
This article is concerned with the power to detect
the presence of genotype by environment inter-

action (G × E) in the case that both genes and
environment feature as latent (i.e., unmeasured)
variables. The power of the test proposed by Jinks
and Fulker (1970), which is based on regressing the
absolute difference between the scores of monozy-
gotic twins on the sums of these scores, is
compared to the power of an alternative test, which
is based on Marginal Maximum Likelihood (MML).
Simulation studies showed that generally the power
of the MML-based test was greater than the power
of the Jinks and Fulker test in detecting linear and
curvilinear G × E interaction, regardless of whether
the distribution of the data deviated significantly
from normality. However, after a normalizing trans-
formation, the Jinks and Fulker test performed
slightly better. Some possible future extensions of
the MML-based test are briefly discussed.

The standard twin design includes a number of well-
known assumptions (Boomsma et al., 2002; Eaves et al.,
1989; Neale & Cardon, 1992). One important assump-
tion is that genotype by environment interaction is
absent. The presence of an interaction between genotype
and either shared or unshared environment renders the
usual summary statistics, such as the heritability coeffi-
cient, h2 (broad-sense) or a2 (narrow-sense), difficult to
interpret. This is because genotype by environment
interaction implies that the effect of the environment
depends on an individual’s genetic make-up, or that
the genetic effect depends on the individual’s environ-
ment (Purcell, 2002). So, while in the standard
additive genetic twin model, the phenotypic effect is
assumed to be the sum of additive genetic effects, and
shared and unshared environmental effects

(i.e., P = G + C + E, where P is the phenotype, G the
genetic effect, C the shared environmental effect, and
E the unshared environmental effect), one can also
assume the presence of an interaction between genes
and environment (e.g., phenotype = additive genetic
effects + unshared environmental effects + an interac-
tion between genotype and unshared environment;
P = G + E + G × E, i.e., a model in which shared envi-
ronmental effects are assumed absent). The focus of
the present article is on this interaction between geno-
type and unshared environment (henceforth G × E).

Various methods have been considered to detect
and/or model G × E. Multi-group designs can be
used to test the presence of G × E when actual mea-
sures of either G or E are available. Examples
include the effect of the APOE e4 allele on cognitive
decline in males versus females (Yaffe et al., 2000),
and the 5-HTT gene and the effect of stressful life
events on the risk of depression (Caspi et al., 2003).
Alternatively, G may feature as a latent (i.e., unmea-
sured) variable, and E as a measured categorical
moderator. Here, examples include the interaction
between marital status and genetic risk for depression
(Heath et al., 1998), the interaction between past-year
life events and genetic liability for depression and
anxiety (Silberg et al., 2001), and the interaction
between upbringing and genetic liability for disinhibi-
tion (Boomsma et al., 1999). Purcell (2002)
introduced a model for testing G × E in which G fea-
tures as a latent variable, and E as a continuous
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moderator. This model has, for example, been used to
study the effect of family dysfunction on the heritabil-
ity of neuroticism (Kendler et al., 2003), and the effect
of socioeconomic status on the heritability of IQ
(Turkheimer et al., 2003). When both G and E feature
as unmeasured, latent variables, the detection of G × E
interaction is more difficult. Molenaar and Boomsma
(1987) considered a detection method based on the
higher order moments of genetic and environmental
factor scores. This method requires multivariate data,
and large sample sizes to ensure the stability of esti-
mates of higher order moments. Jinks and Fulker
(1970) suggested a detection method based on the
regression of absolute differences of monozygotic
(MZ) twin-pair scores (i.e., |y1 – y2|), on the sums of
MZ twin-pair scores (i.e., y1 + y2). In MZ twins reared
apart, the difference |y1 – y2| can be taken as an esti-
mate of all postnatal environmental effects. For MZ
twins reared together, the difference |y1 – y2| only func-
tions as an estimate of the environmental effects
unique to individuals within a family. The expected
value of this difference score will be equal across fami-
lies (|y11 – y12|= … =|yn1 – yn2|), if the effect of the
within-family environment is uniform across pairs of
twins of different genotypes. However, if pairs of
twins of different genotypes react differently to similar
environmental influences, then the expected value of
the differences between MZ twin scores may depend
on their genotype (|y11 – y12|≠ … ≠|yn1 – yn2|). The sum
of MZ twin scores, on the other hand, will differ
across families if twins in different families have dif-
ferent genotypes, different (family) environments, or
both. Jinks and Fulker (1970) reasoned that the
absolute differences can be predicted from the sums, if
interaction between genotype and (within-family)
environment is present. By regressing the absolute dif-
ferences on the sums, it is possible to test whether the
relation between genes and environment is linear, that
is, (|yn1 – yn2|) = b0 + b1(yn1 + yn2), or curvilinear, that is,
(|yn1 – yn2|) = b0 + b1(yn1 + yn2) + b2(yn1 + yn2)

