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Abstract. A traditional view in neuroscience is that information arriving through one channel, i.e. 
a synapse, is encoded through a single code in the signal, e.g., the rate or the precise timing of the 
incoming events. However, not all the neural readers have to be interested in the same aspect of 
a common input signal, especially in multifunctional networks that can take advantage of several 
simultaneous codes. Multiple codes can be used to discriminate or contextualize certain inputs, 
even in single neurons. Dynamical mechanisms can add to the existing hard-wired connectivity 
for this task. Recent experiments have revealed the existence of neural signatures in the activity 
of bursting cells of invertebrate central pattern generators. These signatures consist of cell-specific 
spike timings in the bursting activity of the neurons. The signatures coexist with the information 
encoded in the frequency and/or phase relationships of the slow waves. The functional role of these 
neural fingerprints is still unclear. Based on experiments and using conductance-based models, we 
discuss the origin and the role of neural signatures as a part of a multicoding strategy for single cells 
in different types of neural circuits. 
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INTRODUCTION 

Neural bursting activity is present in many cells of different nervous systems. Depending 
on the particular system under study, bursts are interpreted as pathological states [1], as 
a very reliable mechanism for transmitting information [2], or as an essential means to 
induce plasticity [3]. Bursts are traditionally considered as unitary events, and thus the 
temporal distribution of action potentials inside the bursts is often disregarded. Only 
recently there has been some attention to assess the specific role of the spiking activity 
in bursting neurons [4, 5, 6, 7] (see Fig. 1). 

Bursting activity is very common in Central Pattern Generators (CPGs), relative 
simple neural networks for the production of motor rhythms. CPGs are multifunctional 
circuits highly specialized to produce a rhythmic sequence to control a movement 
that must be repeated in time. CPGs from invertebrates are particularly suitable for 
experimental purposes, as these networks are easy accessible and all their neurons and 
connections can be identified. The intraburst spike distribution of CPG neurons has not 
been analyzed in great detail since, typically, it is thought that the slow wave dynamics 
is the main factor shaping the rhythmic behavior of the system. However, several recent 
experimental findings point out that the temporal structure of the bursts can be important 
for CPG neurons. In particular, the first spikes in the bursting activity of pyloric cells are 
highly reliable [8, 9, 10] and they display neural signatures in their intraburst interspike 

CP887, Cooperative Behavior in Neural Systems: Ninth Granada Lectures 
edited by J. Marro, P. L. Garrido, and J. J. Torres 

© 2007 American Institute of Physics 978-0-7354-0390-l/07/$23.00 

51 



interval (ISI) distributions [11, 12]. The neural signatures consist of reproducible cell-
specific spike timings in the bursting activity of each neuron. 

Bursts as unitary events 

Bursts with meaningful temporal structure 

FIGURE 1. (Color online) Traditional and new views of bursting activity. 

There are many open questions related to the discovery of the neural signatures. In this 
paper we review some of our modeling work about the origin of the neural signatures 
and their role in implementing multiple codes in spiking-bursting activity [13, 14, 15, 
16, 17]. 

INTRINSIC DYNAMICS AND CONNECTIVITY 

A first open question from the in vitro experiments is related to the origin of the 
neural signatures. Intrinsic dynamics, network connections, and the effect of external 
neuromodulation are all factors that could shape the intraburst spike timings. To isolate 
these factors in in vitro experiments is a hard task. We have used realistic models of 
CPG neurons and networks to pursue this question. 

Single neuron models 

To analyze the dependence of neural signatures on the intrinsic cell properties and 
on the network architecture we have used Komendantov-Kononenko (KK) model neu­
rons [18]. This conductance-based model has a rich dynamic behavior with the ability 
to generate the characteristic bifurcations in the spiking-bursting behavior observed in 
the activity of isolated CPG living cells. As a function of the maximum conductances of 
the ionic channels, the model can be set into a regular spiking-bursting or into a chaotic 
spiking-bursting activity. The equations that describe the dynamics of the model and the 
parameters used to obtain each type of behavior can be found in [18]. 

Fig. 2 shows the regular and chaotic spiking-bursting activity in a KK single neuron 
model. The intraburst spike activity is typically represented by interspike interval return 
maps [19, 20, 21, 4, 5, 11]. These return maps plot ISIf vs. ISI^i and are a useful tool 
to characterize the cell-specific intraburst interspike timing distributions. Right panels 
in Fig. 2 show the neural signatures of regular and chaotic spiking-bursting modes 
represented by return maps. 
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(Color online) Different bursting modes of an isolated KK single neuron model. Right 
the ISI return maps of the intraburst spiking activity. 

