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Background
Discriminant analysis (DA) as a topic in Multivariate Statistical Analysis has attracted 
much research interest over the years, with the evaluation of discriminant functions 
when the covariances matrices are unequal with moderate sizes being well explained 
by Wahl and Kronmal (1977). Linear discriminant function (LDF) is commonly used by 
researchers because of its simplicity of form and concept. In spite of theoretical evidence 
supporting the use of the Quadratic Discriminant Function (QDF) when the covariance 
matrices are heterogeneous, its actual employment has been sporadic because there are 
unanswered questions regarding its performance in the practical situation where the dis-
criminant function must be constructed using training samples that do not satisfy the 
classical assumption of the model. The pioneering work on quadratic discrimination was 
by Smith (1947) using Fisher’s Iris data. He provided a full expression for the QDF and 
his results showed the QDF outperforming the LDF when the homogeneity of variance 
covariance structure was violated.

Marks and Dunn (1974) approached the problem of discrimination by comparing the 
asymptotic and small sample performance of the QDF, best linear and Fisher’s LDF for 
both proportional and non-proportional covariance differences under the assumption 
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of normality and unequal covariance matrices. Two populations were used and sample 
sizes were chosen from 10 to 100. The number of variables selected were 2 and 10. They 
employed the application of Monte Carlo simulation. Their results indicated that for 
small samples the QDF performed worse than the LDF when covariances were nearly 
equal with large dimensions (ie LDF was satisfactory when the covariance matrices were 
not too different).

Lawoko (1988) studied the performance of the LDF and QDF under the assumption 
of correlated training samples. The researcher aimed at allocating an object to one of 
two groups on the basis of measurements on the object. He found that the discriminant 
functions formed under the model did not perform better than W and Z formed under 
the assumption of independent training observation. Asymptotic expected error rate for 
W under the model (Wm) and W were equal when the training observations followed an 
autoregressive process but there was a slight improvement in the overall error rate when 
Wm was used instead of W for numerical evaluations of the asymptotic expansions. He 
concluded that the efficiency of the discriminant analysis estimator is generally lowered 
by positively correlated training observations. Mardia et al. (1995) reported that it might 
be thought that a linear combination of two variables would provide a better discrimina-
tor if they were correlated than when they were uncorrelated. However, this is not neces-
sarily so. To show this they considered two bivariate populations π1 and π2. Supposing 
π1 is N2(0,�) and π2 is N2(µ,�) where µ = (µ1,µ2)

′ and with known �. They indicated 
that discrimination is improved unless ρ lies between zero and 2f /(1+ f 2) but a small 
value of ρ can actually harm discrimination.

Adebanji and Nokoe (2004) have considered evaluating the quadratic classifier. They 
restricted their attention to two multivariate normal populations of independent vari-
ables. In addition to some theoretical result, with known parameters, they conducted 
a Monte Carlo simulation in order to investigate the error rates. Results indicated that 
the total error rate computed showed that there was an increase in the error rate with 
re-substitution estimator for all K values. On the other hand, there was a decline across 
K. The cross-validation estimator showed a steady decline for and across all values K and 
the recorded value showed a substantially low error rate estimates than re-substitution 
estimator for K = 4 and K = 8.

Kakaï and Pelz (2010) studied the asymptotic error rates of linear, quadratic rules and 
conducted a Monte Carlo study in 2, 3 and 5-group discriminant analysis. Hyodo and 
Kubokawa (2014) studied a variable selection criterion for linear discriminant rule and 
its optimality in high dimensional data where a new variable procedure was developed 
for selecting the true variable set.

An enormous deal of study has been made since Fisher’s (1936) original work on dis-
criminant analysis as well as several other researchers tackling similar problem. Some 
estimation methods have been proposed and some sampling properties derived. How-
ever, there is little investigation done on large sample properties of these functions. Also 
a considerable number of studies had been carried out on discriminant analysis but not 
much is done on the effect or the performance of the QDF under correlated and uncor-
related data with varying sample size ratios, different variable selections and with differ-
ent centroid separators for three populations.
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In this study we therefore investigate the performance of classification functions (i.e 
Quadratic Discriminant Functions) when the covariance matrices are heterogeneous 
with the data of interest being correlated, sample size ratios being unequal, considering 
different number of variables and varying values of group centroid separator (δ).

