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Abstract

Many biological questions, including the estimation of deep evolutionary histories and the detection of remote
homology between protein sequences, rely upon multiple sequence alignments and phylogenetic trees of large
datasets. However, accurate large-scale multiple sequence alignment is very difficult, especially when the dataset
contains fragmentary sequences. We present UPP, a multiple sequence alignment method that uses a new machine
learning technique, the ensemble of hidden Markov models, which we propose here. UPP produces highly accurate
alignments for both nucleotide and amino acid sequences, even on ultra-large datasets or datasets containing
fragmentary sequences. UPP is available at https://github.com/smirarab/sepp.

Background
Multiple sequence alignments (MSAs) of large datasets,
containing several thousand to many tens of thousands of
sequences, are used for estimating the gene family tree for
multi-copy genes (e.g., the p450 or 16S genes), estimat-
ing viral evolution, detecting remote homology, predicting
the contact map between proteins [1], and inferring deep
evolution [2]; however, most current MSA methods have
poor accuracy on large datasets, especially for high rates
of evolution [3, 4].
The difficulty in accurately estimating large MSAs is a

major limiting factor in phylogenetic analyses of datasets
containing several hundred sequences or more. Phylogeny
estimation methods that do not require a MSA (e.g.,
truly alignment-free methods [5–7] or almost alignment-
free methods such as DACTAL [4]) can be used, but
alignments are necessary for estimating branch lengths,
dates at internal nodes, detecting selection, etc. There-
fore, phylogeny estimation generally uses methods such
as maximum likelihood (ML) on estimated MSAs. ML
phylogeny estimation on datasets containing thousands
[8] to tens of thousands [9] of sequences is now fea-
sible, but the accuracy of ML trees depends on having
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accurate MSAs [10], and estimating highly accurate large-
scale alignments is extremely challenging; indeed, some
datasets with only 1000 sequences can be difficult to align
with high accuracy [11, 12].
Another challenge confronting MSA methods is the

presence of fragmentary sequences in the input dataset
(see Fig. 1 for examples of sequence length heterogeneity
found in the biological datasets used in this study). This
can result from a variety of causes, including the use of
next-generation sequencing technologies, which can pro-
duce short reads that cannot be successfully assembled
into full-length sequences.
We present a statistical MSA method that uses a new

machine learning technique that we will introduce – the
ensemble of hiddenMarkov models (HMMs) – to address
these limitations. Each ensemble of HMMs is best seen
as a collection of profile HMMs for representing a MSA,
constructed in a phylogeny-awaremanner; hence, we refer
to this method as UPP, for Ultra-large alignments using
Phylogeny-aware Profiles.
UPP uses the HMMER [13] suite of tools (see “Materials

and methods”) to produce an alignment, and builds on
ideas in SEPP [14]. The basic idea behind UPP is to esti-
mate an accurate alignment for a subset of the sequences
and align the remaining sequences to the alignment using
profile HMMs [15]. UPP has four phases (see Fig. 2).
Phase 1 begins with unaligned sequences and selects a

subset (called the “backbone dataset”) of the sequences;
the remaining sequences are the “query sequences”.
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Fig. 1 Histogram of sequence lengths for four of the biological datasets included in this study. These datasets show substantial sequence length
heterogeneity and contain a mix of full-length and fragmentary sequences

Phase 2 uses PASTA [16, 17] to compute a MSA and
ML tree (which is unrooted) on the backbone sequences;
these are called the “backbone alignment” and “back-
bone tree”, respectively. As PASTA is a global align-
ment method and is not designed for the alignment
of fragmentary sequences, UPP preferentially selects the
backbone sequences from those that are considered

to be full length. To determine which sequences are
“full length”, UPP only includes backbone sequences
within 25% of the length of the typical sequence for
the given locus. If the typical length of the locus is
not known, we use the median length of the input
sequences as an estimate of the average length for the
locus.

Fig. 2 Overview of the UPP algorithm. The input is a set of aligned sequences. This sequence dataset is split into two parts: the backbone dataset
and the set of query sequences. An alignment and tree are estimated for the backbone dataset, and an ensemble of HMMs is constructed based on
the backbone alignment and tree. The query sequences are then aligned to each HMM, and the best scoring HMM for each sequence is used to add
the query sequence to the backbone alignment. See text for more details
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This part of UPP’s algorithmic design is similar to align-
ment methods that are based on seed alignments (e.g., the
technique used in Infernal [18]), but there is a basic differ-
ence between using seed alignments and these backbone
alignments estimated by PASTA. Seed alignments are pre-
computed alignments that are typically highly curated,
and may be based on experimentally verified structural
features of the molecule. UPP does not need to have
such seed alignments, and instead is an entirely de novo
alignment method.
Phase 3 creates a collection of HMMs (called the ensem-

ble of HMMs) using the backbone alignment and back-
bone tree. The process begins by including the HMM
computed on the entire backbone alignment. Next, the
backbone tree is decomposed by removing a centroid
edge (i.e., an edge that splits the tree into two sub-
trees of approximately equal size). For each of these two
unrooted subtrees, we use hmmbuild (a command within
HMMER) to compute an HMM on the backbone align-
ment restricted to the sequences in the leaf set of the
subtree, and then add the resulting HMM to the ensemble.
We repeat this decomposition process until each sub-
tree contains at most ten sequences. Thus, this process
results in an ensemble of HMMs, each computed on an
alignment induced by the backbone alignment on one of
the subtrees. Note also that while the subtrees are local
regions within the backbone tree, they may not be clades
within the tree (e.g., in Fig. 2, HMM5 is not based upon
a clade).
By default, hmmbuild combines nearby sites with more

than 50% gaps into a single match state, making it impos-
sible to form a one-to-one mapping between the match
states and the gappy sites in the original subset align-
ment. Wemodify the hmmbuild options to create a match
state for each site that has at least one non-gap character,
thus making it trivial to map the match states back to the
original sites in the subset alignment.
Phase 4 inserts the remaining query sequences into the