Network models 

For the network analysis we have used two different topologies depicted in the right 
panels of Fig. 3. These circuits are inspired in the pyloric CPG of crustacean. Both net­
works are built out of two subcircuits: the AB-PD1-PD2 neurons, which are mutually 
connected through electrical coupling (represented with resistors), and the AB-LP-PY 
neurons that are connected with chemical synapses. There are two types of chemical 
connections in the first circuit: slow (represented with dotted lines) and fast (represented 
with solid lines). The second circuit (lower right panel in Fig. 3) does not include slow 
chemical connections. With these two circuits we will be able to analyze the dependence 
of the spiking behavior on the architecture of connections. In the AB-PD1-PD2 subnet­
work (often called the pacemaker group), the neurons are electrically coupled with sym­
metric connections [13]. As a consequence, the subthreshold membrane potentials of 
these neurons are synchronized. Physiologists have always recorded a regular spiking-
bursting activity in the AB neuron even when isolated from the rest of the circuit. For 
this reason, in all our models the AB model neuron has a regular behavior. Conversely, 
the isolated PD model neurons are set into a non-regular regime since this is the behavior 
observed in the experiments on isolated cells. 

The AB/PD-LP-PY network comprises the pacemaker group and the LP and PY neu­
rons. The later have connections to and from the pacemaker group by means of chemical 
synapses. With this architecture of connections, the living pyloric CPG generates a ro­
bust triphasic rhythm: there is an alternating regular bursting activity between the pace-
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maker group, the LP and the PY neuron. Both model circuits reproduce this behavior 
(see Fig. 3). The details of the connection models are reported in [13]. 

Circuit with Slow Chemical Synapses (A) 

Circuit without Slow Chemical Synapses (B) 

ISI n (s) 

FIGURE 3. (Color online) Rhythms generated in the two circuits and neural signatures of each cell. Top 
panels: circuit with slow connections. Bottom panels: circuits without the slow connections. Axis length 
in all intraburst ISI return maps is 0.8s. 

Signatures are shaped by the network connections 

Before establishing the connections in the two circuits we have placed each neuron 
(except AB) in a chaotic regime. The AB is tuned into a regular spiking-bursting behav-
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ior. We have chosen a chaotic spiking regime for the PY and one of the PD neurons, 
while the second PD and the LP are set into a chaotic spiking-bursting behavior (for 
details see [13, 14]). When we connect the neurons in the circuits specified above, a 
characteristic triphasic rhythm arises independently of the mode of activity in isolation 
and the particular connection topology used in the network. The triphasic rhythm con­
sists of an alternation of regular bursts in the activity of the AB, LP and PY neurons in 
this sequence (PDs follow the AB phase as mentioned before). Square panels in Fig. 3 
show the interspike interval return plots for the different connection configurations. 

Top square panels in Fig. 3 display the intraburst ISI return maps for the circuit with 
slow chemical synapses. Bottom square panels show the ISIs for the circuit without slow 
connections. The ISIs of network elements dramatically change from those correspond­
ing to isolated neurons (cf. Fig. 1, note the different time scales in the axes). When the 
connections are established, the neuron signatures change even for the AB that also had 
a regular dynamics in isolation. In all simulations the networks display a regular tripha­
sic rhythm. Regular in this context means that the slow wave duration remains constant 
from burst to burst. Each neuron in the network has a characteristic ISI signature. The 
signatures depend both on the particular settings of the individual neurons and on the 
topology of connections, but this topology is the final shaper of the neural signatures. 
The results reported in this section can be reproduced with other neuron models and 
network architectures [13, 14]. In general, the presence of slow chemical connections 
produced a more precise ISI return plot than those corresponding to the circuits without 
the slow synapses. PD1 and PD2 neurons were placed in two different modes in activa­
tion, and had major differences in the ISI plots in the circuit without slow connections. 
Simulations also show that in spite of its intrinsic regular bursting behavior, the AB can 
have complex signatures. Interestingly, LP and PY neurons had, in general, very similar 
and precise signatures in our simulations. These neurons are the only units that receive 
at least a double inhibition in the two circuits. 

