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networks for the creation of satellite long-term
climate data records
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Abstract

This article presents a novel artificial neural network technique for merging multi-sensor satellite data. Stacked
neural networks (NNs) are used to learn the temporal and spatial drifts between data from different satellite
sensors. The resulting NNs are then used to sequentially adjust the satellite data for the creation of a global
homogeneous long-term climate data record. The proposed technique has successfully been applied to the
merging of ozone data from three European satellite sensors covering together a time period of more than 16
years. The resulting long-term ozone data record has an excellent long-term stability of 0.2 ± 0.2% per decade and
can therefore be used for ozone and climate studies.
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Introduction
Over the last decades, an increasing large number of
ground-based and satellite sensors have been measuring
physical and biogeochemical parameters that provide a
global view of the state of the Earth’s system and its
temporal evolution. Numerous satellite-based datasets
are complementary to each other in either their type of
measurements or their temporal and/or spatial coverage.
An outstanding task nowadays is to develop intelligent

algorithms to combine or fuse these multi-year observa-
tions derived from diverse sensors onboard different
satellites for the creation of a consistent and homoge-
neous global long-term data record which enable solid
scientific investigations of climate processes reflecting
the state of the Earth and its variability. The optimally
merged climate data record can then be compared with
numerical models, it may serve as input for model simu-
lation, or it can be used for trend analyses.
However, the combination of data retrieved from mul-

tiple orbiting platforms is hampered by several factors
such as differences in spatial and/or temporal sampling,
differences in sensor characteristics (e.g. spectral cover-
age or viewing geometry), limited calibration stability,

characteristic biases among instruments, record continu-
ity, or differences in retrieval algorithms. These uncer-
tainties must be properly characterized as they may
carry over into the merged data set.
Several recent data merging efforts using different

approaches have addressed a variety of environmental
variables. Stratospheric ozone has become of particular
interest since the discovery of the ozone hole in the
1980s. A number of ground-based and space-borne
ozone data records are available today; see the ozone
homogenization section below for more details. Another
atmospheric parameter is for example aerosol optical
thickness where spectra from the sensors Sea viewing
Wide Field of View Scanner (SeaWiFS) and Moderate
Resolution Imaging Spectroradiometer (MODIS) are
merged into a single data product using least squares fit-
ting [1] or alternative methods [2]. Global sea surface
temperature datasets are produced combining in situ and
space-borne measurements [3] as well as various satellite
observations, which are then validated with buoys [4,5].
For ocean colour, there are examples of merged products
from SeaWiFS, MODIS and Medium Resolution Imaging
Spectrometer (MERIS) radiances [6].
We present a novel computational intelligence techni-

que for merging multi-sensor satellite data. Temporal* Correspondence: Diego.Loyola@dlr.de
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and spatial drifts between different satellite data are cor-
rected using stacked neural networks (NNs).
This article is organized as follows: the next section

outlines the general methodology of using stacked NNs
for merging multi-sensor datasets, then the successful
application of this methodology to total ozone data is
presented and finally the conclusions are given.

Multi-sensor data merging with stacked NNs
Artificial NNs are very effective mathematical tools for
learning nonlinear relationships implicitly given by input/
output datasets. Typical neural network applications in
satellite sensors focus traditionally on classification pro-
blems, see for example [7]. More recently, a general fra-
mework for solving forward and inverse problems in
remote sensing using NNs was presented [8]. Statistical
retrievals based on NNs, for example for obtaining tropo-
spheric ozone [9], are common nowadays. Data fusion
techniques based on NNs have been developed and
applied to rainfall measurements from space [10] and
ground-based precipitation data [11].
In this study, we develop a novel approach for data

merging based on stacked NNs (SNNs). SNNs were
introduced some time ago [12] as an ensemble combina-
tion method with two levels of learning involved. On the
first level, several models are trained on the dataset; on
the second level a high-level model combines the first
level models in an optimal way.
SNNs are commonly used in the literature for the

ensemble combination of NNs organized in two levels
[13]. We extend the concept of SNNs to a modular com-
bination of NNs for an unlimited hierarchical number of
levels.
Given a number of sensors A...K to be merged, the