backbone alignment, as follows. The fit of each query
sequence to each HMM is assessed using hmmsearch (a
command within HMMER); this returns a bit score, which
is a measure of the quality of the match between the
query sequence and the HMM. The subset HMM with
the best bit score is selected, and the sequence is inserted
into the subset alignment using hmmalign (a command
within HMMER). We treat each site within an alignment
as a statement of positional homology, so that all letters
within the site are considered to be positionally homol-
ogous [19]. Since positional homology is an equivalence
relation (i.e., a binary relation that is reflexive, symmet-
ric, and transitive), this process uses transitivity to define
how the query sequence should be added into the back-
bone alignment; similar uses of transitivity have been used
in other MSA methods [17, 20]. When the sequence has a

letter (nucleotide or amino acid) that is not aligned to any
letter in the backbone alignment, the extended alignment
will have an “insertion site”.
Once all the query sequences have been added into the

backbone alignment, the transitivity defines the final out-
put MSA. This approach will tend to have potentially
many insertion sites; to save space, we combine adjacent
insertion sites into a single column. These introduced
columns therefore contain nucleotides or amino acids that
are not homologous to each other, and so the columns
are indicated as insertion sites and masked before run-
ning a phylogenetic analysis. We also do not consider the
homologies within these columns when evaluating the
accuracy of computed alignments.
As we will show, UPP provides very good accuracy on

both phylogenetic and structural benchmarks, and is fast
enough to produce highly accurate alignments for 10,000
sequences in under an hour, and for onemillion sequences
in 12 days, using only 12 cores. Furthermore, UPP has
excellent accuracy even when the sequence dataset con-
tains a large number of highly fragmentary sequences.
In comparison, most other MSA methods either cannot
analyze datasets of this size due to computational lim-
itations, or do not exhibit the same accuracy as UPP
under themost challenging conditions (large datasets with
fragmentary sequences).

Results and discussion
We used a variety of simulated and biological datasets
from prior publications to compare UPP to existing MSA
methods (see “Materials and methods” for details). The
simulated datasets include ROSE NT (a collection of
1000-sequence nucleotide datasets), Indelible 10K (a col-
lection of 10,000-sequence nucleotide datasets), RNASim
(a collection of datasets ranging from 10,000 to one
million sequences), and ROSE AA (a collection of 5000-
sequence simulated amino acid datasets). The biolog-
ical datasets include CRW (the three largest datasets,
16S.3, 16S.T, and 16S.B.ALL, from the Comparative Ribo-
somal Website [21] with up to 27,643 sequences), 10
AA (ten amino acid datasets with curated MSAs with
up to 807 sequences), and HomFam (19 large HomFam
datasets [22], with up to 93,681 sequences). For some of
these datasets, we generated fragmented versions, mak-
ing 12.5%, 25%, and 50% of the sequences fragmen-
tary, to evaluate the robustness to fragmentary data.
The simulated datasets have true alignments and trees
available from prior publications. The biological datasets
have reference alignments based on structural features,
and the CRW and 10 AA datasets also have reference
trees computed using the reference alignments, which are
also available from the prior publications. The reference
alignments for the HomFam datasets are too small (5–
20 sequences, median 7) and trees computed on these
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reference alignments were too poorly supported to be
useful for evaluation purposes.
We computed ML trees on the estimated alignments,

and report tree error using the false negative (FN) rate
(also known as the missing branch rate), and the �FN
rate, which is the difference between the FN rates of trees
computed on estimated and true or reference alignments.
We report alignment sum-of-pairs (SP) error, which is
the average of the sum-of-pairs false negative (SPFN)
and false positive (SPFP) rates [19]. We also report the
total column score (TC), which is the percentage of
aligned columns (i.e., columns with at least one homol-
ogy) in the true or reference alignment that appear in the
estimated MSA.

UPP algorithm design
We explored modifications of the UPP design in which we
varied the backbone size, used a single HMM instead of
an ensemble, built ensembles based on clades within the
backbone tree, built ensembles based on disjoint subsets
of ten sequences each, used different MSA methods to
compute the backbone alignment, used MAFFT instead
of hmmalign to add sequences to the backbone align-
ment, and ran hmmbuild using different options to com-
pute HMMs on each subset alignment. These preliminary
studies revealed the following trends:
(1) Using small backbones (100 sequences) rather than

large backbones (1000 sequences) typically produced
higher alignment SP-error rates and tree error rates for
both the ensemble of HMMs approach and the single
HMM approach (Additional file 1: Sect. S2.1). Using
smaller backbones reduced the running time for the
ensemble of HMMs approach and had negligible impact
on the running time for the single HMM approach
(Additional file 1: Sect. S2.1).
(2) Using an ensemble of HMMs rather than a sin-

gle HMM with 1000-sequence backbones had varying
impact. As shown in Table 1, the impact on alignment
SP-error ranged from neutral (changes of at most 0.3%
for alignment SP-score or tree error) to beneficial; for
example, the alignment SP-error for the HomFam datasets
using an ensemble of HMMs was 23.0% whereas using
a single HMM produced an alignment SP-error of 25.4%
(Table 1). The impact on TC score also varied: TC scores
were better when single HMMs were used for the Indeli-
ble simulated datasets, and were otherwise better when
ensembles were used (Table 1). The differences in TC
score were generally small (e.g., the average difference
was less than 0.5%). For the HomFam datasets, using an
ensemble of HMMs gave a TC score of 46.6% while a sin-
gle HMM had a TC score of 44.5% (a difference of 2.1%).
For the Indelible 10000M4 datasets using a single HMM,
the TC score was 30.5%, and using an ensemble of HMMs
the score was 27.4% (a difference of 3.1%).