MULTICODING BURSTS 

Another open question from the biology is related to the ability of a circuit to recognize 
a specific signature and, as a consequence, change its behavior. In this context, 'to 
recognize' a neural signature means that the reader system displays a different behavior 
when it receives different neural fingerprints, independently of the characteristics of 
the slow wave of the signal. It is unknown whether bursting neurons have cellular 
mechanisms to decode precise temporal information in the spike trains, besides those 
needed to detect changes in the period or in the phase relationships of input signals. 
This question is also difficult to address experimentally as it is hard to alter the ISI 
distribution without modifying the properties of the slow waves in vitro. Our goal in 
this section is to show, using model neurons and networks, that the spike distribution 
inside the bursts can be identified by an external system, i.e. another CPG. For this goal 
we will use a well known Liu et al. model of stomatogastric neurons, described in [22], 
to generate the characteristic spiking-bursting behavior of these cells. This model is a 
single compartment conductance-based description based on in vitro experiments on 
living cells [23]. The details of the model and the values of the parameters for each 
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neuron in our simulations are described in [16]. 

Signature emitter and reader CPGs 

Neural signatures arise within the particular rhythm generated by the CPG [11, 24, 
25]. Thus, we have built a network where the generation of different signatures, in an 
emitter CPG, coexists with other functionality. A reader CPG will react to the signals 
produced in the emitter system. The network architecture of the emitter CPG is built 
with the idea to model a generic CPG composed of neurons M, E\, E2 and / (see upper 
panel in Fig. 5). This CPG produces a well-defined rhythm while, at the same time, some 
of its neurons (in this case, E\ and E2) generate different signatures. We consider these 
later neurons signature emitter cells. To ensure that these neurons generate signals with 
the same burst duration and number of spikes, we use a pacemaker group (M, E\ and E2 
neurons) similar to the one present in the pyloric CPG [24]. The neurons of this group 
are electrically coupled by gap junctions (for details see [16]). Consequently, they fire 
together with the same slow wave frequency. However, as we will see later, the temporal 
distribution of spikes within the bursts is different because the individual behavior of 
each cell and the connections that they receive are not exactly the same (see [16]). In 
all cases considered, we want that this CPG generates a proper rhythm. This rhythm 
consists in the fire alternation of the pacemaker group and the / neuron. 

We will consider two reader CPGs that are also generic CPGs composed of neurons 
R, N\, N2 and A/3. The only difference between these two CPGs are the connectivity 
parameters among their neurons (see [16]). This difference will change the CPG reaction 
to the incoming signals: one of the reader CPGs will react to distinct neural signatures, 
while the other will react to distinct slow wave frequencies. 

The emitter CPG neurons are connected to the R cell of the reader CPGs through 
fast inhibitory graded chemical synapses. The R neuron receives the signal from the 
signature emitter system and propagates it through the reader CPGs. We use different 
values for the synaptic conductances a and j3 to control the presence of a signature 
at a given time (see top panel in Fig. 3). In all the simulations performed, one of the 
connections between the neurons of the emitter system and the reader CPGs is stronger 
than the other (with a higher conductance, in the order of 0.1 mS vs 0.009 mS). Thus, 
the R cell in each circuit receives the signature of one predominant emitter neuron at a 
time. In living systems, a similar effect can be produced by neuromodulators that are 
able to reconfigure the neuronal networks [26, 27, 28, 29, 30, 31]. The N\, N2 and A/3 
neurons produce the CPG rhythm. The R neuron receives a feedback from the rest of the 
CPG through the iVi and A/3 cells. 

Thus, our final circuit consists of three CPGs, each one performing a different task 
(generating different rhythms) but intercommunicated with signals that can have differ­
ent signatures and slow wave frequencies. The emitter CPG drives the behavior of the 
reader CPGs as their specific rhythm depends on the signals received from the emitter. 
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Emitter signals 

The emitter CPG can produce signals with different slow wave rhythms and also 
different signatures. In particular, we will consider four different signals within the 
collective rhythm generated by the signature emitter CPG: two different slow waves, 
FT (with a burst frequency of 1.38 Hz) and F2' (with a burst frequency of 1.49 Hz), and 
two different signatures on top of each of them (see Fig. 4). The parameters used in these 
simulations are described in [16]. The signals have the same burst duration and the same 
number of spikes per burst (6 spikes). When these signals are read by the reader CPGs, 
their response depends on the particular spike distribution inside the burst of each input 
signal or the specific frequency of the rhythm. 
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FIGURE 4. (Color online) Signatures of the emitter CPG. Left panel: Bar plot of the mean time interval 
from each action potential to the first spike (I2FS) for the different bursting signals generated by the 
signature emitter CPG. Right panel: Bar plot of the average ISI distribution for the same signals. For 
each spike, the first two bars correspond to signals with frequency F l ' and the last two bars correspond 
to signals with frequency F2 \ A particular signature Sx' can be on top of the rhythms with these two 
frequencies. Thus, we can say that the emitter CPG can also produce two different signatures (ST and 
S2') on signals with two different slow wave rhythms (FT and F2'). The labels 1 and 2 in these signals 
correspond to neurons El and E2, respectively, of the emitter CPG. Units are ms. 