Methods
Simulation design

To evaluate the performance of QDF for correlated and uncorrelated training samples of 
distributions, we considered a Monte Carlo study with multivariate normally correlated 
random data generated for three populations with their mean vector µ1 = (0, . . . , 0) , 
µ2 = (0, . . . , δ) and µ3 = (0, . . . , 2δ) respectively. The covariance matrices, �i (i = 1, 2, 3).  
Where k �= l, σkl = 0.7 for all groups except the diagonal entries given as σ 2

k = i, for 
i = 1, 2, 3. The covariance matrices were transformed to be uncorrelated to generate the 
uncorrelated data. The QDF was then performed in each case and the leave-one-out 
method was used to estimate the proportion of observations misclassified.

Factors considered in this study were:

1. Mean vector separator which is set at δ from 1 to 5 where δ is determined by the dif-
ference between the mean vectors.

2. Sample sizes which are also specified. Here 14 values of n1 set at 30, 60, 100, 150, 
200, 250, 300, 400, 500, 600, 700, 800, 1000, 2000 and the sample size of n2 and n3 are 
determined by the sample ratios at 1:1:1, 1:2:2 and 1:2:3 and these ratios also deter-
mine the prior probabilities to be considered.

3. The number of variables for this study is also specified. The number of variables are 
set at 4, 6 and 8 following Murray (1977) who considered this in selection of variables 
in discriminant analysis.

4. The size of population 1 (n1) is fixed throughout the study and the sizes of population 
2 and population 3, n2 and n3 respectively are determined by the sample size ratio 
under consideration.

Subroutine for QDF

Series of subroutines were written in MatLab to perform the simulation and discrimina-
tion procedures on QDF. Below are the important ones.

Classification into several populations

Generalization of classification procedure for more than two discriminating groups (ie 
from 2 to g ≥ 2) is straight forward. However, not much is known about the properties 
corresponding sample classification function, and in particular, their error rates have not 
been fully investigated. Therefore, we focus only on the Minimum ECM classification 
with equal misclassification cost and Minimum TPM for multivariate normal population 
with unequal covariance matrices (quadratic discriminant analysis).

Minimum ECM classification with equal misclassification cost

Allocate x0 to �k if

(1)pk fk(x) > pifi(x) for all i �= k
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or, equivalently, Allocate x0 to �k if

Note that the classification rule in Eq. (1) is identical to the one that maximizes the pos-
terior probability P(�i|x) = P(x comes from �i given that x is observed) where

Therefore, one should keep in mind that in general minimum ECM rule must have 
the prior probability, misclassification cost and density function before it can be 
implemented.

Minimum TPM rule for unequal‑covariance normal populations

Suppose that the �i are multivariate normal populations, with different mean vectors 
µ and covariance matrices �i (i = 1, . . . , g). An important special case occurs when the

with c(i | i) = 0, c(k | i) = 1, k �= i then

The constant (p/2) ln(2π) can be ignored in Eq. (4), since it is the same for all popula-
tion. Therefore, quadratic discriminant score for ith population is defined as

The quadratic score dQi (x) is composed of contributions from the generalized variance 
|�i|, the prior probability pi, and the square of the distance from x to the population 
mean µi.

Allocate x to �k if the quadratic score

In practice, the µi and �i are unknown, but a training set of correctly classified obser-
vations if often available for the construction of estimates. The relevant sample quanti-
ties for population �i are the sample mean vector, x̄i, sample covariance matrix, Si and 
sample size, ni. The estimate of the quadratic discriminant score (6) is then

(2)ln pk fk(x) > ln pifi(x) for all i �= k

(3)P(�i|x) =
pk fk(x)

∑g
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The quadratic classifier (�1 �= �2)

Suppose that the joint densities of X ′ = [X1,X2, . . . ,Xp] for population�1 and �2 are 
given by