Finally, using an ensemble of HMMs instead of a single
HMM generally reduced tree error (Table 1). For exam-
ple, results for the CRW datasets show that an ensemble
of HMMs had an average tree error of 7.8%, but using a
single HMM had an average tree error of 16.5% (i.e., more
than double the tree error). Substantial reductions in tree
error were also observed for the RNASim 10K datasets.
In a few cases (i.e., the ROSE AA and Indelible datasets),
using a single HMM improved tree error, but the differ-
ences were very small (Table 1). The impact of using an
ensemble of HMMs instead of a single HMMwas lessened
for 100-sequence backbones, and in some cases even led
to small improvements (Additional file 1: Sect. S2.1 and
Additional file 1: Table S2.1). However, the best results
were still obtained using the 1000-sequence backbones
with the ensemble of HMMs.
(3) Using ensembles of HMMs computed for clades

within the backbone tree produced alignments and trees
that were generally as accurate (according to the SP-error
and tree error rates) and had variable impact on TC scores
(generally reducing scores but in some cases improv-
ing them) as those produced using ensembles based
on the centroid-edge decompositions (Additional file 1:
Sect. S2.6 and Additional file 1: Table S2.1). However, UPP
using clade-based ensembles took more time (Additional
file 1: Sect. S2.6).
(4) Using ensembles of HMMs based on disjoint subsets

(each with at most ten sequences) had variable impact. For
many datasets (e.g., the ROSE AA, RNASim, CRW, and
HomFam datasets), the impact of using disjoint subsets
was very small, and in some cases even slightly favorable
(Additional file 1: Sect. S2.1 and Additional file 1: Table
S2.1). However, for some other datasets, using disjoint
subsets greatly reduced accuracy.
For example, for the Indelible 10000M2 datasets, default

UPP had an alignment SP-error of 3.5%, TC score 1.2%,
and �FN error of 0.6%, but using disjoint subsets had
SP-error of 28.2%, TC score 0.3%, and �FN tree error
of 19.9% (Additional 1: Table S1). Thus, although using
disjoint ensembles of HMMs reduced the running time
(Additional 1: Sect. S2.1), the default ensemble of HMMs
was a more reliable technique than using ensembles based
on disjoint subsets.
(5) The technique used to estimate the backbone align-

ment had a large impact on the final alignment and tree
(Additional 1: Sect. S2.3), so that the final alignment
SP-error very closely matched the initial backbone align-
ment SP-error (Additional 1: Sect. S2.4). Hence, the best
alignment methods are needed to produce the backbone
alignment.
(6) Using MAFFT to add sequences to the backbone

alignment instead of UPP’s default technique (hmma-
lign, a command within HMMER) reduced accuracy
(Additional 1: Sect. S2.5).
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Table 1 Comparison of two UPP variants on representative full-length datasets with respect to alignment SP-error, tree error, and TC
scores

Model condition Method Alignment SP-error �FN TC score

10 AA UPP (Default) 24.2 3.4 11.4

10 AA UPP (Default, No Decomp) 24.5 5.2 11.0

ROSE AA UPP (Default) 2.9 1.8 2.6

ROSE AA UPP (Default, No Decomp) 2.8 1.4 2.5

CRW UPP (Default) 12.5 7.8 1.4

CRW UPP (Default, No Decomp) 13.3 16.5 0.9

HomFam (19) UPP (Default) 23.0 NA 46.6

HomFam (19) UPP (Default, No Decomp) 25.4 NA 44.5

Indelible 10000M2 UPP (Default) 3.5 0.6 1.2

Indelible 10000M2 UPP (Default, No Decomp) 3.3 0.5 1.4

Indelible 10000M3 UPP (Default) 1.3 0.2 4.6

Indelible 10000M3 UPP (Default, No Decomp) 1.3 0.1 4.8

Indelible 10000M4 UPP (Default) 0.3 <0.0 27.4

Indelible 10000M4 UPP (Default, No Decomp) 0.5 <0.0 30.5

RNASim 10K UPP (Default) 9.5 0.8 0.5

RNASim 10K UPP (Default, No Decomp) 11.2 3.0 0.3

All criteria (errors and scores) given as percentages. See text for explanation of names of methods and computational platforms used. The default setting for UPP is denoted
UPP (Default); it uses a backbone of size 1000 and uses PASTA to compute the backbone alignment and the ensemble of HMMs technique. In the “No Decomp” versions of
these two methods, the ensemble of HMMs is replaced with a single HMM. ML trees are estimated using RAxML (on the 10 AA datasets) or FastTree (all other datasets) except
for HomFam, where we do not estimate ML trees as there are no reference trees for the HomFam datasets. NA Not applicable

(7) Using different hmmbuild options (such as turning
off the entropy-weighting flag) did not improve accuracy
(Additional 1: Sect. S2.7).
Overall, the most reliable results were obtained using

large backbones (1000 sequences), using an ensemble of
HMMs, computing the backbone using PASTA, and using
hmmalign to add sequences into the backbone alignment.
These settings were used for the default version of UPP.
However, for running-time purposes (so that ultra-large
datasets can be analyzed quickly), we explore UPP (Fast),
a variant of UPP that uses backbones of 100 sequences but
otherwise uses all the default settings (i.e., it restricts the
backbone to full-length sequences, it uses an ensemble of
HMMs, it uses PASTA to align subsets, etc.).

Comparison to other MSAmethods for full-length
sequences
We used Clustal-Omega [22], MAFFT [23], Muscle [24],
PASTA [16, 17], and UPP to compute MSAs.

We rank methods by tiers, where the first tier contains
the method that had the best performance as well as any
other method that was within 1% of the best result for
the dataset. Similarly, the second tier contains the method
not in the first tier that had the best performance, and
all methods within 1% of that method (and so forth for
the remaining tiers). The method that had the best per-
formance overall within a collection is also identified. We
describe the general performance of each method on the
full-length datasets (Table 2) and fragmentary datasets
(Table 3). For the fragmentary results, we take the aver-
age performance of each method over the entire range of
fragmented datasets.
The majority of experiments were run on the homoge-

neous Lonestar cluster at the Texas Advanced Computing
Center (TACC). Because of limitations imposed by Lon-
estar, these analyses are limited to 24 hours, using 12
cores with 24GB of memory; methods that failed to com-
plete within 24 hours or terminated with an insufficient
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Table 2 Average alignment SP-error, tree error, and TC score across most full-length datasets

Method ROSE RNASim Indelible ROSE CRW 10 AA HomFam HomFam

NT 10K 10K AA (17) (2)

Average alignment SP-error

UPP 7.8 (1) 9.5 (1) 1.7 (2) 2.9 (1) 12.5 (1) 24.2 (1) 23.3 (1) 20.8 (2)

