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Background
The flow and heat transfer within a thin liquid film due to the stretching surface in oth-
erwise quiescent fluid are important because of their wide applications in a number 
of industrial engineering processes. Examples may be found in the cooling of a large 
metallic plate in a cooling path, design of various heat exchangers, wire and fiber coat-
ing, manufacturing plastic films, continuous casting, crystal growing,artificial fiber, 
reactor fluidization, chemical processing equipment, a polymer sheet, polymer extru-
sion, annealing and tinning of copper wires, etc. The flow problem within a liquid film 
of Newtonian fluid on an unsteady stretching surface where the similarity transforma-
tion was used to transform the governing partial differential equations describing the 
problem to a non-linear ordinary differential equation with an unsteadiness parameter 
first are studied by Wang (1990). Many authors (Usha and Sridharan 1995; Andersson 
et al. 2000; Dandapat et al. 2003, 2007; Wang 2006; Dandapat and Maity 2006; Liu and 
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Andersson 2008; Noor and Hashim 2010; Mahmoud 2010; Ray and Mazumder 2001; 
Abel et al. 2009) investigated thin liquid film under different situations.

Many important fluids, however, such as molten plastics, polymers, etc., are non-
Newtonian in their flow characteristics. The flow of non-Newtonian fluids are finding 
increasing applications in several manufacturing processes. Flow of a thin liquid film 
of a power-law fluid caused by the unsteady stretching of a surface studied numerically 
by Andersson et al. (1996) and analytically by Wang and Pop (2006). The thin film flow 
problem with a third grade fluid on an inclined plane hase beed investigated by Sid-
diqui et al. (2008). Chen (2007) examined the effect of Marangoni convection of the flow 
and heat transfer within a power-law liquid film on unsteady stretching sheet. Siddiqui 
et al. (2007) presented the thin film flow of two non-Newtonian fluids namely, Sisko and 
an Oldroyd 6-constant fluid on a vertical moving belt. Hayat et al. (2008) presented an 
exact solution for the thin film flow problem of a third grade on an inclined plane. The 
problem of the flow and heat transfer in a thin film of power-law fluid on an unsteady 
stretching surface has been investigated by Chen (2003, 2006) where he also studied the 
effect of viscous dissipation on heat transfer in a non-Newtonian thin liquid film over 
an unsteady stretching sheet. The flow and heat transfer problem of a second grade fluid 
film over an unsteady stretching sheet has been presented by Hayat et al. (2008). Abel 
et al. (2009) investigated the effect of non-uniform heat source on MHD heat transfer in 
a liquid film over an unsteady stretching sheet. Sajid et al. (2009) presented exact solu-
tions for thin film flows of a micropolar fluid down an inclined plane on moving belt and 
down a vertical cylinder. Mahmoud and Megahed (2009) investigated the effects of vari-
able viscosity and thermal conductivity on the flow and heat transfer of an electrically 
conducting non-Newtonian power-law fluid within a thin liquid film over an unsteady 
stretching sheet in the presence of a transverse magnetic field.

Non of the above authors deals with the problem involving the thermal radiation on 
the flow and heat transfer in a liquid film on unsteady stretching surface. Thermal radia-
tion effects may play an important role in controlling heat transfer in industry where the 
desired product with a sought characteristics depends on the heat controlling factors 
to some extent. The effect of thermal radiation on the flow and heat transfer of a non-
Newtonian fluids has been studied by several authors (Aliakbar et al. 2009; Mahmoud 
2007; Raptis 1998, 1999; Siddheshwar and Mahabaleswar 2005; Hayat and Qasim 2010). 
The transfer of heat due to the missing electromagnetic waves (thermal radiation) has 
been presented by Baleanu et al. (2015). Available literature shows that the effect of ther-
mal radiation on Maxwell liquid film over an unsteady stretching sheet immersed in a 
porous medium is not being carried out. Therefore, the aim of this study is to investigate 
the influence of thermal radiation on heat transfer in an upper-convected Maxwell liquid 
film over an unsteady stretching surface embedded in a porous medium.