The covariance matrices as well as the mean vectors are different from one another for 
the two populations. The regions of minimum expected cost misclassification (ECM) 
and minimum total probability of misclassification (TPM) depends on the ratio of 
the densities, (f1(x))/(f2(x), or equivalently, the natural logarithm of the density ratio, 
ln[(f1(x)/(f2(x)] = ln[f1(x)] − ln[f2(x)] when the multivariate normal densities have dif-
ferent covariance structures, the terms in the density ratio involving 

∣

∣

∣
�

1/2
i

∣

∣

∣
 do not can-

cel as they do when we have equal covariance matrices and also the quadratic forms in 
the exponents of fi(x) do not combine. Therefore substituting multivariate normal den-
sities with different covariance matrices into Eq. (1) and after taking the natural loga-
rithms and simplifying, the likelihood of the density ratios gives the quadratic function 
in x ∈ �1 if

where

otherwise, x ∈ �1.
This function is easily extended to the 3 group classification where 2 cut off points are 

required for assigning observations to the 3 groups (Johnson and Wichern 2007).

Results
This section presents the performance of QDF when the training data are correlated and 
then when they are uncorrelated.

Effects of sample size on QDF under correlated and uncorrelated normal distribution

Evaluating the effect of sample size on QDF with respect to the correlated normal dis-
tribution for δ = 1 is present in Fig. 1. From Fig. 1 it was observed that the average error 
rate for 4, 6 and 8 variables with δ = 1 were higher as compared to the other values of 
the δ and among the sample size ratios used, sample size ratio 1:1:1 gives the lowest 
average error rates as the sample size increases asymptotically. Results also show that 
n1 = 30 gave highest average error rates and lower average error rate are for n1 = 2000 
for variables 4, 6 and 8. There is a rapid decrease in the average error rate from total 
sample size of 90–180 of sample size ratio (1:1:1) of 8 variables for all δ. The results of 4 
variables were higher than the other number of variables. δ = 5 gave the lowest average 
error rates as the sample size increases. It was also observed that the average error rates 
of sample size ratio 1:1:1 and 1:2:2 were marginal for δ = 1. The difference between the 
ratios decreased as δ increased and with maintained total sample size and the average 
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error rates decreased as the number of variables increased. In δ = 5 the performance of 
the three sample size ratios were marginal.

From Table 1, the effects of the sample size on the QDF for the various group centroids 
(δ = 1, 2, 3, 4, 5) for the correlated samples gave an indication that, generally as the sam-
ple size increases with increasing group centroids, the mean error rates decreases mar-
ginally in that order. The standard deviation of the error rate for the correlated normal 
distribution reveals that as the sample size increases, standard deviation of the error rate 
for sample size ratio 1:1:1 exhibit low standard deviations for δ = 1. For a particular δ, 
the standard deviation decreases as the number of variables also increases. From δ = 2 
to δ = 5, the standard deviations decreases as the sample size increases asymptotically. 
There is a sharp decrease of the standard deviation of sample size ratio 1:1:1.

For the uncorrelated distribution from Table 2 the average error rate was similar to the 
results obtained in the correlated normal distribution with the exception of the average 
error rate of sample size ratio 1:1:1 which decreased rapidly from total sample size of 
90–180 for 8 variables in all δs. The average error rate decreased as the total sample size 
increased asymptotically. And it reduced when δ also increased. The graphical represen-
tation of this result for δ = 1 is shown in Fig. 2.

The coefficients of variation generally increased exponentially and stabilized with 
increasing total sample size and number of variables in δ = 1 exhibited lower variations 
as compared with the remaining δs as shown in Fig. 3. For δ = 4, the coefficients of vari-
ation in sample size ratio 1:1:1 decreased while the remaining ratios did not give any 
particular pattern for the 4 variable situation. For 4 variable situation with δ = 5, the 
coefficients of variation decreased as the total sample size increased. The coefficient of 
variation of the other 6 and 8 variables situations did not show any particular pattern as 
the total sample size increased.

