypersurfaces (e.g. see [, pp.-] for the definition of C,α-domain).
For any (,�) ∈ �, we have (see [, pp.-])

ϕ(�) ≈ dist
(
(,�), ∂Cn(�)

)
,

which yields

δ(P) ≈ rϕ(�), (.)

where P = (r,�) ∈ Cn(�) and δ(P) = dist(P, ∂Cn(�)).
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Solutions of an ordinary differential equation

–Q′′(r) –
n – 
r

Q′(r) +
(

λ

r
+ a(r)

)
Q(r) = ,  < r < ∞. (.)

It is well known (see, for example, []) that if the potential a ∈ Aa, then (.) has a fun-
damental system of positive solutions {V ,W } such that V is nondecreasing with (see
[–])

 ≤ V (+) ≤ V (r) as r → +∞,

andW is monotonically decreasing with

+∞ =W (+) >W (r)↘  as r → +∞.

We will also consider the class Ba, consisting of the potentials a ∈ Aa such that there
exists the finite limit limr→∞ ra(r) = k ∈ [,∞), and moreover, r–|ra(r) – k| ∈ L(,∞). If
a ∈ Ba, then the (sub)superfunctions are continuous (see []).
In the rest of paper, we assume that a ∈ Ba and we shall suppress this assumption for

simplicity.
Denote

ι±k =
 – n± √

(n – ) + (k + λ)


,

then the solutions to (.) have the asymptotic (see [])

V (r) ≈ rι
+
k , W (r)≈ rι

–
k as r → ∞. (.)

We denote the Green-Sch potential with a positive measure v on Cn(�) by

Ga
�ν(P) =

∫
Cn(�)

Ga
�(P,Q)dν(Q).

Let ν be any positive measure Cn(�) such that Ga
�ν(P) �≡ +∞ (resp. G

�ν(P) �≡ +∞) for
P ∈ Cn(�). The positive measure ν ′ (rep. ν ′′) on Rn is defined by

dν ′(Q) =

{
W (t)ϕ(�)dν(Q), Q = (t,�) ∈ Cn(�; (, +∞)),
, Q ∈ Rn –Cn(�; (, +∞)).(

dν ′(Q) =

{
tι–ϕ(�)dν(Q), Q = (t,�) ∈ Cn(�; (, +∞)),
, Q ∈ Rn –Cn(�; (, +∞)).

)

Let ε > ,  ≤ α < n, and λ be any positive measure on Rn having finite total mass. For
each P = (r,�) ∈ Rn – {O}, the maximal functionM(P;λ,α) is defined by (see [])

M(P;λ,α) = sup
<ρ< r



λ
(
B(P,ρ)

)
V (ρ)W (ρ)ρα–.
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The set

{
P = (r,�) ∈ Rn – {O};M(P;λ,α)V–(r)W–(r)r–α > ε

}

is denoted by E(ε;λ,α).

Remark  If λ({P}) >  (P �= O), then M(P;λ,α) = +∞ for any positive number β . So we
can find {P ∈ Rn – {O};λ({P}) > } ⊂ E(ε;λ,α).

About the growth properties of Green potentials at infinity in a cone, Qiao-Deng (see
[, Theorem ]) has proved the following result.

Theorem A Let ν be a positive measure on Cn(�) such that G
�ν(P) �≡ +∞ for any P =

(r,�) ∈ Cn(�). Then there exists a covering {rj,Rj} of F(ε;ν ′′,α) (⊂ Cn(�)) satisfying

∞∑
j=

(
rj
Rj

)n–α

< ∞,

such that

lim
r→∞,P∈Cn(�)–F(ε;ν′′ ,α)

r–ι+ϕα–(�)G
�ν(P) = ,

where

H
(
P;ν ′′,α

)
= sup

<ρ< r


ν ′′(B(P,ρ))
ρn–α

and

F
(
ε;ν ′′,α

)
=

{
P = (r,�) ∈ Rn – {O};H(

P;ν ′′,α
)
rn–α > ε

}
.

Now we state our first result.

Theorem  Let ν be a positive measure on Cn(�) such that

Ga
�ν(P) �≡ +∞ (

P = (r,�) ∈ Cn(�)
)
. (.)