2, where b0

denotes the intercept, and b1 and b2 the regression
parameters for the linear and curvilinear effect, respec-
tively. A linear effect implies that the effect of the
environment is stronger (i.e., gives rise to greater indi-
vidual differences) at either higher or lower levels of
the genotypic factor, depending on the sign of the
regression parameter b1. A pure curvilinear effect (i.e.,
no linear effect) implies that the effect of the environ-
ment is stronger at either intermediate levels or
extreme levels of the genotypic factor, depending on
the sign of the regression parameter b2. Jinks and
Fulker (1970) also noted that G × E can be detected
through heterogeneity of within-twin standard devia-
tions caused by means and standard deviations being
related (p. 315). This means that when G × E is
present, the variance in the difference scores will vary
with the size of the sum scores. The scatter plots in
Figure 1, where we plotted the absolute twin1–twin2

differences against the twin1–twin2 sums, illustrate the

expected heterogeneity. When there is no G × E (i.e.,
no relation between the differences and the sums), the
variance in the difference scores is more or less homo-
geneous across levels of the sum scores (Figure 1A).
When linear G × E is present, the dispersion in the dif-
ference scores increases (Figure 1B) or decreases
(Figure 1C) with increasing sum scores, depending on
the direction of the effect. When curvilinear G × E is
present, the dispersion of the difference scores is either
larger for more extreme sum scores (i.e., small and
large sum scores, Figure 1D), or for intermediate sum
scores (Figure 1E).

Although the Jinks and Fulker test (henceforth JFT)
is particularly easy to conduct, its application is ham-
pered by low power, and sensitivity to nonnormality in
the data (e.g., Boomsma & Martin, 2002; Martin,
1999; Purcell, 2002). For example, when the distribu-
tion of a trait is skewed due to, say, floor or ceiling
effects of the test instrument, significant relations
between the differences and the sums may appear that
are not attributable to actual G × E interaction.
Although this sensitivity to (‘non-G × E’) violations of
normality is problematic, the question remains how
well the JFT detects G × E when data are free of
obvious sources of nonnormality, such as censoring.

The aim of the present article is to study the power
of the JFT to detect G × E, and to compare these results
to those obtained with an alternative test for detecting
G × E, which is based on Marginal Maximum
Likelihood (MML test, henceforth MMLT). First, we
will discuss some of the assumptions which underlie the
standard additive genetic twin models. Second, we will
elaborate on the rationale of MML, and illustrate the
implementation of MML in the univariate twin design.
Third, we will study the power to detect G × E with the
JFT and the proposed MMLT in simulated datasets,
distinguishing between normally and nonnormally dis-
tributed data. Fourth, we will examine the influence of
the normal scores transformation (an efficient normal-
izing transformation) on the detection of G × E with the
MMLT and the JFT. We conclude the article with a
brief discussion, in which we broach possible exten-
sions of the MMLT.

Standard Additive Genetic Twin Model and
Marginal Maximum Likelihood
In the standard additive genetic twin model, that is,
the ACE-model,1 where A, C, and E stand for additive
(polygenic) genetic, and shared, and unshared envi-
ronmental influences, respectively, any variance due
to G × E will end up in the E-component of the model
(e.g., Purcell, 2002). Intuitively, this seems correct
because, as a function of the unshared environmental
influence E, G × E can only contribute to differences
between twins. In standardized twin variance compo-
nent models, the additive genetic correlation Cor(A1,A2)
is fixed to 1 in MZ twins, and to .5 in dizygotic (DZ)
twins, while the unshared environmental correlation
Cor(E1,E2) is 0 in both MZ and DZ twins. Following
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A and E, and thus the observed variables, are assumed
to follow normal distributions. One implication of this
normality assumption is that the residuals in the
regression of the observed phenotype on the genotypic
factor A are homoscedastic. This means that the pro-
portion of variance explained by the unshared
environment is independent of the level of the geno-
typic factor, that is, a single statistic (i.e., parameter e
in Figure 2) is sufficient to describe the unique envi-
ronmental effect for the whole population. The model
parameters can be estimated maximizing the raw data
log-likelihood function:

[1]

the rules of covariance algebra (e.g., Kenny & Judd,
1986), it can be shown that Cov(A1E1,A2E2) =
Cov(A1A2)*Cov(E1E2) = 0, that is, the relation between
A and E in twin 1 and the relation between A and E in
twin 2 are uncorrelated, and thus only attribute to dif-
ferences within twin pairs. In the light of this, the key
to detecting G × E will be in studying the E-component.

The JFT is based on MZ twins only. In the remain-
der, we assume that we only have data of MZ twins at
our disposal. Under these circumstances, only a so-
called AE-model (as depicted in Figure 2) can be fit, in
which the genotypic factor A may include genetic as
well as shared environmental effects, as those effects
cannot be disentangled in MZ twins. To ease presenta-
tion, we assume that C is absent. 

In normal theory maximum likelihood (ML) esti-
mation of the parameters in the AE-model, the factors
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Figure 1
Plotting the absolute differences |t1 - t2| against the sums t1 + t2, for NMZ = 1000 cases, a2 = .5, e2 = .4 and 10% variance accounted for by G x E (that is,
b2 = .10). 
Note: For these illustrations, c2 was assumed to be zero. 
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where f(yi;σ2
A,σ2

E,µ) is the bivariate normal density
function, σ2

A and σ2
E denote the additive genetic and

unshared environmental variance respectively, µ the
expected phenotypic mean vector, and Σ the expected
covariance matrix. The variances in Σ equal σ2

A + σ2
E,

and the covariance equals σ2
A. Generally, the pheno-

typic means are not modeled beyond the specification
of a constraint to the effect that twin 1 mean equals
the twin 2 mean. Assuming the absence of missing
data and discarding the means (by prior centering,
say), this log-likelihood function may also be
expressed in terms of the phenotypic covariance
matrix S, which is a sufficient statistic (Azzelini,
1996), that is, (N-1)*[log(|Σ|) + trace(Σ-1S), where S is
the observed MZ covariance matrix and N is the
sample size.

The presence of G × E, however, as conceptualized
here, implies that the amount of variance attributable
to the unshared environment varies across levels of the
genotypic factor. Therefore a single statistic is no
longer sufficient to describe the unique environmental
effect for the whole population, as the statistic (i.e.,
parameter e in Figure 2) assumes different values for
different levels of the genotypic factor. The presence of
G × E thus results in heteroscedasticity, as was illus-
trated in Figure 1. This in turn implies that the

assumption of normality of the observed data (i.e.,
yi~N[µ,Σ]) no longer holds. However, we can still
assume normality conditional on the level of the geno-
typic factor, that is, yi|η*~N(µ + IOx a*ηi

*,ΣE
*), where I

is a 2 × 1 unit vector, ηi
* denotes a given level on the

latent genotypic factor, a the genotypic factor loading
(i.e., a2 = σ2

A), and ΣE
* is the 2 × 2 diagonal covariance

matrix for the residual variance, that is, ΣE
* = [σ2

E
* σ2

E
*],

where e2 = σ2
E

*. Note that now the environmental vari-
ance σ2

E
* may be a function of the additive genetic

factor η, that is, σ2
E

* can assume different values given
different levels of the genotypic factor.