The coefficients of variation in correlated normal distribution in Fig. 2 increased expo-
nentially and then stabilized with averagely lower variations in sample size ratio 1:2:2 
and with higher variations in sample size ratio 1:2:3 as the total sample size increases 
asymptotically. The variations also increased as δ increased. δ = 3 gives a steady coef-
ficients of variation as the total sample size increased for variable 4 while it gave a little 
increase and then stabilized in variables 4 and 6. There was a decline in the coefficients 

Fig. 1 Average error rates of correlated normal distribution for δ: n1:n2:n3 = 1:1:1
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Table 1 Effects of  sample size on  QDF for  correlated normal based on  error rates, CV 
and SD

Centroid Sample size (n) SD CV Mean error rate

δ = 1 90 0.0530 0.04276 0.1240

180 0.0536 0.04656 0.1151

300 0.0543 0.04853 0.1120

450 0.0547 0.04903 0.1116

750 0.0534 0.04908 0.1089

900 0.0526 0.04857 0.1082

1200 0.0524 0.04868 0.1077

1500 0.0529 0.04893 0.1081

1800 0.0526 0.04881 0.1077

2100 0.0531 0.04913 0.1080

6000 0.0524 0.04898 0.1069

δ = 2 90 0.0447 0.05084 0.0880

180 0.0402 0.05215 0.0771

300 0.0384 0.05224 0.0735

450 0.0394 0.05439 0.0724

750 0.0370 0.05172 0.0715

900 0.0370 0.05217 0.0710

1200 0.0369 0.05249 0.0703

1500 0.0367 0.05191 0.0707

1800 0.0372 0.05265 0.0706

2100 0.0367 0.05222 0.0702

6000 0.0365 0.05234 0.0698

δ = 3 90 0.0300 0.6047 0.0479

180 0.0264 0.5983 0.0442

300 0.0245 0.5940 0.0412

450 0.0239 0.5907 0.0495

750 0.0232 0.5780 0.0401

900 0.0230 0.5763 0.0400

1200 0.0226 0.5708 0.0396

1500 0.0225 0.5727 0.0393

1800 0.0223 0.5682 0.0393

2100 0.0226 0.5728 0.0395

6000 0.0224 0.5698 0.0393

δ = 4 90 0.0200 0.7509 0.0266

180 0.0159 0.7195 0.0221

300 0.0144 0.6727 0.0215

450 0.0139 0.6732 0.0207

750 0.0135 0.6574 0.0205

900 0.0131 0.6455 0.0203

1200 0.0124 0.6286 0.0198

1500 0.0126 0.6353 0.0199

1800 0.0128 0.6301 0.0203

2100 0.0128 0.6382 0.0201

6000 0.0125 0.6284 0.0200

δ = 5 90 0.0123 0.9798 0.0126

180 0.0094 0.8717 0.0108

300 0.0084 0.8252 0.0102

450 0.0078 0.7838 0.0100
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of variation for δ = 4 as the total sample size increased asymptotically in variable 4. 
The coefficients of variation increased from total sample size 150 to 500 and from 180 
to 360 for sample size ratios 1:2:2 and 1:2:3 respectively for variables 6 and 8 and then 
decreased as the total sample size increased asymptotically. From Fig. 4, for δ = 1, there 
was a sharp decrease in the coefficients of variation in sample size ratio 1:1:1 for all num-
ber of variables as the total sample size increased.

Effect of number of variables on QDF (under correlated and uncorrelated normal 

distribution)

The effect of number of variables on the QDF under the correlated and uncorrelated 
normal distribution are discussed under this subsection.

The graphs of the results for sample size ratio 1:1:1 of the situations of 4, 6 and 8 vari-
ables are shown in Fig. 5. It was observed that as the number of variables increased, the 
average error rate reduced in the correlated normal distribution. The rate at which it 
reduces in δ = 1 for ratio 1:1:1 is better than that of the other δs. For increasing sample 
size ratio, as the number of variables increased, the decrease in the average error was 
marginal as δ increased.

The coefficients of variation in this distribution for ratio 1:1:1 in Fig. 6 reveals that as 
the number of variables increased the coefficients of variation increased for variables 4, 
6 and 8 from δ = 1 to 3 except δ = 4 and 5 in which it reduced. Yet the in the case of 8 
variables the variabilities exhibited were higher than the rest in this case. For ratio 1:2:2 
the coefficients of variation increased from total sample size of 150–2000 and stabilized 
for all δs as the number of variables increased except δ = 4 which showed a decline in 
the coefficients of variation for the case of 4 and 6 variables. In δ = 5, there was declina-
tion in the coefficients of variation as the number of variables increased. Sample size 
ratio 1:2:3 gave similar result as ratio 1:2:2

From Fig. 7, there was a sharp decline in the average error rate from total sample size 
90–180 as the number of variables increase for all δs. It also revealed that as the number 
of variables increased the average error rate reduced for all sample size ratios.