PASTA 7.8 (1) 15.0 (2) 0.4 (1) 3.1 (1) 12.8 (1) 24.0 (1) 22.5 (1) 17.3 (1)

MAFFT 20.6 (2) 25.5 (3) 41.4 (3) 4.9 (2) 28.3 (2) 23.5 (1) 25.3 (2) 20.7 (2)

Muscle 20.6 (2) 64.7 (5) 62.4 (4) 5.5 (3) 30.7 (3) 30.2 (2) 48.1 (4) X

Clustal 49.2 (3) 35.3 (4) X 6.5 (4) 43.3 (4) 24.3 (1) 27.7 (3) 29.4 (3)

Average �FN error

UPP 1.3 (1) 0.8 (1) 0.3 (1) 1.8 (1) 7.8 (2) 3.4 (2) NA NA

PASTA 1.3 (1) 0.4 (1) <0.1 (1) 1.3 (1) 5.1 (1) 3.3 (1) NA NA

MAFFT 5.8 (2) 3.5 (2) 24.8 (3) 4.5 (3) 10.1 (3) 2.3 (1) NA NA

Muscle 8.4 (3) 7.3 (3) 32.5 (4) 3.1 (2) 5.5 (1) 12.6 (3) NA NA

Clustal 24.3 (4) 10.4 (4) X 4.2 (3) 34.1 (4) 3.5 (2) NA NA

Average TC score

UPP 37.8 (1) 0.5 (2) 11.0 (3) 2.6 (2) 1.4 (1) 11.4 (1) 47.3 (1) 40.3 (3)

PASTA 37.8 (1) 2.3 (1) 48.0 (1) 5.4 (1) 2.3 (1) 12.1 (1) 46.1 (2) 50.0 (1)

MAFFT 31.4 (2) 0.4 (2) 7.8 (4) 0.6 (3) 0.7 (2) 12.1 (1) 45.5 (2) 46.9 (2)

Muscle 9.8 (3) <0.0 (2) 18.3 (2) 2.7 (2) 0.7 (2) 10.5 (2) 27.7 (4) X

Clustal 5.7 (4) 0.2 (2) X 3.1 (2) 0.1 (2) 11.8 (1) 38.6 (3) 31.0 (4)

We report the average alignment SP-error (the average of SPFN and SPFP errors) (top), average �FN error (middle), and average TC score (bottom), for the collection of
full-length datasets. All scores represent percentages and so are out of 100. Results marked with an X indicate that the method failed to terminate within the time limit
(24 hours on a 12-core machine). Muscle failed to align two of the HomFam datasets; we report separate average results on the 17 HomFam datasets for all methods and the
two HomFam datasets for all but Muscle. We did not test tree error on the HomFam datasets (therefore, the �FN error is indicated by “NA”). The tier ranking for each method
is shown parenthetically

memory error message were marked as failures. For
experiments on the million-sequence RNASim dataset,
we ran the methods on a dedicated machine with 256GB
of main memory and 12 cores until an alignment was
generated or the method failed. We also performed a lim-
ited number of experiments on TACC with UPP’s internal

checkpointing mechanism, to explore performance when
time is not limited. All methods other than Muscle had
parallel implementations and were able to take advantage
of the 12 available cores.
On full-length datasets (Table 2) where nearly all meth-

ods were able to complete, PASTA was nearly always in

Table 3 Average alignment SP-error and tree error across fragmentary datasets

Method ROSE NT RNASim 10K Indelible 10K CRW

(16S.3 and 16S.T)

Average alignment SP-error

UPP 8.3 (1) 11.8 (1) 2.7 (1) 16.1 (1)

PASTA 25.2 (2) 47.7 (4) 8.8 (2) 23.3 (2)

MAFFT 32.5 (3) 25.5 (2) 51.3 (3) 24.5 (3)

Muscle 35.3 (4) 82.2 (5) 77.6 (4) 70.6 (5)

Clustal 62.0 (5) 35.0 (3) X 46.7 (4)

Average �FN error

UPP 1.9 (1) 3.1 (1) 2.5 (1) 7.4 (2)

PASTA 25.2 (3) 21.9 (3) 9.0 (2) 8.2 (2)

MAFFT 18.0 (2) 6.2 (2) 35.6 (3) 2.5 (1)

Muscle 27.5 (4) 43.6 (5) 45.2 (4) 30.1 (3)

Clustal 47.8 (5) 26.3 (4) X 37.4 (4)

We report the average alignment error (top) and average �FN error (bottom) on the collection of fragmentary datasets. Clustal-Omega failed to align any of the Indelible
10000M2 fragmentary datasets and thus we mark the results with an X. The tier ranking for each method is shown in parentheses
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the first tier with respect to alignment SP-error, tree error,
and TC scores (the only exceptions being the RNASim
10K datasets where PASTA was in the second tier for
alignment SP-error, and the HomFam (17) datasets where
PASTAwas in the second tier for TC score). UPP (Default)
had the second best performance: it was in the first tier
in terms of SP-error except for the Indelible 10K and
HomFam (2) datasets, where it was in the second tier
(with 1.2% and 3.4% higher error than the best method),
it was in the first or second tier for tree error, and in
the first through third tiers for TC score. MAFFT was
in third place, being in the first through third tiers for
alignment SP-error, first through third tiers for tree error,
and first through fourth tiers for TC scores. Muscle and
Clustal-Omega were behind MAFFT. Muscle was in
the second through fifth tiers with respect to align-
ment SP-error, first through fourth tiers with respect to
tree error, and second through fourth tiers with respect
to TC score. Clustal-Omega was in the first through
fourth tiers with respect to alignment SP-error, sec-
ond through fourth tiers with respect to tree error, and
first through fourth tiers with respect to TC scores.
In general, the relative performance of Muscle and
Clustal-Omega seemed to depend on the type of data,
with Muscle doing better on the nucleotide datasets
and Clustal-Omega doing better on the amino acid
datasets.
Thus, for full-length sequences, whether with respect to

alignment SP-error, tree error, or TC scores, on average
PASTA came in first place, UPP in second, andMAFFT in
third, while Muscle and Clustal-Omega were behind these
methods.