Formulation of the problem
Consider a laminar and incompressible unsteady flow of an upper-convected Maxwell 
fluid in a thin liquid film on a stretching surface immersed in a porous medium issuing 
from a narrow slit at the origin as shown in Fig. 1. The continuous surface aligned with 
the x axis at y = 0 moves in its own plane with a velocity us(x, t) and temperature distri-
bution Ts(x, t). A thin liquid film of uniform thickness h(t) lies on the horizontal surface.
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The basic equations for mass, momentum and energy in the thin liquid layer using the 
usual boundary layer approximations are:

where u and v are the velocity components along the x and y directions, respectively. ρ 
is the fluid density, T is the temperature of the fluid, t is the time, µ is the viscosity of the 
fluid, �1(t) = �0(1− at) is the relaxation time of period, �0 is a constant (Mukhopadhyay 
2012), k is the permeability of the porous medium, κ is the thermal conductivity, qr is the 
radiative heat flux and cp is the specific heat at constant pressure.

The appropriate boundary conditions for the present problem are:

where h is the thickness of the liquid film which has been assumed to be uniform. The 
flow is caused by stretching the elastic surface at y = 0 such that the continuous sheet 
moves in the x-direction with the velocity (Dandapat et al. 2003):

where a and b are positive constants with dimension (time)−1. Eqation (5) imposes a 
kinematic constraint of the fluid motion. Ts is the surface temperature of the stretching 
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Fig. 1 Schematic of the physical system
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sheet, which varies with the distance x along the sheet and time t in the form (Dandapat 
et al. 2003):

here T0 is the temperature at the slit and Tref  is the reference temperature, which can be 
taken either as a constant reference temperature or a constant temperature difference. In 
the present work Tref  will be taken as Tref = T0. It should be noticed that the Eqs. (7) and 
(8), on which the following analysis is based, are valid only for time t < 1

a.
The radiative heat flux qr is employed according to Rosseland approximation (Raptis 

1999) such that:

where σ ∗ is the Stefan-Boltzmann constant and k∗ is the mean absorption coefficient. 
Following, Raptis (1998), we assume that the temperature difference within the flow are 
small such that T 4 may be expressed as a linear function of the temperature. Expanding 
T 4 in a Taylor series about T0 and neglecting higher-order terms, we have:

We introduce the following dimensionless variables (Dandapat et al. 2003):

where ψ is the stream function that satisfies the continuity Eq. (1). The velocity compo-
nents are:

By using the transformation given in Eqs. (11)–(14), the governing Eqs. (2)–(3) and the 
boundary conditions (4–6) become:
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where a prime denotes differentiation with respect to η , S = a
b
 is the unsteadiness 

parameter, Pr = µcp
κ

 is the Prandtl number, R =
16σ ∗T 3

0

3k∗κ
 is the radiation parameter, 

De = �1(t)b
(1−at) is the local Deborah number, D = 1

Da is the local Darcy parameter and 

Da =
ρbk(t)
µ(1−at) is the Darcy number. For similarity solution the permeability k is taken 

in the form k(t) = (1− at). β is unknown constant, denotes the value of η at the free 
surface, which must be determined as a part of the present problem. It is noticed that 
although the dimensionless film thickness β is constant which depends only on S, the 
actual film thickness h(t) depends only on time t, then the actual film thickness β = η at 
y = h i.e.

The physical quantities of interest are the local skin-friction coefficient Cfx and the local 
Nusselt number Nux which are defined as:

where Rex = usx
ν

 is the local Reynolds number.

Results and discussion
The exact analytical solution for the system of non-linear ordinary differential Eqs. (15) 
and (16) with the boundary conditions (17)–(19) is not feasible. Therefore Eqs. (14) and 
(15) along with the boundary conditions (16)–(18) were solved numerical using the 
fourth-order Runge-Kutta integration scheme with the shooting method. In order to val-
idate of the numerical method, we have compared the values of f ′′(0), θ(β) and −θ

′

(0)(in 
the absence of De, D and R ) with those obtained by Abel et al. (2009) (in the absence of 
M and Ec) and found in good agreement as shown in Tables 1 and 2.

To study the effects of various parameters like the radiation parameter R, the Darcy 
parameter D, the Deborah number De and the Prandtl number Pr on the dimension-
less velocity f

′

(η) and the dimensionless temperature θ(η), numerical calculations 
have been carried out for different values of R, D, De and Pr as shown in Figs. 2, 3, 4, 

(17)f = 0, f
′

= 1, θ = 1 at η = 0,

(18)f
′′

= 0, θ
′

= 0 at η = β ,

(19)f =
1

2
Sβ at η = β ,

(20)h(t) = β

(

b

ν

)
−1
2

(1− at)
1
2 .