The coefficients of variation shown in Fig. 8 indicates that the variabilities increased 
exponentially for all δs with the exception of δ = 4 and 5 for which variable 4 declined. In 
the case of 8 variables, about 9.65 and 11.91 % increase in variations from total sample 
size of 90–180 for all δ = 1 and 2. For δ = 4 and 5, the coefficients of variation for vari-
ables 4 declined from total sample size of 90–6000 while variables 6 and 8 increased. For 
δ = 5, the coefficients of variations for 8 variables increased from 90 to 750 and declined 

Table 1 continued

Centroid Sample size (n) SD CV Mean error rate

750 0.0071 0.7489 0.0095

900 0.0069 0.7399 0.0093

1200 0.0070 0.7158 0.0098

1500 0.0066 0.7058 0.0093

1800 0.0066 0.7016 0.0093

2100 0.0065 0.7002 0.0093

6000 0.0064 0.6843 0.0094
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Table 2 Effects of  sample size on  QDF for  uncorrelated normal based on  error rates, CV 
and SD

Centroid Sample size (n) SD CV Mean error rate

δ = 1 90 0.0681 0.3483 0.1955

180 0.0641 0.3920 0.1636

300 0.0603 0.3965 0.1522

450 0.0603 0.4092 0.1473

750 0.0575 0.4059 0.1417

900 0.0573 0.4065 0.1409

1200 0.1387 0.4096 0.1387

1500 0.0571 0.4114 0.1388

1800 0.0567 0.4123 0.1374

2100 0.0567 0.4129 0.1374

6000 0.0559 0.4116 0.1359

δ = 2 90 0.0524 0.3968 0.1321

180 0.0469 0.4222 0.1111

300 0.0421 0.4062 0.1037

450 0.0424 0.4251 0.0997

750 0.0409 0.4218 0.0970

900 0.0415 0.4313 0.0962

1200 0.0402 0.4209 0.0955

1500 0.0398 0.4219 0.0944

1800 0.0400 0.4230 0.0946

2100 0.0399 0.4239 0.0940

6000 0.0394 0.4223 0.0934

δ = 3 90 0.0345 0.4200 0.0823

180 0.0296 0.4341 0.0683

300 0.0277 0.4417 0.0028

450 0.0263 0.4395 0.0599

750 0.0256 0.4372 0.0586

900 0.0257 0.4385 0.0586

1200 0.0255 0.4393 0.0581

1500 0.0253 0.4386 0.0578

1800 0.0248 0.4330 0.0573

2100 0.0250 0.4361 0.0574

6000 0.0249 0.4380 0.0568

δ = 4 90 0.0236 0.4866 0.0486

180 0.0189 0.4991 0.0379

300 0.0173 0.4889 0.0354

450 0.0160 0.4802 0.0334

750 0.0158 0.4815 0.0327

900 0.0153 0.4744 0.0323

1200 0.0151 0.4725 0.0319

1500 0.0151 0.4728 0.0318

1800 0.0147 0.4660 0.0315

2100 0.0147 0.4663 0.0315

6000 0.0146 0.4656 0.0313

δ = 5 90 0.0156 0.5989 0.0260

180 0.0121 0.5892 0.0205

300 0.0098 0.5613 0.0174

450 0.0093 0.5367 0.0173
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to 6000. The coefficients of variation in general for this distribution increased as the 
number of variables increased.