Comparison to other methods on datasets with
fragmentary sequences
We next investigated performance for datasets with frag-
mentary sequences. As shown in Table 3, UPP was in
the first tier of methods for all the fragmentary datasets
with respect to alignment SP-error, and in the first tier
of methods for three of the four collections (except for
CRW) with respect to tree error, where it is in the sec-
ond tier. PASTA was not in the first tier for any collection
with respect to either criterion, and was instead in the
second through fourth tiers for alignment SP-error and
second and third tiers for tree error. MAFFT was in the
second and third tiers for alignment SP-error, but did rea-
sonably well for tree error: in the first tier for CRW and
otherwise in the second and third tiers. As before, Muscle
and Clustal-Omega did less well than the other methods;
they were in the third through fifth tiers. Clustal-Omega
was unable to analyze at least one dataset. Note also that
the absolute error generally increased, and that only UPP
had reasonably low alignment SP-error and tree error
across all these fragmentary datasets. Thus, the relative

and absolute performance of methods changed between
the full-length and fragmentary data.
Figure 3 shows the impact of fragmentation in detail. It

has results for ROSE NT 1000M2 (a very challenging con-
dition due to high rates of indels and substitutions), with
varying levels of fragmentation.
UPP’s alignment SP-error increased only slightly with

increases in fragmentation, even up to the highest degree
of fragmentation (50%). All other methods exhibited
greater increases in alignment SP-error or tree error than
UPP, as the amount of fragmentation increased.
To understand better why UPP is robust to fragmen-

tation, we explored UPP variants (called UPP-random)
in which we did not constrain the backbone to be only
full-length sequences. We also looked at whether using
the ensemble of HMMs instead of a single HMM con-
tributes to robustness to fragmentation. These compar-
isons (Fig. 4) revealed some interesting trends about the
impact of these algorithm design parameters. First, the
only UPP variants that were able to align all the datasets
were the two that used the ensemble of HMMs; the vari-
ants that used a single HMM each failed to align several
datasets because HMMER was not able to align some of
the query sequences to the backbone alignment (Fig. 4).
Second, the comparison between UPP-random

(Default) and UPP (Default)) favored UPP (Default),
so that while there were negligible to small differences
in some cases, UPP (Default) was dramatically more
accurate than UPP-random (Default) for the ROSE NT
datasets for both alignment SP-error and tree error
(Fig. 4). Thus, restricting the backbone to full-length
sequences is a very important contribution to robustness
to fragmentary sequences.
However, restricting the backbone to full-length

sequences and using only a single HMM produced much
higher tree error than using an ensemble of HMMs
(Fig. 4), showing that using an ensemble of HMMs
also provides benefits. Thus, the two algorithmic tech-
niques (restricting the backbone to full-length sequences
and using an ensemble of HMMs) are both useful in
improving robustness to fragmentary sequences, but they
address different analytical challenges.

Impact of taxon sampling
We evaluated the ability of different methods to ana-
lyze very large datasets (up to one million sequences),
using subsets of the million-sequence RNASim dataset;
this comparison also reveals the impact of taxon sampling
on the alignment methods.We examined performance for
UPP (Fast), the fast version of UPP that differs from the
default setting of UPP only in that it uses smaller back-
bones (100 sequences instead of 1000). Figure 5 shows
results for 10,000 to 200,000 sequences, and compares
UPP (Fast), UPP (Default), PASTA, MAFFT, Muscle, and
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Fig. 3 Impact of fragmentary sequences on alignment SP-error and tree error. We show average a alignment error and b �FN error rates for
different methods for the ROSE NT 1000M2 datasets, but include results where a percentage of the sequences are made fragmentary, varying the
percentage from 0% to 50%. Fragmentary sequences have average length 500 (i.e., roughly half the average sequence length for ROSE 1000M2)

Clustal-Omega, limiting analyses to 24 hours on a 12-core
24Gb machine. While all methods shown were able to
complete analyses for the 10K dataset, only UPP (Fast)
and PASTA completed analyses for the 100K and 200K
datasets.
As the number of sequences in the RNASim datasets

increased, PASTA’s alignment SP-error dropped from
15.0% at 50,000 sequences to 12.2% at 200,000 sequences.
UPP (Fast) had stable alignment SP-error across all the
datasets, varying between 12.5% and 13.3%. The trees
for both UPP and PASTA improved with increased taxon
sampling, with PASTA trees approaching the accuracy of
ML for the true alignment (0.1% to 0.2% �FN), and the
UPP trees were close behind (1.2% to 1.4% �FN, Fig. 5c).
We then compared UPP (Fast) to PASTA for the full

million-sequence RNASim dataset. We ran UPP (Fast)
and PASTA on a dedicated machine with 12 cores and
256GB of memory so that the analyses could exceed the
24 hour time limit in TACC. UPP (Fast) completed in
12 days, with alignment and tree errors similar to previ-
ous results (12.8% alignment SP-error and 2.0% �FN).

PASTA completed in 15 days, and produced a much
worse alignment but better tree errors (18.5% alignment
SP-error and 0.4% �FN). Because we used a differ-
ent machine with a different architecture, the running
times for the million-sequence RNASim dataset cannot
be directly compared to the running times for the other
RNASim datasets, which were run on TACC.

