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Abstract
We present a new existence result for a second-order nonlinear ordinary differential
equation with a three-point boundary value problem when the linear part is
noninvertible.
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1 Introduction
The study of multi-point boundary value problems for linear second-order ordinary dif-
ferential equations goes back to themethod of separation of variables []. Also, some ques-
tions in the theory of elastic stability are related to multi-point problems []. In , Il’in
and Moiseev [, ] studied some nonlocal boundary value problems. Then, for example,
Gupta [] considered a three-point nonlinear boundary value problem. For some recent
works on nonlocal boundary value problems, we refer, for example, to [–] and refer-
ences therein.
As indicated in [], there has been enormous interest in nonlinear perturbations of

linear equations at resonance since the seminal paper of Landesman and Lazer []; see
[] for further details.
Here we study the following nonlinear ordinary differential equation of second order

subject to the three-point boundary condition:

–u′′(t) = f
(
t,u(t)

)
, t ∈ [,T],

u() = , αu(η) = u(T),
()

where T > , f : [,T]×R→R is a continuous function α ∈R and η ∈ (,T).
In this paper we consider the resonance case αη = T to obtain a new existence result.

Although this situation has already been considered in the literature [], we point out
that our approach and methodology is different.
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2 Linear problem
Consider the linear second-order three-point boundary value problem

–u′′(t) = σ (t), t ∈ [,T],

u() = , αu(η) = u(T)
()

for a given function σ ∈ C[,T].
The general solution is

u(t) = c + ct –
∫ t


(t – s)σ (s)ds

with c, c arbitrary constants.
From u() = , we get c = . From the second boundary condition, we have

(T – αη)c =
∫ T


(T – s)σ (s)ds – α

∫ η


(η – s)σ (s)ds. ()

2.1 Nonresonance case
If αη �= T , then

c =


T – αη

[∫ T


(T – s)σ (s)ds – α

∫ η


(η – s)σ (s)ds

]
,

and the linear problem () has a unique solution for any σ ∈ C[,T]. In this case, we say
that () is a nonresonant problem since the homogeneous problem has only the trivial
solution as a solution, i.e., when σ = , c = c =  and u = . Note that the solution is
given by

u(t) =
∫ T


g(t, s)σ (s)ds ()

with

g(t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t(T–s)
T–αη

– tα(η–s)
T–αη

– (t – s),  ≤ s <min(η, t),
t(T–s)
T–αη

– tα(η–s)
T–αη

,  ≤ t < s < η < T ,
t(T–s)
T–αη

– (t – s),  ≤ η < s < t ≤ T ,
t(T–s)
T–αη

, max(η, t) < s ≤ T .

For T =  this is precisely the function given in Lemma . of [] or in Remark  of [].

2.2 Resonance case
If T = αη, then () is solvable if and only if

∫ T


(T – s)σ (s)ds = α

∫ η


(η – s)σ (s)ds, ()
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and then () has a solution if and only if () holds. In such a case, () has an infinite number
of solutions given by

u(t) = ct –
∫ t


(t – s)σ (s)ds, c ∈ R.

In particular ct, c ∈ R is a solution of the homogeneous linear equation

–u′′(t) = , t ∈ [,T]

satisfying the boundary conditions

u() = , αu(η) = u(T).

Note that

u(T) – u(η) = cT –
∫ T


(T – s)σ (s)ds – cη +

∫ η


(η – s)σ (s)ds,

and then

c =


T – η

[
u(T) – u(η) +

∫ T


(T – s)σ (s)ds –

∫ η


(η – s)σ (s)ds

]
.

We now use that u(T) = T
η
u(η) to get


T – η

[
u(T) – u(η)

]
=


T
u(T)

and

c =


T – η

[∫ T


(T – s)σ (s)ds –

∫ η


(η – s)σ (s)ds

]
+


T
u(T).

Hence the solution of () is given, implicitly, as

u(t) =
∫ T



t(T – s)
T – η

σ (s)ds –
∫ η



t(η – s)
T – η

σ (s)ds –
∫ t


(t – s)σ (s)ds +

t
T
u(T)

or, equivalently,

u(t) =
∫ T


k(t, s)σ (s)ds +

t
T
u(T), ()

where

k(t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s, ≤ s <min(η, t),

t, ≤ t < s < η ≤ T ,
t(T–s)
T–η

– (t – s), ≤ η < s < t ≤ T ,
t(T–s)
T–η

, max(η, t) < s≤ T .

