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Abstract

We show that for every positive integer k there exists an interval map f : / — / such
that (1) f is Li-Yorke chaotic, (2) the inverse limit space Ir = lim _{f, /} does not contain
an indecomposable subcontinuum, (3) f is Ck-smooth, and (4) f is not C**-smooth.
We also show that there exists a C*°-smooth f that satisfies (1) and (2). This answers

a recent question of Oprocha and the first author from (Proc. Am. Math. Soc.
143(8):3659-3670, 2015), where the result was proved for k = 0. Our study builds on
the work of Misiurewicz and Smital of a family of zero entropy weakly unimodal maps.
With the help of a result of Bennett, as well as Blokh's spectral decomposition
theorem, we are also able to show that each /s contains, for every integer J,

a subcontinuum G; with the following two properties: () G is 2'-periodic under the
shift homeomorphism, and (ii) C; is a compactification of a topological ray. Finally, we
prove that the chaotic attractors we construct are topologically distinct from the one
presented by P Oprocha and the first author.

MSC: 54H20; 37B45; 37E05

Keywords: weakly unimodal map; arc-like; Li-Yorke chaotic; indecomposable
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1 Introduction

The celebrated Cartwright-Littlewood-Bell fixed point theorem [1, 2] asserts that any
homeomorphism of R? must fix a point in an invariant plane nonseparating compact and
connected set (continuum). The original work of Cartwright and Littlewood, motivated
by problems in differential equations, in which they were led to consider invariant sets
whose frontiers were indecomposable, brought more focus in the mathematical literature
to the interplay of topology and dynamics in continua, of which the study of planar at-
tractors generated by inverse limits of arcs became an important theme. The well known
connection established by Barge and Martin in the 1980s states that chaotic (in the sense
of positive entropy) interval maps generate planar dynamical systems with attractors that
must contain an indecomposable subcontinuum (see e.g. [3, 4]). The connection is in fact
a characterization for all piecewise monotone graph maps [5], but there had also been an
aspect of it left over: must weak chaos (i.e. chaos in the sense of Li and Yorke) imply inde-
composability in the inverse limit space? Recently, however, Oprocha and the first author
showed in [6] that there exists a Li-Yorke chaotic interval map F such that the inverse
limit space Ir = lim._{F, I} does not contain an indecomposable subcontinuum. Since the
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map F constructed in [6] was not continuously differentiable, the following question was
posed.

Problem 1 [6] Is there a k > 0 and a Li-Yorke chaotic interval map ¢ such that ¢ is
Ck-smooth and the inverse limit space I, = lim._{g,} does not contain an indecompos-
able subcontinuum? Must I, have a periodic structure similar to the continua described
in [6]?

In the present paper, by employing an entirely different approach, we answer the ques-
tion in the affirmative. First we prove the following result.

Theorem 1 For every positive integer k there exists an interval map f : I — I such that
(1) f is Li-Yorke chaotic,
(2) Ir =lim _{f,I} does not contain an indecomposable subcontinuum,
(3) f is Ck-smooth,
(4) f is not C**'-smooth.

Theorem 2 There exists a C*°-smooth interval map f : I — I such that
(1) f is Li-Yorke chaotic,
(2) Iy =lim_{f,I} does not contain an indecomposable subcontinuum.

It is noteworthy to mention that the Li-Yorke chaotic map F without an indecompos-
able subcontinuum in lim. {F, I} constructed in [6] was not piecewise monotone, hav-
ing countably many intervals of monotonicity. It was shown therein that, by an arbitrar-
ily small perturbation, the map could be modified without increasing entropy to a map
F., as to generate various indecomposable subcontinua in lim. {F, I}, including Knaster’s
pseudo-arc. An appropriate perturbation Fs could also result in the attractor lim._{Fs, I}
being non-Suslinean. Our approach is different, as it is based on a careful selection of
weakly unimodal maps. Although, in general, such maps may have positive entropy, and
therefore may generate indecomposable subcontinua of their inverse limit spaces, there is
a class of zero entropy and Li-Yorke chaotic weakly unimodal maps. The class was studied
by Misiurewicz and Smital [7] who, among other results, showed that the class contains
a nonempty subclass of C*-smooth maps (see Section 2). In Section 3, we shall observe
that the class also contains maps with other degrees of differentiability. In addition, since
weakly unimodal maps are piecewise monotone, we shall be able to use the result of Barge
and Diamond [5] that relates entropy of piecewise monotone graph maps to topological
structure of the related inverse limit spaces (see next section for more details). In Section 4
we further study the topological structure of our attractors. We show that they have a sim-
ilar periodic structure to the attractors in [6].