Computational issues
Table 4 compares wall-clock running times, using 12
cores, for those datasets where all methods were able to
complete within the 24-hour limitation on Lonestar; thus,
we show results for all datasets except for the RNASim
datasets with 50K or more sequences. Note that all meth-
ods but Muscle had parallel implementations and were
able to take advantage of the 12 available cores; the relative
performance differences between methods could differ
greatly on a single-core machine, depending on how well
each method is able to take advantage of parallelism.
The differences in average running time for these

datasets were sometimes small (e.g., all methods com-
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Fig. 4 Comparison of UPP variants on fragmentary datasets. We show average a alignment error and b �FN tree error for UPP (Default), UPP
(Default, NoDecomp), UPP-random (Default), and UPP-random (Default, NoDecomp) for the fragmentary datasets. The backbone is not restricted to
full-length sequences in UPP-random, and so it allows fragmentary sequences in the backbone set. UPP-random (Default, NoDecomp) failed to align
at least one dataset from each of the RNASim 10K, Indelible 10K, and CRWmodel conditions. UPP (Default, NoDecomp) failed to align at least one
dataset from each of the ROSE NT, RNASim 10K, and Indelible 10K model conditions. ML trees were estimated using FastTree under the general time
reversible model

pleted analyses in 0.4 to 0.6 hours wall-clock time for the
ROSE NT datasets with 1000 sequences, and in less than
0.2 hours wall-clock time for the 10 AA datasets with
under 1000 sequences). However, for the CRW datasets,
which could be quite large (nearly 28K sequences), the dif-
ferences in average running timewere large: UPP (Default)
used 11.6 hours, Muscle used 5.9 hours, PASTA used
3.2 hours, Clustal-Omega used 2.8 hours, and MAFFT
used only 0.4 hours. Overall, for these datasets, MAFFT
was generally the fastest (or nearly so), and UPP (Default)
generally the slowest.

We compared the wall-clock running time for each stage
of the UPP algorithm for UPP (Default) and UPP (Fast) for
two large nucleotide datasets: the RNASim 10K dataset
with 10,000 sequences and the CRW 16S.B.ALL dataset
with 27,643 sequences (Table 5). Only two steps – com-
puting the backbone alignment and tree and searching for
the best HMM – used more than a few minutes, even
for the largest dataset. Computing the backbone align-
ment and tree took under an hour for UPP (Default) and
under 8 minutes for UPP (Fast). However, searching for
the best HMM for the query sequences took the most
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Fig. 5 Comparison for the RNASim 200K dataset. We show a alignment SP-error, b FN tree error, and c �FN tree error rates for RNASim datasets with
up to 200K sequences. Results not shown are due to methods failing to return an alignment within the 24-hour time period on TACC using 12 cores.
ML trees were estimated using FastTree under the general time reversible model

time. For UPP (Default), which had ten times as many
HMMs as UPP (Fast), this step took nearly 16 hours for
16S.B.ALL and 7 hours for the RNASim 10K dataset, while
UPP (Fast) used under 1.8 hours for the 16S.B.ALL dataset
and 0.8 hours for the RNASim 10K dataset. Thus, the vast
majority of the time for large datasets is spent searching
for the best HMM. For very small datasets, the difference
in running time between UPP (Default) and UPP (Fast) is
small, but for very large datasets the differences in running

time are substantially increased – close to an order of
magnitude in difference.
We then explored how UPP’s running time (measured

using the wall-clock time) scaled with the size of the
dataset by exploring subsets of the RNASim dataset with
10,000 to 200,000 sequences, using 12 cores. Running
times for UPP (Fast) for the RNASim datasets showed a
close to linear trend, so that UPP (Fast) completed for
10K sequences in 55 minutes, 50K sequences in 4.2 hours,
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Table 4 Average wall-clock running time (hr) across most full-length datasets

Method ROSE RNASim Indelible ROSE CRW 10 AA HomFam HomFam

NT 10K 10K AA (17) (2)

UPP 0.6 6.7 6.7 0.2 11.6 <0.1 1.3 0.5

PASTA 0.6 3.9 1.3 0.2 3.2 0.2 1.5 1.3

MAFFT 0.4 0.1 1.4 <0.1 0.4 0.1 <0.1 0.1

Muscle 0.5 0.8 1.2 <0.1 5.9 0.2 1.3 X

Clustal 0.4 4.8 X 0.1 2.8 <0.1 0.3 0.3

Average wall-clock running time for the full-length datasets for which most methods could complete; this includes everything other than the RNASim datasets with 50,000 or
more sequences. UPP is run in default mode. Results marked with an X indicate that the method failed to terminate within the time limit (24 hours on a 12-core machine). All
methods but Muscle had parallel implementations and were able to take advantage of the 12 cores. Muscle failed to align two of the HomFam datasets; we report separate
average results for the 17 HomFam datasets for all methods and the two HomFam datasets for all but Muscle.

100K sequences in about 8.5 hours, and 200K sequences
in about 17.8 hours (Fig. 6).

Conclusions
Although the relative performance of MSA methods
depended on the dataset, in most cases, UPP produced
alignments with lower SP-error rates and higher TC
scores than MAFFT, Muscle, and Clustal-Omega. ML
trees computed with UPP alignments were also more
accurate than ML trees for the other alignments. How-
ever, the comparison between UPP and PASTA is more
interesting. Because UPP uses PASTA to compute its
backbone alignment and tree, by design, UPP is iden-
tical to PASTA for fragment-free datasets containing at
most 1000 sequences. The comparison between UPP and
PASTA with respect to alignment accuracy is interesting:
UPP alignments tend to have lower SP-error rates than
PASTA alignments but also lower TC scores, indicating
that these two criteria are not that well correlated. How-
ever, ML trees based on PASTA alignments (for fragment-
free datasets) are typically more accurate than ML trees
based on UPP alignments. For datasets with fragmentary
sequences, UPP has nearly the same SP-error rates that
it achieves with the full-length sequences, while PASTA’s

SP-error rates increase substantially with fragmentation;
consequently, UPP’s �FN tree error rates do not tend to
increase that much with fragmentation although they do
for PASTA. Thus, UPP is highly robust to fragmentary
data whereas PASTA is not. Hence, while PASTA has an
advantage over UPP for datasets without fragments, UPP
presents advantages relative to PASTA for datasets with
fragments.
To understand UPP’s performance, it is useful to con-

sider the alignment strategy it uses. First, it computes a
backbone alignment using PASTA for a relatively small
(at most 1000-sequence) dataset; this allows it to begin
with a highly accurate alignment. Then, instead of using a
single profile HMM to represent its backbone alignment,
UPP uses a collection of profile HMMs, each on a sub-
set of the sequences. The subsets are obtained from local
regions of the backbone tree, which is an ML tree esti-
mated for the backbone sequences. Hence, the sequences
in these subsets tend to be closely related. The induced
subset alignments for these smaller localized regions are
thus better suited for HMMs, especially when the full
dataset displays overall substantial heterogeneity.
These observations help explain why using multiple

