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1 Introduction

The study of multi-point boundary value problems for linear second-order ordinary dif-
ferential equations goes back to the method of separation of variables [1]. Also, some ques-
tions in the theory of elastic stability are related to multi-point problems [2]. In 1987, II'in
and Moiseev [3, 4] studied some nonlocal boundary value problems. Then, for example,
Gupta [5] considered a three-point nonlinear boundary value problem. For some recent
works on nonlocal boundary value problems, we refer, for example, to [6—15] and refer-
ences therein.

As indicated in [16], there has been enormous interest in nonlinear perturbations of
linear equations at resonance since the seminal paper of Landesman and Lazer [17]; see
(18] for further details.

Here we study the following nonlinear ordinary differential equation of second order

subject to the three-point boundary condition:

—u"(t) =f (t,u(®)), tel[0,T],
u(0) =0, au(n) =u(T),

where T >0, f:[0,T] x R — R is a continuous function « € R and n € (0, T).
In this paper we consider the resonance case an = T to obtain a new existence result.
Although this situation has already been considered in the literature [19], we point out

that our approach and methodology is different.
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2 Linear problem

Consider the linear second-order three-point boundary value problem

-u'(t)=0(t), tel0,T], @)
2
u(0) =0, au(n) = u(T)

for a given function o € C[0, T].

The general solution is

u(t) = c1 + cot — /t(t —s)o(s)ds
0

with ¢j, ¢, arbitrary constants.

From u(0) = 0, we get ¢; = 0. From the second boundary condition, we have

T n
(T—an)cz:fo (T—s)o(s)ds—oz‘/‘0 (n —s)o(s)ds. (3)

2.1 Nonresonance case
If an # T, then

T
€= T—lan [/0 (T—s)a(s)ds—oz/on(n—s)a(s)ds}

and the linear problem (2) has a unique solution for any o € C[0, T]. In this case, we say
that (2) is a nonresonant problem since the homogeneous problem has only the trivial

solution as a solution, i.e., when o =0, ¢; = ¢ = 0 and u = 0. Note that the solution is

given by
T
u(t) = / g(t, S)O(S) ds (4)
0
with
tg—;z) - m}(_L(;;) —(t-s), 0<s<min(n,t),
HT-s) _ ta(n-s)
glt,s) = T-an  T-an’ 0<t<s<n<T,
tg;?)_(t_s)’ 0<n<s<t<T,
tgz’)’ max(n,t) <s < T.

For T =1 this is precisely the function given in Lemma 2.3 of [20] or in Remark 12 of [21].

2.2 Resonance case
If T = an, then (3) is solvable if and only if

T n
/ (T -s)o(s)ds =« / (n = s)o(s)ds, (5)
0 0
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and then (2) has a solution if and only if (5) holds. In such a case, (2) has an infinite number
of solutions given by

u(t) =ct - /Ot(t —s)o(s)ds, ceR.
In particular ct, ¢ € R is a solution of the homogeneous linear equation
-u'(t)=0, tel0,T]
satisfying the boundary conditions
u(0) =0, au(n) = u(T).
Note that
)=t~ [ (o as e+ [ 1-906as

and then

Cy =

1 g g
_nl:u(T)—u(n)+/(; (T—s)a(s)ds—/o (n—s)cr(s)ds].

We now use that u(7T) = %u(n) to get

1
T-n

()~ )] = 7-u(T)

and

T
= TL—U[/O (T—s)o(s)ds—/on(n —s)o(s)d5:| + %M(T).

Hence the solution of (2) is given, implicitly, as

u(t) :/ «r

or, equivalently,

———o(s)ds - /(t sa(s)ds+—u(T)

T
t
u(t) :/ k(t,s)o (s)ds + ?M(T), )
0
where
s, 0 <s<min(n,?),
A 0<t<s<n<T,
k(t,s) = r
%—(t—s), 0<n<s<t<T,
t(TT—__nS)» max(n,t) <s < T.