first NNAB in the stack is trained to learn the spatially
and temporally dependent correlations between the data
of the first two sensors A and B. The first NN is used to
adjust the data from the two sensors; the adjusted data
form the merged dataset AB . Data of a third sensor C
is included using a second NNABC in the stack that is
trained to learn the spatially and temporally dependent
correlations between the merged dataset AB and the
new dataset C. Data adjusted with the second NNs form
the merged dataset ABC . This hierarchical process is
repeated sequentially adding NNs to the stack for every
additional dataset until the last NNA...K is trained to cre-
ate the final merged dataset A...K . A schematic repre-
sentation of the multi-sensor data merging using SNNs
is given in Figure 1.
The training set for every single NN is generated by

combining data measured simultaneously with the two
sensors to be homogenized. Spatial and temporal infor-
mation are the input and the corresponding drift

between the two sensors are the output of the training
set. After training, the NNs can model the adjustments
needed to minimize the differences between the two
datasets.
Spatial and temporal information of satellite data (e.g.

longitude or month of year) have usually a circular
structure that may introduce discontinuities in regres-
sion problems. Regression functions probably exhibit
jumps when evaluated at the extreme points of circular
data like for example between longitude 0°and 360°or
between the months January and December. To avoid
this problem, Chen [14] proposes to add new input vari-
ables for the topological representation of circular data.
A drawback of this approach is that the dimensionality
of the input space is increased. In this article, we use a
different approach called circular resampling. Instead of
adding new input variables, we add new patterns to cor-
relate the samples at the extreme points of circular data.

Homogenization of long-term satellite ozone data
record using SNNs
Stratospheric ozone has become of particular interest
since the late 1970s as the release of ozone depleting
substances (ODSs) by human activity led to a significant
decrease in the total ozone abundance. Although the
Montreal Protocol and its subsequent amendments have
now regulated the production and release of ODSs,
there are still open questions concerning the onset of
ozone recovery, the timing of full recovery, and the role
of climate change.
NASA started the satellite remote sensing of ozone in

1970 with the Backscatter Ultraviolet Spectrometer. The
European contribution to satellite base measurements of
atmospheric composition started with the Global Ozone
Monitoring Experiment (GOME) sensor [15] onboard
the ESA satellite ERS-2 launched in 1995. GOME mea-
sured ozone and a number of atmospheric composition
gases like nitrogen dioxide, sulphur dioxide, bromine
monoxide, water vapour, formaldehyde, chlorine dioxide,
glyoxalin as well as clouds and aerosols. The GOME
data record is continued with the Scanning Imaging
Absorption Spectrometer for Atmospheric CHartogra-
phY (SCIAMACHY) sensor [16] onboard the ESA satel-
lite ENVISAT launched in 2002, with the Dutch sensor
Ozone Monitoring Instrument (OMI) [17] onboard the
NASA satellite AURA launched in 2004, and with the
GOME-2 sensor [18] onboard the EUMETSAT satellite
MetOp-A launched in 2006.
Several long-term, well-calibrated ozone datasets have

been set up in order to address those climate-related
questions, but the task is extremely difficult because an
overall stability better than 1% per decade is required
[19]. Different merging algorithms for total as well as
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vertically resolved ozone rely on (a) inter-satellite cali-
bration, i.e. using one dataset as reference standard
[20-23], (b) ground-based measurements as reference
data [24,25], (c) data assimilation techniques [26,27] and
(d) optimum interpolation [28].
The total ozone measurements from GOME, SCIA-

MACHY and GOME-2 are used in this section, the
merging follows an inter-satellite calibration approach.
The operational products of these satellites computed
using the GOME Data Processor (GDP) 4.x algorithm
[29-31] are systematically compared with ground-based
measurements and the differences are typically lower
than 1% [30-32]. Nevertheless, satellite ozone data from
different instruments may show spatial and temporal
differences due to sensor-specific characteristics and
drifts.
The geophysical validation results show that the

GOME total ozone data are remarkable stable for the
complete data period [32], while SCIAMACHY and
GOME-2 present temporal and spatial drifts [30,31]. For
this reason, it was decided to use GOME as the transfer
standard and to adjust the SCIAMACHY and GOME-2
measurements.
Following the SNNs methodology presented in the

previous section, a first NNGS is trained with the drifts

between monthly mean total ozone measurements of
GOME and SCIAMACHY on a regular grid of 1° × 1°.
GOME data are available since July 1995, but the global
coverage was lost in June 2003 due to a failure on the
satellite tape recorder. The SCIAMACHY data on the
other side is available since August 2002. Therefore, the
training dataset is created using data from the overlap-
ping period but using only grid points containing mea-
surements from both satellites. There are three NNs
input parameters:

• latitude from 90°S to 90°N
• season coded as the measurement month from 1
to 12
• measurement time taking as base the year 2002

The NN output is the inter-satellite drift computed as
the ratio between the GOME and SCIAMACHY
measurements.
A total of 25,000 patterns are collected using overlap-

ping measurements from the two satellites between
2002 and 2010. In order to avoid discontinuities in the
season dimension (circular structure), we use the circu-
lar resampling technique presented in the previous sec-
tion. A continuous behaviour across the extreme points
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Figure 1 Schematic representation of SNN for merging multi-sensor datasets. The dashed arrows represent the training phase; the
continuous arrows represent the application of the adjustments computed by the neural network.
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of the season (months 1 and 12) is forced by creating
new samples for the virtual months 0 and 13 containing
the same patterns as December and January, respec-
tively. In this way, the samples at the beginning and at
the end of the year are highly correlated and possible
jumps are avoided.
The samples are randomly divided in two sets: 90%

are used for training and the remaining 10% for valida-
tion. Several NNs topologies were tested; the best per-
formance was reached with a feedforward NN with two
hidden layers of 6 and 12 neurons, respectively, resulting
in an NNGS topology of 3-6-12-1. The training was
speedup using the parallel learning algorithm described
in [33] running on a Linux server with 12 cores.
The SCIAMACHY adjustment factors as a function of

latitude and time computed with NNGS are displayed in
Figure 2. The error histogram showing the relative dif-
ferences between the results obtained with NNGS and
the original sampling data are presented in Figure 3.

The relative errors follow a Gaussian distribution and
most of the errors are smaller than 1%.
The SCIAMACHY measurements in the tropical regions

around 20°N to 20°S overestimate the total ozone by
around 2% over the complete time period with a notice-
able reduction around middle 2007. This overestimation is
related to the intra-cloud effect [31] that was not consid-
ered during the processing of the SCIAMACHY data. The
ozone at high latitudes in the southern hemisphere varies
from small overestimations in 2002 to seasonal underesti-
mation of approximately 2% in next years. A similar ten-
dency occurs at high latitudes in the northern hemisphere,
but with stronger underestimation up to 3% in the winter
periods. The regular patterns during winter are mainly
caused by differences in the GOME and SCIAMACHY
retrievals for measurements under snow/ice conditions.
The training dataset does not contain samples from

December 2002 because there are relative few SCIAMA-
CHY measurements for that period. Hence, the SNN has
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Figure 2 SNN adjustment function for SCIAMACHY data as a function of latitude and time.
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to interpolate in the time domain, which is solved quite
well (see Figure 2). In the same way, the SNN extrapolates
smoothly the adjustments for the year 2011 as it is trained
with data only until end of 2010. Moreover, GOME data
suffer from reduced spatial coverage in the southern hemi-
sphere since July 2003 due to the ERS-2 tape recorder fail-
ure. Nonetheless, note the excellent interpolation
capabilities also in the latitudinal domain where the SNN
computes smooth adjustments in the southern hemisphere
after 2003.
The merged GOME+SCIAMACHY dataset is created

using the original GOME measurements and the SCIA-
MACHY measurements adjusted with NNGS. The mean
differences between GOME and SCIAMACHY measure-
ments are reduced from 0.94 ± 9.70 to -0.05 ± 8.86%.
A second NNGSG2 is then trained with the drifts

between the merged GOME+SCIAMACHY data and
the GOME-2 data that are available since January 2007.
A total of 17,500 samples are collected and divided in
training (90%) and validation (10%) sets. The same feed-
forward neural network configuration as for the first

NNGS in the stack is used: 3-6-12-1. The mean differ-
ences between the adjusted SCIAMACHY and the
GOME-2 total ozone are reduced from 3.37 ± 6.83 to
0.28 ± 6.15%; the corresponding adjustment factors
computed with NNGSG2 for GOME-2 are shown in Fig-
ure 4. The GOME-2 data in general underestimate the
total ozone by around 1% compared with the merged
GOME and SCIAMACHY dataset; this result is in
agreement with GOME-2 validation against ground-
based measurements [31]. A seasonal overestimation of
up to 2% occurs at high latitudes. Notice the stronger
underestimation and change in the overall shape for all
latitudes clearly visible in September 2009 when the
state of the GOME-2 instrument was significant altered
after a throughput test.