(21)Cfx = −

2µ

(

∂u
∂y

)

y=0

ρu2s
= −2Re

−1
2
x f

′′

(0),

(22)Nux = −

x
(

∂T
∂y

)

y=0

(Ts − T0)
= −Re

1
2
x θ

′

(0),



Page 6 of 14Waheed  SpringerPlus  (2016) 5:1061 

5, 6 and 7. Also, the variation of the local skin-friction coefficient and the local Nusselt 
number with the change in the parameters R, D, De and Pr are illustrated in Table  3. 
Figure  2 demonstrates the effect of the Darcy parameter D on the horizontal velocity 
profiles for different values of S. It is revealed that the transverse velocity decreases as 
the Darcy parameter increases. Also, it is noticed that the film thickness β decreases as 
the unsteadiness parameter S increases. The dimensionless temperature profiles θ(η) are 
depicted in Fig. 3 for various values of D. It is observed that the temperature at a point 
increases with increase in D. This is due to the fact that the porous medium produces 
a resistive type of force which causes a reduction in the fluid velocity and enhancing 
the temperature. The effect of the radiation parameter on the dimensionless temperature 
θ(η) is displayed in Fig. 4. It is seen that the increase of the radiation parameter leads to 
an increase in the temperature at any point. This is because the increase in the radia-
tion parameter implies higher surface heat flux and thereby increasing the temperature 
of the fluid. The influence of the Deborah number on the transverse velocity f ′(η) is 
shown in Fig. 5. It is shown that at any point f ′(η) decreases as De increases. Also, it is 

Table 1 Comparison of β and −f
′′

(0) with De = D = 0

S Abel et al. (2009) Present result

β −f
′′

(0) β −f
′′

(0)

0.4 4.981455 1.134098 4.981455 1.134096

0.6 3.131710 1.195128 3.131711 1.195125

0.8 2.151990 1.245805 2.151992 1.245805

1.0 1.543617 1.277769 1.543616 1.277769

1.2 1.127780 1.279171 1.127781 1.279171

1.4 0.821033 1.233545 0.821032 1.233545

1.6 0.576176 1.114941 0.576175 1.114939

1.8 0.356390 0.867416 0.356389 0.867416

Table 2 Comparison of θ(β) and −θ
′

(0) with De = D = R = 0

Pr S β Abel et al. (2009) Present result

θ(β) −θ
′

(0) θ(β) −θ
′

(0)

0.01 0.8 2.151990 0.960438 0.042120 0.960480 0.042042

0.1 0.8 2.151990 0.692269 0.351920 0.692533 0.351377

1.0 0.8 2.151990 0.097825 1.671919 0.097884 1.671003

2.0 0.8 2.151990 0.024869 2.443914 0.024862 2.443866

3.0 0.8 2.151990 0.008324 3.034915 0.008311 3.036115

0.01 1.2 1.127780 0.982312 0.033515 0.982331 0.033459

0.1 1.2 1.127780 0.843485 0.305409 0.843622 0.304963

1.0 1.2 1.127780 2.86634 1.773772 2.86718 1.773030

2.0 1.2 1.127780 0.128174 2.638431 0.128123 2.638725

3.0 1.2 1.127780 0.067737 3.280329 0.067645 3.281949
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seen that the transverse velocity decreases with η and the film thickness decreases with 
increasing De. Figure 6 demonstrates that at any point the dimensionless temperature 
θ(η) increases with the increasing of the Deborah number De. Also, it is noticed that 
the dimensionless temperature decreases with η. The variation of the dimensionless tem-
perature against η for various values of the Prandtl number are displayed in Fig. 7. It is 
found that the temperature decreases with η until its value at the free surface. It is also, 
observed that the temperature decreases with the increase of the Prandtl number. This is 
due to the fact that a fluid with larger Prandtl number possesses larger heat capacity, and 
hence augments the heat transfer.