Given this assumption, one can use MML estima-
tion (Bock & Lieberman, 1970), to estimate the
parameters and model the heteroscedasticity.
Although originally developed for item response
theory modeling of dichotomous items, this method is
equally applicable to continuous data (Hessen &
Dolan, 2006). The bivariate normal distribution of the
observed data, f(yi), is then expressed as the integral of
the product of the conditional density of yi given ηi

and the density of ηi, that is,

[2]

Equation 2 may be recognized as an application of the
law of multiplication (Miller & Miller, 2004). The
density of ηi, f(ηi) is the standard normal distribution,
and f(yi|ηi) is the conditional distribution, that is, as
explained above, yi|η*~N(µ + IOx a*ηi

*,ΣE
*). Although

this indefinite integral cannot be expressed in closed
form, it can be evaluated to any practical degree of
accuracy using Gauss-Hermite quadrature (Bock &
Lieberman, 1970). This numerical method allows one
to approximate the above integral by

[3]

where αj denotes the jth Gauss-Hermite quadrature
point, and wj, that is, f(αj), the corresponding weight.
Note that in the present context, the Gauss-Hermite
quadrature points may be interpreted as levels of the
latent genotypic factor. Note also that the number of
quadrature points j depends on the precision with
which one wishes to approximate the integral. Various
trials indicate that 10 quadrature points are sufficient
to achieve a satisfactory approximation. The quadra-
ture points and weights can be retrieved from tables
(e.g., Abramowitz & Stegun, 1970), or from the
Internet.2 Previously, MML was used to study het-
eroscedasticity in the single common factor model
(Hessen & Dolan, 2006). In this context, MML
allowed the study of the precision of measurement of
each indicator of the common factor conditional on
the level of the common factor.

Equation 3 may be viewed as an approximation
to the bivariate normal distribution f(yi;σ2

A,σ2
E,µ).

This approximation may be viewed as a multivari-
ate normal finite mixture distribution (e.g., Dolan

380 Twin Research and Human Genetics June 2006

Sophie van der Sluis, Conor V. Dolan, Michael C. Neale, Dorret I. Boomsma, and Danielle Posthuma

Figure 2
Path diagram of an AE-model for one pair of MZ twins. 
Note: Because the genotypic factors of MZ twins are unity correlated, only 1 (i.e.,

collapsed) genotypic factor is shown in the diagram. In the presence of G × E
interaction, the variance of the factors E will vary across levels of the 
genotypic factor A.
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& van der Maas, 1998). Indeed, this is exactly the
way this model is specified in Mx (Neale et al.,
2003; see Appendix A). With this approximation in
hand, we can define the following approximate log-
likelihood function:

[4]

where wj and f(yi|αj) are defined above. As discussed
above, the parameters σ2

A, σ2
E, and µ enter into the

function via f(yi|αj), that is, yi|η*~N(µ + IOx a*αj, ΣE
*).

As in Equation 4, the parameters µ can be removed by
prior centering. 

We emphasize that our present aim is simply to
detect G × E in terms of variation in the unshared
environmental variance across the levels of the geno-
typic factor, and not necessarily to arrive at an exact
description of this variation. However, in our present
use of MML, we require some function to account for
this change in variance. In the example Mx script (see
Appendix A), and in the subsequent power analyses,
we followed Hessen and Dolan (2006), and used an
exponential function to model this variation in
unshared environmental variance across the levels of
the genotypic factor: 

σ2
E

* = exp(φ2
0 + φ1 *αj + φ2 * α2

j) [5]

where αj again denotes the Gauss-Hermite quadrature
points, φ0 is the intercept, and φ1 and φ2 are the regres-
sion parameters for the linear and the curvilinear
effect, respectively. One advantage of the exponential
function is that it cannot assume negative values,
which is convenient as we are estimating a variance
term. Even though the exponential function may not
be suitable for modeling exact linear change (although
the function can be practically linear, depending on
the size of φ1 and φ2, and the range of values of αj for
which one studies the function), it is useful for fitting
monotonic increase or monotonic decrease in vari-
ance, and it can be used to describe parabolic change
in variance. Figure 3 includes plots of the unshared
environmental variance σ2

E against the levels of the
genotypic factor. Other functions, given theoretical or
practical considerations, may be specified instead of
Equation 5.