Results
The long-term total ozone merged data record is cre-
ated adjusting the SCIAMACHY and GOME-2 data
with the SNN. The effectiveness of the adjustment is
clearly appreciated in Figure 5 that shows the globally
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Figure 3 Error histogram of the relative differences between the results obtained with the SNN for adjusting SCIAMACHY data and
the original sampling data.
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averaged datasets from 60°N to 60°S before and after the
SNN adjustment.
The resulting long-term total ozone data that record

data as a function of latitude and time from July 1995 to
December 2010 are shown in Figure 6. The amount of
ozone varies in both space and time. Most of the ozone is
found in the mid-to-high latitudes of the northern and
southern hemispheres. Even though ozone is created over
the tropics due to highest solar ultraviolet radiation levels,
lowest amounts and little seasonal changes are found
there. Stratospheric circulation patterns transport the
ozone from its production region poleward. The maxi-
mum amount of ozone in the extratropical regions occurs
during late winter and early spring with distinct hemi-
spheric differences because of differences in planetary
wave forcing, i.e. more frequent and intense wave activity
driving the transport into the northern hemisphere. Over
Antarctica and during 2-3 months of hemispheric spring
(September to November), approximately 50% of the total
column amount of ozone in the atmosphere is destroyed

forming the so-called ozone hole, see regions with less
than 220 Dobson units in Figure 6.
Well-maintained ground-based instruments are used

to evaluate the long-term stability of the space-born
total ozone observations. Those measurements are routi-
nely deposited at the World Ozone and Ultraviolet
Radiation Data Centre (WOUDC) in Canada (http://
www.woudc.org). The WOUDC archive provides data
from the early 1950s onward collected with different
types of sensors covering a wide geographical range.
Monthly mean data from 43 ground stations located

in the northern hemisphere and equipped with Dobson
spectrophotometers were used for the comparison with
the individual satellite instruments and the new SNNs
merged time series. The monthly means from each
ground station were compared with the corresponding
monthly means from the 1° × 1°gridded satellite data.
Figure 7 illustrates the ratios between satellite and

ground-based observations from July 1995 to December
2010. As mentioned earlier, the GOME data record
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Figure 4 SNN adjustment function for GOME-2 data as a function of latitude and time.
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shows a remarkable long-term stability of 0.4 ± 0.2% per
decade, whereas negative drifts with respect to ground
data were found for SCIAMACHY -1.5 ± 0.6% per dec-
ade and GOME-2 -1.2 ± 1.1% per decade. These SCIA-
MACHY and GOME-2 drifts could be identified and are
significantly reduced using the SNN approach; the final
SNN merged time series shows an excellent temporal

stability of 0.2 ± 0.2% per decade and is therefore well
suitable for atmospheric monitoring and climate trend
studies.

Conclusions
In this article, we presented a novel multi-sensor data
merging technique based on a generalized stacked
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neural network strategy. SNNs are used to adjust tem-
poral and spatial drifts between data from different
satellite sensors. An NN is added sequentially to the
stack for adjusting every new dataset; the final result is a
homogeneously merged data record.
The proposed technique has successfully been applied

to the merging of ozone data from three satellite sen-
sors: GOME, SCIAMACHY and GOME-2.
The SNNs reduce the mean differences between

GOME/SCIAMACHY and SCIAMACHY/GOME-2 from
0.94 ± 9.70 to -0.05 ± 8.86% and from 3.37 ± 6.83 to 0.28
± 6.15%, respectively. It is worth noting that the SNNs are
able to compensate for missing data by means of their
excellent interpolation and extrapolation capabilities in the
time and space domains. The resulting merged long-term
SNN ozone data record is well suitable for ozone and cli-
mate studies due to its excellent long-term stability of 0.2
± 0.2% per decade.
The GOME-type merged total ozone climate data

record covering a time period of more than 16 years is
free available at http://atmos.caf.dlr.de/gome/gto-ecv.
html.
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