We note that k ∈ C([,T]× [,T],R) and k(t, s)≥  for every (t, s) ∈ [,T]× [,T].
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3 Nonlinear problem
Defining the operators:

F : C[,T] → C[,T],

[Fu](t) = f
(
t,u(t)

)
, u ∈ C[,T], t ∈ [,T],

K : C[,T]→ C[,T],

[Kσ ](t) =
∫ T


k(t, s)σ (s)ds, σ ∈ C[,T], t ∈ [,T],

L : C[,T] → C[,T],

[Lu](t) =
t
T
u(T), u ∈ C[,T], t ∈ [,T],

the nonlinear problem is equivalent to

u =Nu,

where N = K ◦ F + L.
We note that () can be written as

u(t) –
t
T
u(T) =

∫ T


k(t, s)σ (s)ds

and the nonlinear problem () as

u(t) –
t
T
u(T) =

∫ T


k(t, s)f

(
s,u(s)

)
ds.

This suggests to introduce the new function v(t) = u(t) – t
T u(T). To find a solution u, we

have to find v and u(T).
For every constant c ∈ R, we solve

v(t) =
∫ T


k(t, s)f

(
s, v(s) +

s
T
c
)
ds ()

and let ϕ(c) be the set of solutions of (). This set may be empty (no solution), a singleton
(unique solution) or with more than one element (multiple solutions). For every vc ∈ ϕ(c),
we consider

uc(t) = vc(t) +
t
T
c,

and hence

uc(t) =
∫ T


k(t, s)f

(
s,uc(s)

)
ds +

t
T
c.

If c = uc(T), then uc is a solution of the nonlinear problem (). We then look for fixed
points of the map

c ∈ R−→ uc(T) ∈R.
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For c ∈R fixed, we try to solve the integral equation ().
Assume that there exist a,b ∈ C[,T] and α ∈ [, ) such that

∣∣f (t,u)∣∣ ≤ a(t) + b(t)|u|α ()

for every t ∈ [,T], u ∈R.
For v ∈ C[,T], define Fcv ∈ C[,T] as

[Fcv](t) = f
(
t, v(t) +

t
T
c
)
.

Thus, a solution of () is precisely a fixed point of K ◦ Fc = Kc. Note that Kc is a compact
operator. For v ∈ C[,T], let ‖v‖ = supt∈[,T] |v(t)|.
For λ ∈ (, ), if v = λKc(v) we have

v(t) = λ

∫ T


k(t, s)f

(
s, v(s) +

s
T
c
)
ds,

and

∣∣v(t)∣∣ ≤ ‖k‖
∫ T


f
(
s, v(s) +

s
T
c
)
ds≤ ‖k‖ · T[‖a‖ + ‖b‖(‖v‖ + c

)α]
.

Hence there exist constants a, b such that

‖v‖ ≤ a + b
(‖v‖ + c

)α ()

for any v ∈ C[,T] and λ ∈ (, ) solution of v = λKc(v). This implies that v is bounded
independently of λ ∈ (, ), and hence by Schaefer’s fixed point theorem (Theorem ..
of []), Kc has at least a fixed point, i.e., for given c, equation () is solvable.
Now suppose f is Lipschitz continuous.
Then there exists l >  such that

∣∣f (t,x) – f (t, y)
∣∣ ≤ l|x – y| ()

for every t ∈ [,T] and x, y ∈ R.
Then, for v,w ∈ C[,T], we have

∣∣[Kcv](t) – [Kcw](t)
∣∣ ≤

∫ T


k(t, s)l

∣∣v(s) –w(s)
∣∣ds

and

‖Kcv –Kcw‖ ≤ ‖k‖ · l · T‖v –w‖.

Thus, for l >  small, equation () has a unique solution in view of the classical Banach
contraction fixed point theorem.
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Now, under conditions () and (), set

c ∈ R−→ vc ∈ C[,T],

where vc is the unique solution of (), and as a consequence of the contraction principle,
this map is continuous.
Define the map

ϕ :R −→R,

ϕ(c) = vc(T).

If there exists c ∈R such that ϕ(c) = , then for that c we have vc(T), and the function

uc(t) = vc(t) +
t
T
c

is such that uc(T) = c, and therefore uc is a solution of the original nonlinear problem ().
Now, assume that

lim
u→±∞ f (t,u) = ±∞ ()

uniformly on t ∈ [,T].
Then the growth of ‖v‖ is sublinear in view of estimate (). However, c growths linearly.

Hence the norm of the function

vc(s) +
s
T
c

growths asymptotically as c.
This implies that limc→±∞ ϕ(c) = ±∞, and there exists c ∈R with ϕ(c) = .
We have the following result.

Theorem . Suppose that f satisfies the growth conditions () and (). If () holds, then
() is solvable for l sufficiently small.

Note that condition () is crucial since for f (t,u) = σ (t) and, in view of (), the prob-
lem () may have no solution.
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