Theorem 3 Suppose f : I — I is a Li-Yorke chaotic zero entropy weakly unimodal map.
Then Iy contains, for every i, a subcontinuum C; with the following two properties:

() C;is 2i-periodic under the shift homeomorphism, and

(i) C;is a compactification of a topological ray.

The proof of the above theorem, as in [6], will rely on a careful application of Bennett’s
theorem (see [8]) but also Blokh’s spectral decomposition theorem [9]. However, we also
show that the chaotic attractors we construct are topologically distinct from those in [6]



Boronski and Kupka Advances in Difference Equations (2015) 2015:232 Page 3 of 11

Figure 1 A potential realization of a hereditarily decomposable attractor generated by a weakly
unimodal zero entropy map of type 2.

(a potential realization of one of our attractors is depicted in Figure 1). We conclude our
paper stating some questions related to the study of Li-Yorke chaotic zero entropy interval
maps.

2 Preliminaries

By I we shall denote the unit interval [0,1]. A map is a continuous function. A continuum
X is a compact and connected metric space that contains at least two points. A subcon-
tinuum of a continuum X is a continuum contained in X as a subset. A class of maps
f:X — X isdenoted by C(X). A continuum is decomposable if it cannot be written as the
union of two proper subcontinua. It is hereditarily decomposable if every subcontinuum is
decomposable. An indecomposable continuum is a continuum that is not decomposable,
and it is hereditarily indecomposable if every subcontinuum is indecomposable. A contin-
uum is said to be Suslinean provided every family of pairwise disjoint subcontinua is at
most countable. Although all indecomposable continua are not Suslinean, a decomposable
continuum may or may not be Suslinean. A space X is arcwise connected if for every two
points x and y in X there is an arc A € X such that x,y € A. A (topological) ray is a homeo-
morphic image of the half-line [0, +00) and a (topological) line is a homeomorphic image
of (00, +00). Suppose a map f : I — I is given. The inverse limit space Iy = lim _{f,1} is
the space given by

Iy = {(xl:x2;x3¢---) eI f(xin) =xi}-

The topology of I is induced from the product topology of I, with the basic open sets in
Ir given by

U = (W), W),. .., U W), 2W),. ),
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where U is an open subset of the ith factor space /, and i ranges over N (see e.g. Theorem 3
on p.79in [10]). It is well known that I is a continuum, and it is called an arc-like (or chain-
able) continuum. The pseudo-arc is the unique hereditarily indecomposable arc-like con-
tinuum (see [11] for more details on the pseudo-arc). There is a natural homeomorphism

oy : Iy — Iy, called the shift homeomorphism, given by

of (01, %2, %3,...) = (F (1), f (02), f (3),...) = (f(%1), %1, %2, ...).

The shift homeomorphism oy preserves topological entropy of f, as well as many other
dynamical properties such as existence of periodic orbits of given period, shadowing prop-
erty, and topological mixing [12]. Barge and Martin proved [4] that any I; embeds in R?
in such a way that there exists a planar homeomorphism / with the following properties:

o h(ly) =1,

+ hlj, = oy (up to conjugacy), and

+ there is an open set N containing Iy such that (-, #"(N) = I;.
For this reason we shall refer to any Ir as an arc-like attractor. Let p denote the metric
on X. A map ¢: X — X is Li-Yorke chaotic if there is an uncountable set S C X such that

liminf p(¢"(x), ¢" () = 0
and

tim sup p (¢ (%), ¢" () > 0
n—00
for any distinct points x, y € S. An interval map f is called unimodal if there exists a turning
point ¢ € I, 0 < ¢ < 1, such that f|[o, is strictly increasing and f|.1; is strictly decreasing.
A map f is weakly unimodal if there existsa c € I, 0 < ¢ < 1, such that f|[o ¢ is nondecreasing
and f|[.1) is nonincreasing. We say that an interval map (or graph map) f : G — f(G) is
monotone if f~(x) is connected for every x € f(G). We say that f is piecewise monotone
on G if there is a finite set of points A = {a3, ...,a,} € G such that f is monotone on each
component of G \ A. Note that every weakly unimodal map is piecewise monotone.

