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Abstract

Background: The emergence of Acquired Immunodeficiency Syndrome has highlighted the increased incidence and
importance of the disease caused by Non-tuberculous Mycobacteria (NTM). While disease due to M. avium-intracellulare
complex is apparently common throughout the world, other Non-tuberculous mycobacterial species have been
isolated from both immunocompromised and immunocompetent individuals. The increasing number of infections
caused by these organisms has made it clinically important to quickly identify mycobacterial species. The diagnosis of a
pathogenic versus a non-pathogenic species not only has epidemiological implications but is also relevant to the
demands of patient management. Since antibiotic treatment varies according to the species encountered, species
identification would reduce the burden of some of these emerging opportunistic pathogens especially in
immunocompromised patients and improve their quality of life.

Findings: A total of 91 NTM suspected isolates from four regions of Zambia were included in the study. These isolates
were identified using the sequence analysis of the 16S-23S rRNA intergenic transcribed spacer (ITS) region of
Mycobacteria.
Fifty-four of the 91 (59%) isolates were identified as NTM and these included M. intracellulare (27.8%), M. lentiflavum
(16.7%), M. avium (14.8%), M. fortuitum (7.4%), M. gordonae (7.4%), M. kumamotonense (3.7%), M. indicus pranii (3.7%),
M. peregrinum (3.7%), M. elephantis (1.85%), M. flavescens (1.85%), M. asiaticum (1.85%), M. bouchedurhonense (1.85%),
M. chimaera (1.85%), M. europaeum (1.85%), M. neourum (1.85%), M. nonchromogenicum (1.5%).

Conclusion: The study has shown that DNA sequencing of the ITS region may be useful in the preliminary
identification of NTM species. All species identified in this study were potentially pathogenic.
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Findings
Members of the genus Mycobacterium are important
causes of respiratory disease, thereby posing an impor-
tant public health threat to people and animals world-
wide. Recently, there has been increased cognisance
of a variety of diseases that have been caused by Non-
tuberculous Mycobacteria (NTM) [1]. The current un-
precedented high level of interest in NTM infections is
mainly the result of the association of NTM infection
with immune-suppression [2] and the recognition that
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NTM pulmonary infections are encountered with in-
creasing frequency in the immune-competent patients.
Another major factor contributing to the increased
awareness of the importance of NTM as human patho-
gens is the improvement in the mycobacteriology labo-
ratory techniques, resulting in enhanced isolation and
more rapid and accurate identification of NTM from
clinical specimens [3]. Consistent with advances in
mycobacteriological laboratory techniques is the em-
phasis on the identification of individual NTM species
and the clinical disease-specific syndromes they produce
[4]. The number of NTM species has been steadily
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increasing [5] and currently there are more than 160
NTM species [6].
Although the reservoir of infection in most cases re-

mains unclear, there is a general notion that NTM infec-
tions are derived mainly from the environment. NTM are
widely distributed in nature and have been isolated from
water and soil with water being the major reservoir [7].
There are a variety of situations where human and myco-
bacterial geographical and environmental distributions
can overlap leading to exposure of humans. A major
overlap occurs with water where humans are exposed to
mycobacteria in water through drinking, swimming and
bathing [8]. Aerosols generated during some of these ac-
tivities can also lead to human exposure [9]. The presence
of NTM in water, coupled with their disinfectant resis-
tance, leads to their presence in hot tubs, solutions used
in medical treatments and water–oil emulsions used to
cool metal working tools [10]. It is however, generally be-
lieved that the majority of human-mycobacterial interac-
tions are transient, self-curing colonisations [11,12]. These
subclinical human-mycobacterial interactions may give a
transient stimulation of certain pathways that may set the
stage for manifestation of other diseases [4].
Non-tuberculous Mycobacteria are often involved in