In the MMLT of G × E, we first fit the model with
φ1 and φ2 fixed to zero. This is a homoscedastic model
as the environmental variance does not depend on the
level of A, that is, σ2

E
* = exp(φ0). This model produces

almost exactly the same results as the standard uncon-
ditional model (Equation 1). The factor that MML
involves as an approximation (Equation 3) to the inte-
gral (Equation 2) introduces a slight discrepancy.
Subsequently, we fit the model with φ1, or φ1 and φ2,
freely estimated, to accommodate the heteroscedastic-
ity arising from G × E. As suggested by Hessen and
Dolan (2006), a likelihood ratio (minus twice the dif-
ference in log-likelihood of the two models) can be

used to test the statistical significance of the parame-
ters φ1 (an asymptotic df = 1 χ2 test) and/or φ1 and φ2

(an asymptotic df = 2 χ2 test).
Below we investigate the power to detect G × E

interaction in MZ twin data using both the JFT and
the method based on MML estimation. 

The Power to Detect G ×× E: Design
The design of the simulation study comprises 4 × 3 × 3
conditions: four effect sizes of the interactive effect
(0%, 2.5%, 5% and 7.5% of the total variance),
three effect sizes of the additive polygenic genetic
effect (20%, 50%, or 70% of the total variance
explained), and three sample sizes (N = 200, N = 400,
and N = 800, where N is the number of MZ pairs).
In all conditions, the variance, which was not
explained by additive genetic effects or G × E inter-
action, was attributed to unshared environmental
effects. As mentioned, common environmental
effects were not considered. Each condition was
replicated 1000 times. Each simulated dataset was
analyzed using four models: linear and nonlinear
JFTs (based on F statistics), and linear and nonlin-
ear MMLTs (based on χ2 statistics). All analyses
concerning the simulations were carried out using
our own Fortran program, which included NPSOL
(Gill et al., 1986) for optimization using exact gra-
dients, and various IMSL (1991) routines for data
simulation and analysis.

Data without G × E effects were simulated as
follows:

σ2
Y = a2 × σ2

A + (1 – a2) × σ2
E [6]

where a2 equals the heritability coefficient, 1 – a2 equals
the unshared environmental effect e2 (were a and e cor-
respond to the parameters a and e in Figure 2), and
both A and E were simulated as standard normal vari-
ates, that is, N(0,1). Data without G × E interaction
were used to estimate the probability of a false posi-
tive, given a nominal value of α = .05.

Data with linear G × E interaction were simulated
given the model:

σ2
Y = a2 × σ2

A + (1 – a2 – b2) × σ2
E + b2 × σ2

A×E [7]

where a2 equals the heritability coefficient, and b2 the
standardized interactive effect. Note that adding
b2*σ 2

A × E creates data in which the effect of the
unshared environment is stronger for higher levels of
the genetic factor, while subtracting b2*σ2

A×E creates
data in which the effect of the unshared environment
is stronger for lower levels of the genetic factor.

Data with curvilinear G × E interaction were simu-
lated following the model:

σ2
Y = a2 × σ2

A + (1 – a2 – b2) × σ2
E + b2 × σ2

|A|×E [8]
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where |A| in σ2
|A|×E, that is, the absolute values of A,

gives rise to the curvilinear effect. Note that adding
b2*σ2

|A|×E creates data in which the environmental effect
is stronger for extreme levels of the genetic factor A,
while subtracting b2*σ2

|A|×E creates data in which the
environmental effect is stronger for intermediate levels
of the genotypic factor A. Because with regard to the
power to detect G × E the results only depend on the
size of b2 and not its sign, the results will be limited to
simulations with additive G × E effects for both the
linear and the curvilinear case.

Apart from analyzing these data with the JFT and
MMLT, all simulated samples were tested for uni-
variate normality using the Shapiro-Wilk test, which
has been shown to be the most powerful test to

detect nonnormality (Shapiro et al., 1968). Tests for
univariate normality were conducted with a view to
studying the sensitivity of both the JFT and the
MMLT to deviations from normality. 

Results
The results of the simulation study are shown in Table 1.
For homoscedastic data, that is, data that include no
G × E interaction, the JFTs and the MMLTs detect linear
and curvilinear interaction in about 5% of the samples,
independent of the sample size. Likewise, the Shapiro-
Wilk test detects deviation from normality in 5% of the
samples. Given a nominal α of .05, these results are in
line with expectation.
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Figure 3
Plotting the conditional estimates of the unshared environmental variance for 10 levels of the genotypic factor for NMZ = 1000 cases, a2 = .5, e2 = .475
and 2.5% variance accounted for by G × E (i.e., b2 = .025). 
Note: For these illustrations, c2 was assumed to be zero.
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Table 1
Power to Detect Genotype by Environment Interaction Using the Jinks and Fulker test (JFT), and Marginal Maximum Likelihood (MMLT)