Let us introduce Bowen’s definition of the topological entropy (see [13]). Let K C X be a
compact subset, and fix ¢ > 0 and n € N. We say thataset E C K is (n, ¢, K, f)-separated (by
the map f) if for any x,y € E, x #y, there is k € {0,1,...,n — 1} such that p(f*(x),f*(y)) > e.
Denote by s,(¢,K,f) the cardinality of any maximally (1, ¢, K, f)-separated set in K and
define

1
s(e,K,f) =limsup — logs, (&, K, f).

n—oo "

Then the topological entropy of f is

h(f) = sup lirr(l)s(e,K,f).

K ¢

Finally, we say that two discrete dynamical systems (X, f) and (Y, g) are conjugate if there
exists a continuous bijection /1 : X — Y (called a conjugacy) for which hof =goh. If h
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is only a continuous surjection then we have a semiconjugacy. It is well known that the
topological entropy is invariant with respect to a conjugacy.

The following result of Barge and Diamond will be important to our results. Note that
interval maps are special cases of graph maps.

Lemma 4 (Barge and Diamond [5]) Suppose f : G — G is a piecewise monotone graph
map. f has zero topological entropy if and only if lim _{f, G} does not contain an indecom-
posable subcontinuum.

Let us consider a system F C C(I) of weakly unimodal interval maps satisfying the fol-
lowing conditions:
(1) the set

Jri= {xe[lf()/) <f(x) foreveryye]}

consists of more than one point,
(2) for each n € N, f has a periodic point of period 2",
(3) f has no periodic points of other periods.
The family F is nonempty and any map that satisfies the properties (2) and (3) is said to
be of type 2°°. In [7] the following two results are proved (see also [14] for an alternative
proof of the first result, and the comments on p.674 in [15] concerning [7]).

Lemma 5 [7] Any map f € F has zero topological entropy and is chaotic in the sense of Li
and Yorke.

Lemma 6 [7] Let Fy C F bea family of C* interval maps f satisfyingf(0) = f(1) = 0. Then
Fo #0.

3 Main results

With the help of the following result we are able to ensure the existence of the desired
Li-Yorke chaotic map in each differentiability class that we claim in our main theorems.
Our proof of (iv) of the next result closely follows that of Theorem 3 in [7].

Lemma7 For every positive integer k there exists a weakly unimodal map f : [0,1] — [0,1]
such that
(i) £(0)=£(1) =0,
(ii) f is Ck-smooth,
(ili) f is not Ck*'-smooth.
Moreover, for any c € (0,1], the map c - f satisfies (i)-(iii) and
(iv) there exists ¢ € (0,1] such thatc-f € F.

Proof Letej,e; € I besuchthat 0 <e; <ey <1andletf:[0,e] — [0,1] be given by
f(x) = [exp(e}) —exp(lx - e1]*)]/[exp(ef) - 1].

It is not difficult to see that f is strictly monotone, f(0) = 0, f(e;) = 1, and f?(e;) = 0 if
and only if i = 1,...,k — 1. Setting f(x) = 1 for every x € [e;, e2] and defining f on [e,1]
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k1)(g;) (and also

by symmetry, analogously to [0, e;]. Note that f is not C**!-smooth as f
f&+D(e,)) does not exist. Therefore, we get the properties (i)-(iii).

Let us prove (iv). It is easy to see that, for any ¢ € (0,1], ¢, := ¢ - f is a weakly unimodal
map and that J,, is a nondegenerate interval (by the choice of e; and e,). It remains to show
that ¢; is of type 2° for some c.

It is well known that /(p;) > 0 and the smaller c is, the smaller /(¢.) we can get. For a
sufficiently small ¢, periodic points of ¢, are just fixed points and, hence, /(¢.) = 0. Con-
sequently, M := {c € (0,1] | #(¢.) > 0} is nonempty and ¢ = inf M > 0.