HMMs, each for a region within the backbone tree,

Table 5 Wall-clock running time (hr) for UPP (Fast) and UPP (Default) for the RNASim 10K and CRW 16S.B.ALL datasets

RNASim 10K CRW 16S.B.ALL

Stage UPP (Fast) UPP (Default) UPP (Fast) UPP (Default)

Building backbone 0.12 0.42 0.13 0.52

Building HMMs <0.01 0.02 <0.01 0.02

Searching for best HMM 0.83 6.53 1.81 15.45

Aligning sequences 0.02 0.03 0.05 0.15

Merge alignments 0.01 0.01 0.01 0.02

Total time 0.99 7.01 2.01 16.16

Wall-clock running time (hr) for each stage of UPP (Fast) and UPP (Default) for the RNASim 10K (10,000 sequences) and CRW 16S.B.ALL (27,643 sequences) datasets, two of the
largest nucleotide datasets. The UPP alignments were computed on TACC’s Lonestar Cluster machine. The vast majority of the running time was spent searching for the best
HMM for the query sequences.



Nguyen et al. Genome Biology  (2015) 16:124 Page 12 of 15

Fig. 6 Running time for UPP (Fast) for the RNASim datasets. We show
the running time to generate an alignment for UPP (Fast) for RNASim
datasets with 10K, 50K, 100K, and 200K sequences. All analyses were
run on TACC with 24 GB of memory and 12 CPUs

provides improved alignments compared to using a sin-
gle HMM. However, UPP also restricts the backbone to
the full-length sequences, and this algorithmic step is crit-
ical to improving robustness to fragmentary sequences.
Hence, these aspects of UPP’s algorithmic design –
restricting the backbone to full-length sequences and
using an ensemble of HMMs instead of a single HMM –
increase sensitivity to remote homology (especially for
fragmentary sequences) and reduces alignment SP-error
and tree error, but each targets a different aspect of
algorithmic performance.
UPP exhibits great scalability with respect to running

time (which scales in a nearly linear manner), parallelism,
and alignment accuracy. For example, our study showed
the alignment SP-error for the backbone alignment is
quite close to the alignment SP-error for the alignment
returned by UPP. Thus, UPP enables large datasets to be
aligned nearly as accurately as smaller datasets.
Overall, UPP is a MSA method that can provide very

high accuracy for sequence datasets that have been con-
sidered too difficult to align, including datasets with high
rates of evolution, fragmentary sequences, or many thou-
sands of sequences – even up to one million sequences.
UPP performs well for both phylogenetic and structural
benchmarks (see [25] for further discussion of these
related but different tasks). Finally, UPP is parallelized (for
sharedmemory) and has a checkpointing feature, but does
not require supercomputers to achieve excellent accuracy
for ultra-large datasets in reasonable time frames.

Materials andmethods
Performance study
Data and software availability
The datasets used in this study are available at [26]. The
GitHub site for UPP [27] provides open-source software
and instructions on how to download, install, and run
UPP.

Datasets
All the datasets used in our study have been used in
previously published studies, and are available online
through the respective publications. Because UPP is
designed for ultra-large-scale MSA, we focus the analy-
sis on benchmark datasets with many sequences. We used
the following collections of simulated datasets:

• ROSE NT: a collection of 1000-sequence nucleotide
datasets from [11] that were generated using ROSE
[28]; see [11] for full details

• Indelible 10K: a collection of 10,000-sequence
nucleotide datasets from [16] that were generated by
Indelible [29]; see [16] for full details

• RNASim: a collection of datasets ranging from 10,000
sequences to one million sequences [17]

• ROSE AA: a collection of 5000-sequence simulated
amino acid datasets from [9] that were generated
using ROSE

We also used biological datasets with reference align-
ments that have been used in prior studies [12, 17, 22]
to evaluate alignment methods for large datasets. We
focus on datasets with 10,000 or more sequences, but
also used ten large amino acid datasets (eight from the
BAliBASE [30] collection and two others) with at least 320
sequences:

• CRW: The three largest datasets from the
Comparative Ribosomal Website [21], each a set of
16S sequences. We include the 16S.3 dataset (6,323
sequences spanning three phylogenetic domains), the
16S.T dataset (7,350 sequences spanning three
phylogenetic domains), and the 16S.B.ALL dataset
(27,643 sequences spanning the bacteria domain).
The CRW datasets have highly reliable, curated
alignments inferred from secondary and tertiary
structures and were previously studied in [3, 12]. The
reference trees for these datasets used in these studies
were derived from ML trees estimated using RAxML,
with all branches with bootstrap support below 75%
collapsed.

• 10 AA: Ten amino acid datasets with curated MSAs
(the eight largest BAliBASE datasets [30] and
IGADBL_100 and coli_epi_100 from [31]); these
range in size from 320 to 807 sequences, and were
used in [17] to evaluate MSA methods. The reference
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trees for these datasets used in these studies were
based on RAxML with all branches with bootstrap
support below 75% collapsed.

• HomFam: A collection of 19 of the largest HomFam
datasets, which are amino acid sequence datasets
ranging in size from 10,099 to 93,681 sequences with
Homstrad [32] reference alignments for small subsets
(5–20 sequences, median 7). These 19 datasets were
used in [17, 22] to evaluate MSA methods for large
amino acid datasets. The study in [22] also explored
performance with smaller HomFam datasets, but
these are not as relevant to this study. As noted in
[17], there was a warning in the PFAM website
regarding the HomFam rhv dataset studied in [22],
stating that the alignment was “very weak”; for that
reason, the rhv dataset was omitted from the study
reported in [17] and from this one.

For some of the nucleotide datasets, we generated three
fragmented versions, by making 12.5%, 25%, and 50%
of the sequences fragmentary. The lengths of the frag-
ments were drawn from a normal distribution with a
mean length of 500 bp and a standard deviation of 60 bp
(the mean length is one-third of the average length of
the CRW datasets and one-half the length of the Indeli-
ble and ROSE NT datasets). We generated fragmentary
datasets by selecting a random subset of sequences and a
random substring (of the given length) for each selected
sequence.