Then there exists a covering {rj,Rj} of E(ε;ν ′,α) (⊂ Cn(�)) satisfying

∞∑
j=

(
rj
Rj

)–α V (Rj)W (Rj)
V (rj)W (rj)

<∞, (.)

such that

lim
r→∞,P∈Cn(�)–E(ε;ν′ ,α)

V–(r)ϕα–(�)Ga
�ν(P) = . (.)

http://www.boundaryvalueproblems.com/content/2014/1/245
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Remark  By comparison the condition (.) is fairly briefer and easily applied.Moreover,
E(ε;ν ′, ) is a set of -finite view in the sense of [, ] (see [, Definition .] for the def-
inition of -finite view). In the case a = , Theorem  (.) is just the result of Theorem A.

Corollary  Let ν be a positive measure on Cn(�) such that (.) holds. Then for a suffi-
ciently large L and a sufficiently small ε we have

{
P ∈ Cn

(
�; (L, +∞)

)
;Ga

�ν(P) ≥ V (r)ϕ–α(�)
} ⊂ E

(
ε;μ′,α

)
.

2 Some lemmas
Lemma  (see [, ])

Ga
�(P,Q) ≈ V (t)W (r)ϕ(�)ϕ(�) (.)(
resp. Ga

�(P,Q) ≈ V (r)W (t)ϕ(�)ϕ(�)
)
, (.)

for any P = (r,�) ∈ Cn(�) and any Q = (t,�) ∈ Cn(�) satisfying  < t
r ≤ 

 (resp.  < r
t ≤ 

 );
Further, for any P = (r,�) ∈ Cn(�) and any Q = (t,�) ∈ Cn(�; (  r,


 r)), we have

G
�(P,Q)�

ϕ(�)ϕ(�)
tn–

+��(P,Q), (.)

where

��(P,Q) = min

{


|P –Q|n– ,
rtϕ(�)ϕ(�)

|P –Q|n
}
.

Lemma  Let ν be a positive measure on Cn(�) such that there is a sequence of points
Pi = (ri,�i) ∈ Cn(�), ri → +∞ (i→ +∞) satisfying Ga

�ν(Pi) < +∞ (i = , , . . . ;Q ∈ Cn(�)).
Then, for a positive number l,

∫
Cn(�;(l,+∞))

W (t)ϕ(�)dν(Q) < +∞ (.)

and

lim
R→+∞

W (R)
V (R)

∫
Cn(�;(,R))

V (t)ϕ(�)dν(Q) = . (.)

Proof Take a positive number l satisfying P = (r,�) ∈ Cn(�), r ≤ 
 l. Then from (.),

we have

V (r)ϕ(�)
∫
Sn(�;(l,+∞))

W (t)ϕ(�)dμ(Q)�
∫
Sn(�)

Ga
�(P,Q)dμ(Q) < +∞,

which gives (.). For any positive number ε, from (.), we can take a number Rε such
that

∫
Sn(�;(Rε ,+∞))

W (t)ϕ(�)dμ(Q) <
ε


.
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If we take a point Pi = (ri,�i) ∈ Cn(�), ri ≥ 
Rε , then we have from (.)

W (ri)ϕ(�i)
∫
Sn(�;(,Rε ])

V (t)ϕ(�)dμ(Q)�
∫
Sn(�)

Ga
�(P,Q)dμ(Q) < +∞.

If R (R > Rε ) is sufficiently large, then

W (R)
V (R)

∫
Sn(�;(,R))

V (t)ϕ(�)dμ(Q)

� W (R)
V (R)

∫
Sn(�;(,Rε ])

V (t)ϕ(�)dμ(Q) +
∫
Sn(�;(Rε ,R))

W (t)ϕ(�)dμ(Q)

� W (R)
V (R)

∫
Sn(�;(,Rε ])

V (t)ϕ(�)dμ(Q) +
∫
Sn(�;(Rε ,+∞))

W (t)ϕ(�)dμ(Q)

� ε,

which gives (.). �

Lemma  Let λ be any positive measure on Rn having finite total mass. Then E(ε;λ,α) has
a covering {rj,Rj} (j = , , . . .) satisfying

∞∑
j=

(
rj
Rj

)–α V (Rj)W (Rj)
V (rj)W (rj)

<∞.

Proof Set

Ej(ε;λ,β) =
{
P = (r,�) ∈ E(ε;λ,β) : j ≤ r < j+

}
(j = , , , . . .).