It is well known (see e.g. [16]) that ¢, € M implies that ¢, € N where N:={f €l — I |
f satisfies (2) of the definition of F}. By Proposition 2.1 in [17], the set N is closed, since
its elements are C'. Therefore, ¢; € N. We also claim that ¢; satisfies (3) of the definition
of F. Otherwise, ¢; would have a periodic point of period other than 2", and hence (again
[16]) A(wz) > 0. But this would contradict the choice of ¢, because the set M is open (see
e.g. [18]). This completes the proof. O

Note that the above approach depends on the differentiability of the maps in question
and it does not work for tent maps; i.e. maps of the form

fe(x) = ¢- min{x,1 - x},

as they are not C'. Indeed, there is no tent map of type 2°, because such a map would
have to have zero entropy, and this is only possible for ¢ € [0,1] (see e.g. [19]), but for no
such ¢ the map f; has even a 2-periodic point.? On the other hand, by Lemma 5 there is an
M such that the truncated full tent map g(x) = min{M, f,(x)} is a weakly unimodal Li-Yorke
chaotic C°, but not C!, map of type 2°°. Now we are ready to prove our main results.

Theorem 1 For every positive integer k there exists an interval map f : I — I such that
(1) f is Li-Yorke chaotic,
(2) Iy =lim _{f,I} does not contain an indecomposable subcontinuum,
(3) f is Ck-smooth,
(4) f is not C**'-smooth.

Proof of Theorem 1 Let k € N be fixed and let f be a map guaranteed by Lemma 7. Since
f € F we see that f is also Li-Yorke chaotic and has zero entropy. Since f is piecewise
monotone and has zero entropy, by Lemma 4, we also see that lim._{f, I} does not contain
an indecomposable subcontinuum. d

Theorem 2 There exists a C*°-smooth interval map f : I — I such that
(1) f is Li-Yorke chaotic,
(2) Ir =lim _{f,I} does not contain an indecomposable subcontinuum.

Proof of Theorem 2 By Lemmas 5 and 6 there is a C*-smooth, Li-Yorke chaotic map f
with zero entropy. Again, by Lemma 4, the inverse limit space lim._{f, I} does not contain
an indecomposable subcontinuum. 0

At the end of this section we note that all the attractors obtained by Theorem 1 and
Theorem 2 are Suslinean by main Theorem 1 in [20]. As a consequence each of them
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can be embedded into the plane in such a way that all its points are accessible from the
complement, by the results in [21].

4 More on the topological structure of the attractors

Although the attractors constructed in the present paper have a similar periodic structure
to the two attractors constructed in [6] (see Theorem 12), they are topologically distinct
from the latter. We shall show that the attractors described in the present paper in Theo-
rem 1 and Theorem 2 are compactifications of a ray, whereas the attractors in [6] are not.
As in [6], we shall use the following result of Bennett.

Theorem 8 (Bennett) (the proof can be found in [8]) Suppose that g : [a,b] — [a,D] is
continuous and d € (a, b) is such that

1) g([d,b]) C [4,b],

(2) gliaq) is monotone, and

(3) thereis n € N such that g"([a,d]) = [a, D].
Then continuum K = lim_{g, [a, b]} is the union of a topological ray R and a continuum
C =lim.{g, [d,b]} such that R\ R = C.

Lemma 9 Forevery f € F with f(0) = 0 there are a,b € I and d € (a, b) such that
(1) f(4,b]) C [d,b],
(2) fliaa) is monotone, and
(3) thereis an n € N such that f"([a,d]) = [a, b].

Proof Letf € F befixed. By (1) of the definition of F, there exists a nondegenerate interval
[e1, e2] such that f(x) = m = max,¢;{f ()} for each x € [ey, e5].

Because f(e;) = m is the maximum of f and [e;, e;] contains no periodic point (see [7]),
we have e; < f(e;) < 1. Thus,

f(fle2)) > £ (1),

since f is nonincreasing on [ez, 1] and f(1) < m. Otherwise (if f(1) = m) all periodic points
would be fixed points and this would contradict f € F.
Moreover,

f(f(ez)) >a:= max{x €[0,e1) | f(x) :x}. (1)

Otherwise, for U = [a,e1], V = [e1,f(e2)], we would prove that f has positive topological
entropy (see [16]), because

faunf(vysuuv. ()

Because f/j,] is nondecreasing, the choice of a implies that there exists a strictly de-
creasing sequence {a;}5, C [a,e1] converging to a such that a; = ¢, and a; = f(a;,1) for
ieN.