We note that k € C([0, T] x [0, T'],R) and k(t,s) > O for every (¢,s) € [0, T] x [0, T].
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3 Nonlinear problem
Defining the operators:

F:C[0,T] — C[0, T],
[Ful(t) =f(t,u(t)), ueCl0,T],tel0,T],

K:C[0,T]— C[0,T],
T
[Ka](t) :/ k(t,s)o(s)ds, o e€C[0,T],tel[0,T],
0
L:C[0,T]— C[0,T],
t
[Lu](?) = ?M(T), ueCl[0,T],t€]0,T],
the nonlinear problem is equivalent to
u = Nu,

where N=KoF + L.
We note that (6) can be written as

T
u(t)—%u(T): fo k(t, 5)o (s) ds

and the nonlinear problem (1) as

" T
u(t) — TM(T) = /0 k(t,s)f (s, u(s)) ds.

This suggests to introduce the new function v(¢) = u(t) - %u(T). To find a solution u, we
have to find v and u(T).
For every constant ¢ € R, we solve

T
W) = f k(t,s)f(s, Ws) + %c) ds (7)
0

and let ¢(c) be the set of solutions of (7). This set may be empty (no solution), a singleton
(unique solution) or with more than one element (multiple solutions). For every v, € ¢(c),

we consider
t
MC(t) = Vc(t) + ?C,

and hence
T
uc(t) = /0 k(t, s)f(s, uc(s)) ds + %C.

If ¢ = u.(T), then u, is a solution of the nonlinear problem (1). We then look for fixed
points of the map

ceR— u(T)eR.
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For ¢ € R fixed, we try to solve the integral equation (7).
Assume that there exist a,b € C[0, T] and « € [0,1) such that

(& )] < a(t) + b(e)|ul (8)

foreveryt € [0,T], u e R.
For v € C[0, T], define F.v € C[0, T] as

t
[Fv](2) :f<t, v(t) + ?c)
Thus, a solution of (7) is precisely a fixed point of K o F, = K,. Note that K, is a compact

operator. For v € C[0, T, let ||[v|| = sup,¢[o 77 [V(2)].
For A € (0,1), if v = AK,(v) we have

T
WE) = /0 k(t,s)f(s, Ws) + %c) ds,

and
T
S o
v(®)] < IIK] f f(s,v(s) + ?c) ds < ||kIl - T[llall + 151 (1]l +¢)*].
0
Hence there exist constants ag, by such that

Ivll < ao + bo(lIvll +¢)* )
for any v € C[0,T] and A € (0,1) solution of v = AK,(v). This implies that v is bounded
independently of A € (0,1), and hence by Schaefer’s fixed point theorem (Theorem 4.3.2
of [22]), K, has at least a fixed point, i.e., for given ¢, equation (7) is solvable.

Now suppose f is Lipschitz continuous.
Then there exists / > 0 such that

[f (t6,2) = f (&, 9)| < llx -y (10)

for everyt € [0,T] and x,y € R.
Then, for v,w € C[0, T], we have

T
|[I(CV](t) - [ch](t)| 5/ k(t,s)l|v(s) - w(s)| ds
0
and
IKev—Kw| < k|| -1- Tllv-wl.

Thus, for [ > 0 small, equation (7) has a unique solution in view of the classical Banach

contraction fixed point theorem.
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Now, under conditions (8) and (10), set
ceR— v, eC[0,T],

where v, is the unique solution of (7), and as a consequence of the contraction principle,
this map is continuous.

Define the map

¢o:R— R,

@(c) = ve(T).
If there exists ¢ € R such that ¢(c) = 0, then for that ¢ we have v.(T), and the function
t
uc(t) = ve(t) + ?c

is such that u.(T) = ¢, and therefore u, is a solution of the original nonlinear problem (1).

Now, assume that

lim f(t,u) = £o0 (11)
u—+00
uniformly on ¢ € [0, T].
Then the growth of ||v|| is sublinear in view of estimate (9). However, ¢ growths linearly.

Hence the norm of the function
s
ve(s) + ?c

growths asymptotically as c.
This implies that lim,_, 1 ¢(c) = 200, and there exists ¢ € R with ¢(c) = 0.
We have the following result.

Theorem 3.1 Suppose that f satisfies the growth conditions (8) and (10). If (11) holds, then
(1) is solvable for [ sufficiently small.

Note that condition (11) is crucial since for f(t,u) = o (£) and, in view of (5), the prob-

lem (1) may have no solution.
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