nosocomial outbreaks [13], although there is little or no
evidence for person-to-person transmission of these or-
ganisms [3]. However, the significance of isolation of these
organisms in clinical samples remains unclear since the
number of diseases they cause is difficult to assess and no
system for notification exists as in the case of M. tubercu-
losis. In addition, treatment and infection control measures
Figure 1 Organisms identified by sequence analysis of the ITS positiv
vary according to the aetiological species [3]. Therefore,
rapid and accurate identification of mycobacteria to the
species level is essential to facilitate early treatment of
mycobacterioses.
Zambia is a high burden country for tuberculosis and

patients with chronic pneumonia, lymphadenitis, pyrexia
of unknown origin and other chronic infections are eva-
luated for tuberculosis through microbiological cultures of
various clinical specimens. In the process of isolating M.
tuberculosis, NTM are also isolated from these specimens,
without any attempt to identify them to species level.
Therefore this study was initiated to identify NTM to spe-
cies level for ease of managing such suspect conditions.
Materials and methods
This was a retrospective study of 91 isolates stored over
a period of three and half years from January 2009 to
June 2012 from four regions of Zambia (Eastern, Lusaka,
Southern and Western). The stored isolates were revived
using Lowestein Jensen (LJ) and Mycobacterium Growth
Indicator Tube (MGIT) by standard microbiological pro-
cedures [14]. The cultures were then subjected to PCR
identification and DNA sequencing of the 23S rRNA
(ITS) region with primers Sp1 (5′-ACC TCC TTT CTA
AGG AGC ACC-3′) and Sp2 (5′-GAT GCT CGC AAC
CAC TAT CCA-3′) [15]. The obtained sequences were
compared with those available in GenBank by BLAST
searches. Sequences that displayed at least 98% sequence
identity when compared to those in the GenBank were
preliminary considered as identified species [16].
e PCR amplicons.



Table 1 Spectrum and Identity of NTM species

NTM species No. Frequency (%)

M. intracellulare 15 27.8

M. lentiflavum 9 16.7

M. avium 8 14.8

M. fortuitum 4 7.41

M. gordonae 4 7.41

M. kumamotonense 2 3.70

M. indicus pranii 2 3.70

M. peregrinum 2 3.70

M. elephantis 1 1.85

M. flavescens 1 1.85

M. asiaticum 1 1.85

M. bouchedurhonense 1 1.85

M. chimaera 1 1.85

M. europaeum 1 1.85

M. neoaurum 1 1.85

M. nonchromogenicum 1 1.85

Total 54 100
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Results
Sequence analysis and identification of the ITS region of
the 91 strains showed: NTM species (68), Mycobacterium
tuberculosis complex (17), Rodococcus equi (3),Tsukamur-
ella pulmonis (1), Norcadia carnea (1) and Paenibacillus
species (1) as shown in Figure 1 and Additional file 1:
Western
MI (1)

Southern
MI (3)

Figure 2 Map of Zambia showing regions of various NTM identified.
intracellulare), ML (M. lentiflavum), MA (M. avium), MF (M. fortuitum), MG (M.
pranii), MFL (M. flavescens), MP (M. peregrinum), MAS (M. asiaticum), MB (M.
(M. neoaurum), MNO (M. nonchromogenicum).
Table S1. Of the 68 NTM isolates, 54 were identified to
species level as shown in Table 1, while 14 could not be
identified. The 54 NTM species identified belonged to 16
different species with M. intracellulare exhibiting the
highest frequency of identity (Additional file 2). Further-
more, M. intracellulare was the only NTM specie iden-
tified in the four regions of Zambia under study, with
Lusaka region having a higher frequency (10), Southern
(3), Western (1) and Eastern (1). M. fortuitum was identi-
fied in the Eastern and Lusaka regions, with one and three
isolates respectively. All the other 14 species identified
were from the region of Lusaka. A map of Zambia sho-
wing regions of distribution of various NTM identified in
this study is shown in Figure 2.