Effect of group centroid separator on QDF under correlated and uncorrelated normal 

distribution

This section presents the results of our investigation on the effect of the Mahalanobis 
distance on QDF for correlated normal distribution. Considering the correlated normal 
distribution in Fig. 9, it was observed that with increasing total sample size, the aver-
age error rate reduces as the δ increased and also reduced as the number of variables 

Table 2 continued

Centroid Sample size (n) SD CV Mean error rate

750 0.0090 0.5507 0.0163

900 0.0085 0.5262 0.0161

1200 0.0085 0.5260 0.0162

1500 0.0085 0.5272 0.0161

1800 0.0083 0.5182 0.0160

2100 0.0083 0.5221 0.0159

6000 0.0081 0.5109 0.0158

Fig. 2 Average error rates of uncorrelated normal distribution: δ = 1

Fig. 3 Coefficients of variation for uncorrelated normal distribution: δ = 1
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increased. It can be observed that there was about 2.37 % drop in the average error rate 
from total sample size 90–180 for all δ = 1s in the case of 8 variables. The average error 
rate reduced as the total sample size increased for all sample size ratios with increasing δ.

The coefficients of variation of sample size ratio 1:1:1 with increasing total sample 
size in Fig.  10, uniform behaviour of δ was not portrayed. As coefficients of variation 

Fig. 4 Coefficients of variation for correlated normal distribution: δ = 1

Fig. 5 Average error rate for correlated normal distribution: n1:n2:n3 = 1:1:1

Fig. 6 Coefficient of variation of correlated normal distribution: n1:n2:n3 = 1:1:1
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for δ = 5 and 4 were declining, that of the rest of the δs may be increasing or reducing 
depending on the particular sample size ratio. Therefore, with increasing δ, δ = 5 gives 
higher coefficients of variation.

From Fig. 11, we observed that the average error rates of the individual δs reduce as the 
sample size increases. There was about 3.19, 5.09, 6.81 % drop of the average error rate 

Fig. 7 Average error rates of uncorrelated normal distribution: n1:n2:n3 = 1:1:1

Fig. 8 Coefficients of variation for uncorrelated normal distribution: n1:n2:n3 = 1:1:1

Fig. 9 Average error rates of correlated normal distribution for δ: n1:n2:n3 = 1:1:1
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for δ = 1, variables 4, 6 and 8 respectively. The average error rates of δ = 2 for variables 
4–6 exhibited about 2.00, 3.99, 6.65 % drop in the average error rates. In general, the 
average error rates decreased as δ increased irrespective of the number of variables and 
sample size ratios. The coefficient of variation of this distribution of sample size ratio 
1 : 1 : 1 in Fig. 12 did not show any uniform pattern in the variabilities as δ increased but 
in general as δ increased, the variabilities also increased.

Fig. 10 Coefficients of variation for correlated normal distribution: n1:n2:n3 = 1:1:1

Fig. 11 Average error rates of uncorrelated normal distribution for δ: n1:n2:n3 = 1:1:1

Fig. 12 Coefficients of variation for uncorrelated normal distribution: n1:n2:n3 = 1:1:1
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Conclusion
The study focussed on the asymptotic performance of the QDF under correlated 
and uncorrelated normally distributed training samples. Under this distribution, the 
performance of the QDF under varying sampling ratios, selected number of vari-
ables and different group centroid separators were extensively studied. The QDF 
recorded minimum misclassification error rates and high variability as the sample 
size increased asymptotically under correlated normal distribution, thereby increas-
ing the accuracy of classification of observations with the function. The perfor-
mance of the QDF deteriorated when the sample size ratio was 1:2:3 as δ increased 
with increasing sample size. However, the performance of the function was appreci-
ably good under both correlated and uncorrelated normal distributions when their 
estimated average misclassification error rate decreased with increasing number of 
variables (from 4 to 8). This results shows some partial conformity with the study of 
Lawoko (1988) where the researcher found that the efficiency of the QDF and other 
classifiers are generally lowered by positively correlated training observations. Gen-
erally, the study found that, the QDF performed better resulting in the reduction in 
misclassification error rates as group centroid separator increases with non increas-
ing sample size and under correlated training samples. This results therefore shows 
some partial conformity with the studies by Marks in 1974. Marks approached the 
problem of discrimination by comparing the performance of QDF with other classi-
fiers. Although he considered only two populations, the QDF performance was abys-
mal under small sample size selection when covariance matrices were nearly equal 
with large dimensions.
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