If P = (r,�) ∈ Ej(ε;λ,β), then there exists a positive number ρ(P) such that

(
ρ(P)
r

)–α V (r)W (R)
V (ρ(P))W (ρ(P))

≈
(

ρ(P)
r

)n–α

≤ λ(B(P,ρ(P)))
ε

.

Since Ej(ε;λ,β) can be covered by the union of a family of balls {B(Pj,i,ρj,i) : Pj,i ∈
Ek(ε;λ,β)} (ρj,i = ρ(Pj,i)). By the Vitali lemma (see []), there exists 	j ⊂ Ej(ε;λ,β),
which is at most countable, such that {B(Pj,i,ρj,i) : Pj,i ∈ 	j} are disjoint and Ej(ε;λ,β) ⊂⋃

Pj,i∈	j
B(Pj,i, ρj,i).

So

∞⋃
j=

Ej(ε;λ,β) ⊂
∞⋃
j=

⋃
Pj,i∈	j

B(Pj,i, ρj,i).

On the other hand, note that

⋃
Pj,i∈	j

B(Pj,i,ρj,i) ⊂
{
P = (r,�) : j– ≤ r < j+

}
,

http://www.boundaryvalueproblems.com/content/2014/1/245
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so that

∑
Pj,i∈	j

(
ρj,i

|Pj,i|
)–α V (|Pj,i|)W (|Pj,i|)

V (ρj,i)W (ρj,i)
≈

∑
Pj,i∈	j

(
ρj,i

|Pj,i|
)n–α

≤ n–α
∑

Pj,i∈	j

λ(B(Pj,i,ρj,i))
ε

≤ n–α

ε
λ
(
Cn

(
�;

[
j–, j+

)))
.

Hence we obtain

∞∑
j=

∑
Pj,i∈	j

(
ρj,i

|Pj,i|
)–α V (|Pj,i|)W (|Pj,i|)

V (ρj,i)W (ρj,i)
≈

∞∑
j=

∑
Pj,i∈	j

(
ρj,i

|Pj,i|
)n–α

≤
∞∑
j=

λ(Cn(�; [j–, j+)))
ε

≤ λ(Rn)
ε

.

Since E(ε;λ,β) ∩ {P = (r,�) ∈ Rn; r ≥ } = ⋃∞
j= Ej(ε;λ,β). Then E(ε;λ,β) is finally cov-

ered by a sequence of balls {B(Pj,i,ρj,i),B(P, )} (j = , , . . . ; i = , , . . .) satisfying

∑
j,i

(
ρj,i

|Pj,i|
)–α V (|Pj,i|)W (|Pj,i|)

V (ρj,i)W (ρj,i)
≈

∑
j,i

(
ρj,i

|Pj,i|
)n–α

≤ λ(Rn)
ε

+ n–α < +∞,

where B(P, ) (P = (, , . . . , ) ∈ Rn) is the ball which covers {P = (r,�) ∈ Rn; r < }. �

3 Proof of Theorem 1
For any point P = (r,�) ∈ Cn(�; (R, +∞)) –E(ε;ν ′,α), where R (≤ 

 r) is a sufficiently large
number and ε is a sufficiently small positive number.
Write

Ga
�ν(P) =Ga

�ν()(P) +Ga
�ν()(P) +Ga

�ν()(P),

where

Ga
�ν()(P) =

∫
Cn(�;(,  r])

Ga
�(P,Q)dν(Q),

Ga
�ν()(P) =

∫
Cn(�;(  r,


 r))

Ga
�(P,Q)dν(Q),

and

Ga
�ν()(P) =

∫
Cn(�;[  r,∞))

Ga
�(P,Q)dν(Q).

From (.) and (.) we obtain the following growth estimates:

Ga
�ν()(P)� εV (r)ϕ(�), (.)

Ga
�ν()(P)� εV (r)ϕ(�). (.)

http://www.boundaryvalueproblems.com/content/2014/1/245
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By (.) and (.), we have

Ga
�ν()(P)≤ Ga

�ν()(P) +Ga
�ν()(P),

where

Ga
�ν()(P) = ϕ(�)

∫
Cn(�;(  r,


 r))

V (t)dν ′(Q)

and

Ga
�ν()(P) =

∫
Cn(�;(  r,


 r))

��(P,Q)dν(Q).

Then by Lemma , we immediately get

Ga
�ν()(P)� εV (r)ϕ(�). (.)