Distinct readers react to different features of the signals 

To assess the effect of multiple coding in the input signals, we observe the reaction of 
the reader CPGs to the different signals produced by the emitter CPG. The E neurons of 
the emitter system can thus generate signals with two different slow waves frequencies, 
each of them with two different signatures. These signals are received in the R cell and 
then propagated to other neurons in the reader CPGs. 

The signature reader CPG (Fig. 5, left panels) reacts to the distinct signatures of the 
incoming signals, independently of the emitter slow wave frequencies. The response of 
R to signals with signature S1' contributes to the generation of a biphasic rhythm, with 
firing sequence N1-N3 and Afc in silent. However, with signature S2', the reader CPG 
generates a triphasic rhythm, with firing sequence N1-N2-N3. Rhythms generated when 
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FIGURE 5. (Color online) Distinct reaction of the different CPG readers to four different signals in the 
emitter CPG. Left panels: reaction of the signature reader CPG. Right panels: reaction of the frequency 
reader CPG. 

R receives signature S1' have a higher slow wave frequency than those generated with 
S2\ 

In the frequency reader CPG (Fig. 5, right panels) the rhythm generated does not 
depend on the signature. In this case the CPG generates different rhythms as a function of 
the frequency of the signal received. With FT (top panels) the CPG generates a triphasic 
rhythm that consists in the firing alternation of 7V"i, A^ and N2 neurons, in this order. With 
F2' (bottom panels) the CPG generates a rhythm with firing sequence N1-N2-N1-N2-N3. 
Thus, the two circuits use different features of the signal to produce distinct rhythms. 

DISCUSSION 

What subcellular mechanism can be responsible for the distinct responses of a neural 
reader to different interspike interval distributions? There is not a simple answer to 
this question. Obviously, the synaptic currents from the emitters are the origin for the 
different behaviors displayed by the signature reader CPG. The integration of these 
currents with the ongoing intracelullar dynamics of the reader neurons determines the 
characteristics of the response. The interaction of slow dynamics such as that of the 
calcium concentration with the fast kinetics of most ionic channels [32] can allow 
a distinct integration for incoming signals with a particular spike distribution [16]. 
Models have shown that the participation of calcium in the neuronal dynamics can 
regulate the timing precision of action potentials in specific regions of the burst [33]. 
The different resonant properties of intracellular dynamics have been suggested as the 
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minimal dynamical mechanism to identify non-trivial sequences of spike timings [34]. 
Many neural systems (vertebrate and invertebrate) display very precise timings in the 

spiking activity of different neurons, e.g. see [35, 36, 37, 38]. Although we have re­
stricted our study to spiking-bursting CPG models, neural signatures can be a general 
mechanism present in other neural networks to implement preferred input/output rela­
tions. These preferred input/output relations can explain why there are many silent neu­
rons in spite of the large number of incoming signals that they receive in a few millisec­
onds. The existence of cellular mechanisms to identify the origin of individual neural 
signals, and the study of information processing based on this identification have been 
neglected in the context of theoretical approaches to the nervous system. Neurons could 
not only discriminate specific interspike frequencies [5, 6], but also react selectively to 
input from specific cells identified by their signature [16]. 

Other bursting neurons show the presence of regions of focalized timing precision 
in the middle of the bursts [39]. In these neurons, the more variable first spikes could 
encode information about the duration and/or number of spikes in the burst [39]. Infor­
mation processing based on the identification of spike timings in bursting neurons can 
be a powerful strategy for neural systems that greatly enhances the capacity of these 
networks. 

ACKNOWLEDGMENTS 

This work was supported by Fundacion BBVA, MEC BFU2006-07902/BFI and MEC 
TIN2004-04363-C03-03. 

REFERENCES 

1. D. A. McCormick, and D. Contreras, Annu. Rev. Physiol. 63, 815-846 (2001). 
2. J. E. Lisman, Trends Neurosci. 20, 38-43 (1997). 
3. F. G. Pike, R. M. Meredith, A. W. A. Olding, and O. Paulsen, J. Physiol. (Lond) 518,571-576 (1999). 
4. A. Kepecs, and J. Lisman, Network 14, 103-118 (2003). 
5. E. Izhikevich, N. S. Desai, E. C. Walcott, and F. C. Hoppensteadt, Trends Neurosci. 26(3), 161-167 

(2003). 
6. R. Krahe, and F. Gabbiani, Nature Rev. Neurosci. 5, 13-24 (2004). 
7. A. M. Oswald, M. J. Chacron, B. Dorion, J. Bastian, and L. Maler, J. Neurosci. 24, 4351-4362 

(2004). 
8. R. C. Elson, R. Huerta, H. D. I. Abarbanel, M. I. Rabinovich, and A. I. Selverston, J. Neurophysiol. 