Alignment and tree estimation software
Each dataset was aligned (when possible) using Clustal-
Omega [22] version 1.2.0, MAFFT [23] version 6.956b,
MUSCLE [24] version 3.8.31, and PASTA version 1.5.1
[16, 17]. MUSCLE was run with the -maxiters 2
option on datasets of 3000 sequences or greater. Due
to a bug in earlier versions of MAFFT 6.956b, MAFFT-
default was run using MAFFT version 7.143. We ran
three different versions of MAFFT. MAFFT-L-INSI was
run on datasets with 1000 or fewer sequences. For most
datasets with more than 1000 sequences, we ran MAFFT-
default (--auto); the exceptions were the RNASim
100K dataset, three replicates from the Indelible 10K
10000M3 dataset, and the CRW16S.B.ALL dataset, where
MAFFT-default failed to run and so we used MAFFT-
PartTree. All MAFFT variants included the --ep 0.123
parameter.
Because the algorithmic design parameters for run-

ning PASTA on amino acid datasets has not been stud-
ied before, we examined different options for running
PASTA on amino acid datasets and used those settings
in our studies (see Additional 1: Sect. S3). PASTA was
run for three iterations or a maximum of 24 hours,
whichever came first. If PASTA did not terminate at the

end of 24 hours, the alignment from the last successfully
completed iteration was used. PASTA was run using a
MAFFT-PartTree starting tree for all but the RNASim
datasets. For the RNASim datasets, we used the ML tree
estimated from the UPP (Fast, NoDecomp) alignment as
the starting tree (MAFFT-PartTree was unable to run on
the largest RNASim datasets). The remaining settings for
PASTA were set using the --auto flag.
Commands for each method are given below:

• Clustal-Omega
clustalo --threads=12
-i<input_sequence> -o
<output_alignment>

• MAFFT-L-INS-i
mafft --ep 0.123 --thread 12
--localpair --maxiterate 1000
--quiet --anysymbol
<input_sequence> >

<output_alignment>

• MAFFT-default
mafft --thread 12 --ep 0.123 --auto
--quiet --anysymbol
<input_sequence> >

<output_alignment>

• MAFFT-PartTree
mafft --thread 12 --ep 0.123
--parttree --retree 2 --partsize
1000 --quiet <input_sequence> >

<output_alignment>

• MAFFT-profile
mafft [--localpair --maxiterate
1000] [--addfragment | --add]
<query_file> <backbone_alignment> >

<output_alignment>

• Muscle
muscle [-maxiters 2] -in
<input_sequence> -out
<output_alignment>

• PASTA
python run_pasta.py --num-cpus=12 -o
<output_directory>

-i <input_sequences> -t
<starting_tree> --auto
--datatype=<molecule_type>

• UPP
python exhaustive_upp.py -a
<backbone_alignment> -t
<backbone_tree> -s
<query_sequences> -d
<output_directory> -o <output_name>

-x 12 -A 10 -m <molecule_type> -c
<default_config_file>

• UPP-disjoint
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python exhaustive_upp.py -S normal
-a <backbone_alignment>

-t <backbone_tree> -s
<query_sequences> -d
<output_directory> -o <output_name>

-x 12 -A 10 -m <molecule_type> -c
<default_config_file>

HMMER commands
HMMER 3.0 [13] was used internally within UPP for
building the ensemble of HMMs (hmmbuild), for search-
ing for the best HMM for a query sequence (hmmsearch),
and for inserting the query sequence into the alignment
(hmmalign):

• hmmbuild
hmmbuild --symfrac 0.0 --informat
afa --<molecule_type>

<output_profile>

<backbone_alignment>

• hmmsearch
hmmsearch --noali -o <output_file>

--cpu 1 -E 99999999
--max <input_profile> <query_file>

• hmmalign
hmmalign --allcol --dna
<output_profile> <query_file>

<output_alignment>

Maximum likelihood tree estimation
To compute ML trees for large datasets (with 1000 or
more sequences), we used FastTree [9] version 2.1.5 SSE3,
and we used RAxML [8] version 8.0.6 for smaller datasets.
We used the general time reversible model for all the
nucleotide datasets (simulated and biological) and JTT
[33] for the simulated amino acid datasets (ROSE AA).
For the 10 AA datasets (all biological), we used ProtEST
[34] to select the model for each dataset, and then used
that model within RAxML to perform the analysis. The
commands used to run each method are givenbelow:

• FastTree AA
FastTreeMP -nosupport <input_fasta>

> <output_tree>

• FastTree NT
FastTreeMP -nosupport -nt -gtr
<input_fasta> > <output_tree>

• RAxML AA
raxmlHPC -T 12 -m PROT
<model_name>GAMMA -j -n
<output_name>

<starting_tree> -s <input_fasta> >

-w <output_directory> -p 1

Performance metrics
We compare estimated alignments and their ML trees
to reference alignments and trees. We use FastSP [19]
to compute SP-error (the average of SPFN and SPFP
errors) and TC scores. The SPFN rate is the percent-
age of homologous pairs in the reference alignment
that are not in the estimated alignment and the SPFP
rate is the percentage of homologous pairs in the esti-
mated alignment that are not present in the reference
alignment.
We report tree error using the FN rate (also known

as the missing branch rate), which is the percentage of
internal edges in the reference tree that are missing in
the estimated tree. We also report �FN, the difference
between the FN rate of the estimated tree and the FN rate
of the tree estimated on the true alignment, to evaluate the
impact of alignment estimation on phylogenetic analysis.
Most typically, �FN > 0, indicating that the estimated
tree has higher error than the ML tree for the true align-
ment, but it is possible for�FN < 0, which happens when
the estimated ML tree is more accurate than ML for the
true alignment.

Additional file

Additional file 1: Supplementary materials discussed in the main
paper. This file is available at [35]. It contains information on early
termination by alignment methods, comparisons of UPP variations, and an
evaluation of parameter settings for PASTA, which is used for amino acid
MSA.
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