The numerical values of the local skin-friction and the local Nusselt number in terms 
of −θ

′

(0) for various values of the Darcy parameter D, the radiation parameter R, the 
Deborah number De and the Prandtl number Pr for both cases S = 0.8 and S = 1.2 are 
tabulated in Table 3. It can be seen that the local skin-friction coefficient increased by 
increasing D or De, whereas the local Nusselt number decreases with the increasing 
the Darcy parameter and the Deborah number. Also, it is noticed that the local Nusselt 

Table 3 Values of −f
′′

(0) and −θ
′

(0) for various values of D, R, De, S and Pr

D R De Pr S −f
′′

(0) θ(β) −θ
′

(0)

0.0 1 0.2 5 0.8 1.2827 0.0187 2.7469

0.5 1 0.2 5 0.8 1.4606 0.0378 2.7177

1 1 0.2 5 0.8 1.6187 0.0600 2.6910

0.0 1 0.2 5 1.2 1.3056 0.1023 2.9708

0.5 1 0.2 5 1.2 1.4548 0.1427 2.9404

1 1 0.2 5 1.2 1.5901 0.1813 2.9087

0.5 0 0.2 5 0.8 1.4606 0.0059 3.9397

0.5 1 0.2 5 0.8 1.4606 0.0378 2.7177

0.5 2 0.2 5 0.8 1.4606 0.0826 2.1753

0.5 5 0.2 5 0.8 1.4606 0.2187 1.4581

0.5 0 0.2 5 1.2 1.4548 0.0458 4.2638

0.5 1 0.2 5 1.2 1.4548 0.1426 2.9404

0.5 2 0.2 5 1.2 1.4548 0.2323 2.3364

0.5 5 0.2 5 1.2 1.4548 0.4247 1.5150

0.5 1 0.0 5 0.8 1.4280 0.0316 2.7249

0.5 1 0.2 5 0.8 1.4606 0.0378 2.7177

0.5 1 0.5 5 0.8 1.5088 0.0479 2.7067

0.5 1 0.0 5 1.2 1.4311 0.1322 2.9478

0.5 1 0.2 5 1.2 1.4548 0.1426 2.9404

0.5 1 0.5 5 1.2 1.4904 0.1584 2.9286

0.5 1 0.2 3 0.8 1.4606 0.0984 2.0508

0.5 1 0.2 5 0.8 1.4606 0.0378 2.7177

0.5 1 0.2 10 0.8 1.4606 0.0059 3.9397

0.5 1 0.2 3 1.2 1.4548 0.2591 2.1955

0.5 1 0.2 5 1.2 1.4548 0.1427 2.9404

0.5 1 0.2 10 1.2 1.4548 0.0458 4.2638
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number decreases as the radiation parameter increases and increases with the increase 
of the Prandtl number. However it is found that the local Nusselt number decreases as 
S increases whereas the local skin-friction coefficient decreases with the unsteadiness 
parameter. Moreover, it is observed that the free surface temperature θ(β) increases by 
increasing D, R, S and De whereas it decreased with increasing the Prandtl number.

Fig. 2 a Velocity profiles for various values of D. b Velocity profiles for various values of D
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Conclusions
A theoretical analysis is performed to study thermal radiation effects on flow and heat 
transfer in an upper convected Maxwell liquid film on an unsteady stretching sheet 
embedded in a porous medium. The governing equations are transformed to a system of 
non-linear ordinary differential equations which is solved numerically using the fourth 
order Runge-Kutta scheme with the shooting technique. The main conclusions which 
have been found from the present study are:

b

Fig. 3 a Temperature profiles for various values of D. b Temperature profiles for various values of D
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1. The velocity and the film thickness decreases with increasing the Darcy parameter 
and the Deborah number.

2. Increasing values of the Darcy parameter, radiation parameter and Deborah number 
leads to an increase in the temperature.

3. The temperature decreases with increasing the Prandtl number.

Fig. 4 a Temperature profiles for various values of R. b Temperature profiles for various values of R
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4. The Darcy parameter and the Deborah number have the effect of enhancing the local 
skin-friction coefficient.

5. The local Nusselt number decreases by increasing the radiation parameter, the Darcy 
parameter and the Deborah number and increases with increasing the Prandtl num-
ber.

Fig. 5 a Velocity profiles for various values of De. b Velocity profiles for various values of De
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6. The free surface temperature decreases as the Darcy parameter, the radiation param-
eter and the Deborah number increase while it decreases as the Prandtl number 
increases.

Fig. 6 a Temperature profiles for various values of De. b Temperature profiles for various values of De
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