Now let b := m and d := max{{a;};eny N [a,f (D))} It follows from (1) that such a d exists.
Moreover,

f(d) e (f(b),e].
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Then, by the monotonicity of f on [d, e;] and [ey, b],
£(1d,b) = (Id, 1] U [ex, b]) < [/ (b), m] < [d, b],

i.e. the first property is checked. The second property follows from the fact that f is non-
decreasing on [0, e;] and [a,d] C [0, e;]. The last property follows from the fact that

f([ﬂ; ﬂi+1]) = [a,ai]

for any i € N, and from the facts that elements of {4;};cn are preimages of e; and e; is one
of preimages of b. O

By using the notation of the proof above, one can see that either 2 =0 or 2 > 0 and we
have f([0,a]) = [0,a]. Thus, one can change a to be equal to 0 and because f~}((i, 0]) = ¥
the following corollary of Theorem 8 can be obtained. So we strengthen Lemma 9.

Corollary 10 For every f € F with f(0) = 0, there is a topological ray L such that L = Ir.

Note that the proof of Lemma 9 holds the following result originally proved in [6], Re-
mark 10.

Corollary 11 There is a Li-Yorke chaotic zero entropy map ¢ : I — I such that I, contains
the pseudo-arc.

Proof Fix an f € F and let g, d, and m be as in the proof of Lemma 9. Let fi : [0,4] —
[0, a] be the Henderson map [22], rescaled to [0, a]. Now set ¢(x) = fr(x) for x € [0,a] and
o(x) =f(x) for x € [a,1]. O

Lemma 12 Suppose f : I — I is a map of type 2°°. Then the shift homeomorphism oy has
a 2'-periodic subcontinuum of I, for every integer i > 0.

Proof Fixan integer i > 0. It follows from Blokh’s spectral decomposition theorem (see e.g.
[9]) that f has 2-periodic interval J; (some details are mentioned in the next paragraph).
Let

X; = lim{f2i |],~,],~} = {(xl,xg,...)[fzi(xm) =xjand x; € J; for all j > 0}.
Then X; is a 2'-periodic subcontinuum of I; for oy. d

We are also able to specify shapes of those 2!-periodic subcontinua. In the next lemma
we use the fact (see e.g [9], p.26 and [7], p.3) that any map f € F possesses the unique
infinite w-limit set @ such that

21
o< (s oo,

ieN n=1

where each J; is a nondegenerate 2¢-periodic interval (i.e. f ed (J;) = J;). Intervals J; are called
generating.
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Lemma 13 Let f € F. Then there exists a system {J;}i>o of generating intervals such that,

foranyi>0, lim<_{f2i |y, Ji} is a compactification of a topological ray.

Proof We shall show that there exists a system {/;};>0 of generating intervals such that,
for any i > 0, each f 2| ), satisfies assumptions of Theorem 8. The existence of a system of
generating intervals is well known. Within this proof we sketch a construction allowing us
to find a particular one that will be useful to us. Let Ly := 1, Vo] denote the nondegenerate
interval for which f([uo,vo]) = m := max{f(x) | x € I} and a, denote the only fixed point in
[vo,1]. Its existence follows from the ordering of periodic orbits of non-chaotic interval
maps [16].

Then foranyi e N,f‘(zi)([uo, Vo]) consists of 2% nondegenerate intervals. Let L; = [u;, /]
denote the most right one. Then [u;,1] C f 25([% 1]) implies the existence of a fixed point
a; € [u;,1] of the mapfzi. It is easy to see that

A <uj<vi<aij<m<l (3)

for any i € N. Because f is weakly unimodal, the map f 2 s weakly unimodal on [a;_;,1]
as well - namely, f 2i|[ai71,,,l.] is nondecreasing, fzi([ui, v;]) = mandf 2 |jv;,1) is nonincreasing.
Moreover, we can prove f2i([a,»,1,m]) = [a;_1,m]. Indeed, because a;_; is a fixed point of
F27 and f2 ([us, vi]) = m we get [a;_y,m]  f* ([ai.1, m]). But if the latter inclusion were
strict, the map fzi |{a;,m1 would be turbulent (i.e. it would satisfy (2)), which is impossible
for zero entropy maps. Thus,fo ;) = J; for J; := [a;_1, m].