Discussion
Non-tuberculous Mycobacteria have gained a lot of cli-
nical significance in the last couple of decades in im-
munocompromised and immunocompetent individuals
or patients [2]. Their ubiquitous distribution in nature
put them at an advantage of having hosts close to
ecological niches compounded by human activities. This
might be the first study in Zambia to identify NTM spe-
cies using PCR and DNA sequencing of the ITS region.
This study has provided a range of NTM species which
are potentially pathogenic. A total of 64 isolates were
initially identified as NTM species. On sequencing and
GenBank comparison, only 54 were identified to species
level using the preliminary identification strategy which
Eastern
MI (1)
MF (1)

Lusaka
MI (10), ML (9), MA (8), MF (3), MG (4)
MK (4), ME (3), MIP (2), MFL (2)MP (2), 
MAS (1), MB (1), MC (1), MEU (1), 
MN (1),  MNO (1), 

The regions are indicated in bold with the identified NTM. MI (M.
gordonae), MK (M. kumamotonense), ME (M. elephantis), MIP (M. indicus
bouchedurhonense), MC (M. chimaera), MEU (M. europaeum), MN
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has been previously described [16]. The most prevalent
species was M. intracellulare followed by M. lentiflavum
and M. avium. This was in partial agreement with the
findings of the study conducted by Buijtels and others
[17] in the Eastern region of Zambia where sputum
Mycobacterial culture isolates were identified by 16S
rRNA gene sequencing. In this study M. fortuitum, was
isolated from a clinical case. The other studies conducted
in the Western and Northern regions of Zambia [18] and
other parts of the world [19,20] were in contrast with
these findings. The reason for this difference is that NTM
species distribution differs from one geographical region
to another [21].
M. intracellulare has been identified as the important

species of the Mycobacterium avium complex. It has
been identified together with M. avium as a complex
because of their close similarities. M. intracellulare has
been found to be more pathogenic than M. avium [22]
and have been reported to cause disease not only in im-
munocompromised but also in immunocompetent sub-
jects [23]. Other NTM species such as M. lentiflavum
and M. avium have been implicated in clinical disease of
immunocompromised as well as immunocompetent in-
dividuals [24,25]. M. lentiflavum has been isolated from
various human specimens including pleural effusions,
ascites and lung tissue [26,27] and have mainly been as-
sociated with causing an array of infections in immuno-
compromised patients [28]. Unlike M. intracellulare,
most M. avium species do not multiply in monocytes of
healthy individuals [29]. M. fortuitum infrequently cause
a variety of diseases including bone and soft tissue in-
fections, lymphadenitis and post-surgical infections and
lung disease [30]. M. kumamotonense, M. indicus pranii,
M. flavescens, M. bouchedurhonense, M. chimaera, M.
europaeum and M. nonchromogenicum were identified
and reported for the first time in Zambia. Some of these
NTM have been associated with clinical disease [31,32]
while M. indicus pranii is an atypical saprophytic bacter-
ium that has raised a lot of research interest in leprosy
immunotherapeutic [33]. M. flavescens has been isolated
from the synovial fluid of an AIDS patient [34], whereas
M. bouchedurhonense and M. chimaera have been do-
cumented in some respiratory tract infections [35]. M.
europaeum was isolated from the sputum samples of an
Iranian human immunodeficiency virus-infected patient
and a cystic fibrosis patient with chronic pulmonary
disease [36] while M. nonchromogenicum has been asso-
ciated with sarcoidosis [37].
Other organisms which are not NTM that were identi-

fied include Mycobacterium tuberculosis complex species,
Rodococcus equi, Nocardia carnea, Tsukamura pulmonis
and Paenibacillus species. Of significance is the identifi-
cation of Rodococcus equi from a clinical specimen in
Zambia. This is the second time Rodococcus equi has been
reported in Zambia [38]. The organisms: Rodococcus equi,
Nocardia carnea, Tsukamura pulmonis and Paenibacillus
species have been known to cause pulmonary diseases that
are similar to tuberculosis [39-41]. Management of infec-
tions by these agents is different from that of tuberculosis.
Therefore species identification of NTM remains of great
importance as it provides an opportunity to develop a data-
base that may help increase the scope of mycobacterioses.

Availability of supporting data
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