82,115-122(1999). 
9. P. Varona, J. J. Torres, R. Huerta, H. D. I. Abarbanel, and M. I. Rabinovich, Neural Networks 14, 

865-875 (2001). 
10. P. Varona, J. J. Torres, H. D. I. Abarbanel, M. I. Rabinovich, and R. Elson, Biol. Cybern. 84, 91-101 

(2001). 
11. A. Sziics, R. D. Pinto, M. I. Rabinovich, H. D. I. Abarbanel, and A. I. Selverston, J. Neurophysiol. 

89,1363-1377(2003). 
12. A. Sziics, H. D. I. Abarbanel, M. I. Rabinovich, and A. I. Selverston, European J. Neurosci. 2, 

763-772 (2005). 
13. R. Latorre, F. B. Rodriguez, and P. Varona, Lect. Notes Comput. Sc. 2415, 160-166 (2002). 
14. F. B. Rodriguez, R. Latorre, and P. Varona, Lect. Notes Comput. Sc. 2415, 167-173 (2002). 
15. R. Latorre, F. B. Rodriguez, and P. Varona, Neuro computing 58-60, 535-540 (2004). 
16. R. Latorre, F. B. Rodriguez, and P. Varona, Biol. Cybern. 95, 169-183 (2006). 

59 



17. R. Latorre, F. B. Rodriguez, and P. Varona, Neurocomputing, In press (2007). 
18. A. O. Komendantov, and N. I. Kononenko, /. Theor Biol 183, 219-230 (1996). 
19. A. J. Dekhuijzen, and J. Bagust, J. Neurosci. Methods 67, 141-147 (1996). 
20. J. P. Segundo, G. Sugihara, P. Dixon, M. Stiber, and L. F. Bersier, Neuroscience 87, 741-766 (1998). 
21. M. A. Fitzurka, and D. C. Tarn, Biol Cybern. 80, 309-326 (1999). 
22. A. Liu, J. Golowasch, E. Marder, and F. Abbott, J. Neurosci. 18, 2309-2320 (1998). 
23. G. G. Turrigiano, G. LeMasson, and E. Marder, J. Neurosci. 15, 3640-3652 (1995). 
24. A. I. Selverston, and M. Moulins, editors, The Crustacean Stomatogastric System: a Model for 

the Study of Central Nervous System., Springer-Verlag, Berlin Heidelberg New York London Paris 
Tokyo, 1987. 

25. R. M. Harris-Warrick, E. Marder, A. I. Selverston, and M. Moulins, editors, Dynamic Biological 
Networks: The Stomatogastric Nervous System., Cambridge, MA: MIT Press, 1992. 

26. E. Marder, and R. L. Calabrese, Physiol. Rev. 76, 687-717 (1996). 
27. E. Marder, and D. Bucher, Curr. Biol. 11, R986-R996 (2001). 
28. M. P. Nusbaum, D. M. Blitz, A. M. Swense, D. Wood, and E. Marder, Trends Neurosci. 24, 146-154 

(2001). 
29. M. P. Nusbaum, and M. P. Beenhakken, Nature 417, 343-350 (2002). 
30. M. A. Masino, and R. L. Calabrese, J. Neurosci. 22, 4418-4427 (2002). 
31. M. A. Masino, and R. L. Calabrese, J. Neurophysiol 87, 1603-1615 (2002). 
32. S. Ramaswamy, F. Baroni, P. Varona, and G. G. de Polavieja, Neuro computing, In press (2007). 
33. F. Baroni, J. Torres, and P. Varona, Lect. Notes Comput. Sci. 3561, 106-115 (2005). 
34. F. Baroni, and P. Varona, Neuro computing, In press (2007). 
35. P. Reinagel, and R. C. Reid, /. Neurosci. 20, 5392-5400 (2000). 
36. Z. Chi, and D. Margoliash, Neuron 32, 899-910 (2001). 
37. P. Reinagel, and R. C. Reid, /. Neurosci. 22(16), 6837-6841 (2002). 
38. J. D. Hunter, and J. G. Milton, /. Neurophysiol. 90, 387-394 (2003). 
39. D. Campos, C. Aguirre, E. Serrano, F. B. Rodriguez, G. de Polavieja, and P. Varona, Neuro computing, 

In press (2007). 

60 