We claim that the system {/;};cn is a system of generating intervals. By e.g. [9], p.26 and
[7], p.3, m € @ where @ is the unique infinite w-limit set of f. It is well known (e.g. [9])
that @ is contained in the closure of periodic points, thus lim;_, « a; = m. Consequently (3)
implies [,y /i = {m}.

Because, for any i € N, the map f ” |7, is clearly conjugate to a map f € F satisfying f (0) =
0, Lemma 9 and the proof of Theorem 10 finishes this proof (see Figure 2). a

As a consequence of the above we obtain the following result announced in the first

section of our paper.

Figure 2 Proof of Lemma 13. A

m b-—-—-—-- - - [
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Theorem 3 Suppose f : I — I is a Li-Yorke chaotic zero entropy weakly unimodal map.
Then Iy contains, for every i, a subcontinuum C; with the following two properties:
() C;is2i-periodic under the shift homeomorphism, and

(i) C;is a compactification of a topological ray.
Proof This follows directly from Lemma 12 and Lemma 13. O
Problem 2 Does Lemma 13 hold for any map from F?

At the very end of this paper we would like to mention some facts showing that the
inverse limit spaces constructed within this work are topologically distinct from those
mentioned in [6].

Let X; = lim_{f,1} be the (nonchaotic) hereditarily decomposable arc-like attractor
from Theorem 8 in [6]; i.e. f is the Delahaye map of type 2°° [23]. By Theorem 5 in [6],
the continuum X is the union of two continua K; and Kj such that

(1) Kj is homeomorphic to K5,

(2) Kj is the union of a topological ray R; and Xé that compactifies Ry; i.e. Ri\ R = X(l),

(3) K, is the union of a topological ray R, and X} that compactifies Ry; i.e. Ry \ Ry = X},

and

(4) Ky NKy =Ry N Ry = {p}, where p is the fixed point of o7.

Consequently, Xy is not a compactification of a topological ray (but it is a compactification
of a topological line). Therefore no I, given by a weakly unimodal map g in Theorem 1 or
Theorem 2 is homeomorphic to X;. Now we shall also show that no such I, is homeo-
morphic to the chaotic hereditarily decomposable arc-like attractor Xy from Lemma 9 in
[6]; i.e. Xp =lim{F,I} and F is the Li-Yorke chaotic modification of Delahaye’s map f, as
described in Section 3 of [6]. Recall that it was shown (Proposition 8 in [6]) that there is
a monotone map IT: Xr — Xy; i.e. [17}(K) is connected for every connected set K C Xz
Suppose Xr is homeomorphic to I, given by a weakly unimodal map g in Theorem 1 or
Theorem 2. Then X = L, where L is a topological ray, by Theorem 10. Since L is dense
in Xy it follows that I1(L) is dense and connected in X. It is readily seen that I1(L) must
contain then the topological line R = R; U R,. Since TI(L) is arcwise connected (as a con-
tinuous image of a ray) we must have I1(L) = R. It follows that IT|L : L — R is a monotone
map of [0, +00) onto (—oo, +00) leading to a contradiction.

We also note that each our attractor has an absolute end point; i.e. a point at which it
is locally connected and which does not separate it (see [24] for more on absolute end
points). However, the attractor Xy from [6] does not have such a point.

The above remarks lead to the following questions.

Problem 3 Suppose g is a Li-Yorke chaotic weakly unimodal map of type 2°°. Is I, home-
omorphic to a ray limiting onto one of the attractors described in [6] or a subcontinuum

of one of them?

Problem 4 Suppose f and g are two Li-Yorke chaotic weakly unimodal maps of type 2*°
that are in two different differentiability classes, as guaranteed by Theorem 1 and Theo-

rem 2. Are Ir and I, homeomorphic?
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One should note that for an arbitrary nondegenerate metric continuum P, there is an
uncountable family of topologically distinct metric compactifications of a topological ray
L,suchthat L\ L =P [25].
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