To estimate Ga
�ν()(P), take a sufficiently small positive number c independent of P

such that

	(P) =
{
(t,�) ∈ Cn

(
�;

(


r,


r
))

;
∣∣(,�) – (,�)

∣∣ < c
}

⊂ B
(
P,

r


)
(.)

and divide Cn(�; (  r,

 r)) into two sets 	(P) and 	(P), where

	(P) = Cn

(
�;

(


r,


r
))

–	(P).

Write

Ga
�ν()(P) =Ga

�ν()(P) +Ga
�ν()(P),

where

Ga
�ν()(P) =

∫
	(P)

��(P,Q)dν(Q)

and

Ga
�ν()(P) =

∫
	(P)

��(P,Q)dν(Q).

There exists a positive c′ such that |P –Q| ≥ c′r for any Q ∈ 	(P), and hence

Ga
�ν()(P)�

∫
Cn(�;(  r,


 r))

rtϕ(�)ϕ(�)
|P –Q|n dν(Q)

� V (r)ϕ(�)
∫
Cn(�;(  r,∞))

dν ′(Q)

� εV (r)ϕ(�) (.)

from Lemma .

http://www.boundaryvalueproblems.com/content/2014/1/245
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Now we estimate Ga
�ν()(P). Set

Ii(P) =
{
Q ∈ 	(P); i–δ(P) ≤ |P –Q| < iδ(P)

}
,

where i = ,±,±, . . . .
Since P = (r,�) /∈ E(ε;ν ′,α) and hence ν ′({P}) =  from Remark , we can divide

Ga
�ν()(P) into

Ga
�ν()(P) =GA

�ν()(P) +Ga
�ν()(P),

where

GA
�ν()(P) =

–∑
i=–∞

∫
Ii(P)

��(P,Q)dν(Q)

and

Ga
�ν()(P) =

∞∑
i=

∫
Ii(P)

��(P,Q)dν(Q).

Since δ(Q) + |P –Q| ≥ δ(P), we have

tf�(�)� δ(Q)� –δ(P)

for any Q = (t,�) ∈ Ii(p) (i = –,–, . . .). Then by (.)

∫
Ii(P)

��(P,Q)dν(Q) �
∫
Ii(P)


|P –Q|n–W (t)ϕ(�)

dν ′(Q)

� r–α

W (r)
ϕ–α(�)

ν ′(B(P, iδ(P)))
{iδ(P)}n–α

� r–α

W (r)
ϕ–α(�)M

(
P;ν ′,α

)
(i = –,–, . . .).

Since P = (r,�) /∈ E(ε;ν ′,α), we obtain

Ga
�ν()(P)� εV (r)ϕ–α(�). (.)

By (.), we can take a positive integer i(P) satisfying

i(P)–δ(P) ≤ r

< i(P)δ(P)

and Ii(P) =∅ (i = i(P) + , i(P) + , . . .).
Since rf�(�)� δ(P) (P = (r,�) ∈ Cn(�)), we have

∫
Ii(P)

��(P,Q)dν ′(Q) � rϕ(�)
∫
Ii(P)

t
|P –Q|nW (t)

dν ′(Q)

� r–α

W (r)
ϕ–α(�)

ν ′(Ii(P))
{iδ(P)}n–α

(
i = , , , . . . , i(P)

)
.

http://www.boundaryvalueproblems.com/content/2014/1/245
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Since P = (r,�) /∈ E(ε;ν ′,α), we have

ν ′(Ii(P))
{iδ(P)}n–α

� ν ′(B(
P, iδ(P)

))
V

(
iδ(P)

)
W

(
iδ(P)

){
iδ(P)

}α–

�M
(
P;ν ′,α

)
≤ εV (r)W (r)rα–

(
i = , , , . . . , i(P) – 

)
and

ν ′(Ii(P))
{iδ(P)}n–α

� ν ′(	(P)
)
V

(
r


)
W

(
r


)(
r


)α–

≤ εV (r)W (r)rα–.

Hence we obtain

Ga
�ν()(P)� εV (r)ϕ–α(�). (.)

Combining (.)-(.) and (.)-(.), we finally obtain the result that if R is sufficiently
large and ε is a sufficiently small, then Ga

�ν(P) = o(V (r)ϕ–α(�)) as r → ∞, where P =
(r,�) ∈ Cn(�; (R, +∞))–E(ε;ν ′,α). Finally, there exists an additional finite ball B covering
Cn(�; (,R]), which together with Lemma , gives the conclusion of Theorem .
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