N = 200 N = 400 N = 800

Homosced. Linear Curvilinear Homosced. Linear Curvilinear Homosced. Linear Curvilinear
a2 = .20

e2 = .775 JFT lin .05 .45 .05 .05 .72 .06 .06 .97 .06
b2 = .025 JFT nonlin .06 .38 .10 .04 .62 .12 .05 .94 .21

MMLT lin .05 .86 .15 .05 .99 .14 .04 1 .16
MMLT nonlin .07 .80 .16 .05 .98 .25 .05 1 .44
SW test .05 .31 .03 .05 .46 .01 .04 .68 .02

e2 = .75 JFT lin .04 .74 .08 .05 .95 .07 .04 1 .09
b2 = .05 JFT nonlin .05 .65 .17 .07 .95 .20 .04 1 .34

MMLT lin .04 .98 .23 .05 1 .25 .04 1 .22
MMLT nonlin .05 .98 .27 .06 1 .44 .04 1 .69
SW test .05 .55 .03 .05 .72 .02 .05 .93 .01

e2 = .725 JFT lin .06 .83 .07 .06 .99 .08 .05 1 .08
b2 = .075 JFT nonlin .05 .80 .17 .05 .98 .27 .05 1 .43

MMLT lin .05 1 .35 .05 1 .37 .05 1 .38
MMLT nonlin .06 1 .38 .05 1 .59 .06 1 .87
SW test .05 .67 .04 .05 .87 .03 .06 .98 .01

a2 = .50
e2 = .475 JFT lin .04 .92 .07 .05 1 .09 .05 1 .08
b2 = .025 JFT nonlin .04 .88 .21 .04 1 .35 .05 1 .56

MMLT lin .04 .98 .09 .04 1 .11 .05 1 .13
MMLT nonlin .06 .99 .31 .06 1 .56 .06 1 .88
SW test .04 .57 .03 .05 .81 .03 .05 .96 .02

e2 = .45 JFT lin .05 1 .09 .04 1 .09 .05 1 .09
b2 = .05 JFT nonlin .06 .99 .34 .05 1 .51 .05 1 .77

MMLT lin .05 1 .13 .05 1 .16 .06 1 .14
MMLT nonlin .07 1 .50 .05 1 .82 .05 1 .98
SW test .05 .85 .06 .06 .97 .05 .06 1 .05

e2 = .425 JFT lin .04 1 .12 .05 1 .11 .05 1 .10
b2 = .075 JFT nonlin .04 1 .36 .05 1 .61 .05 1 .88

MMLT lin .06 1 .20 .04 1 .19 .06 1 .16
MMLT nonlin .07 1 .67 .04 1 .93 .06 1 1
SW test .07 .97 .10 .04 .99 .07 .06 1 .11

a2 = .70
e2 = .275 JFT lin .06 1 .10 .05 1 .10 .05 1 .11
b2 = .025 JFT nonlin .05 1 .43 .06 1 .66 .05 1 .88

MMLT lin .06 1 .13 .07 1 .12 .05 1 .13
MMLT nonlin .06 1 .49 .07 1 .78 .06 1 .98
SW test .06 .40 .05 .04 .58 .04 .05 .80 .03

e2 = .25 JFT lin .06 1 .11 .05 1 .11 .05 1 .12
b2 = .05 JFT nonlin .06 1 .55 .05 1 .81 .07 1 .97

MMLT lin .06 1 .16 .05 1 .14 .06 1 .17
MMLT nonlin .07 1 .72 .06 1 .96 .07 1 1
SW test .05 .61 .09 .06 .85 .11 .04 .97 .13

e2 = .225 JFT lin .04 1 .13 .05 1 .14 .05 1 .13
b2 = .075 JFT nonlin .06 1 .66 .05 1 .88 .05 1 .99

MMLT lin .05 1 .21 .05 1 .20 .05 1 .20
MMLT nonlin .07 1 .86 .06 1 .99 .06 1 1
SW test .05 .72 .14 .05 .93 .18 .05 .99 .31

Note: Expressed in percentage significant, based on 1000 replications.

N is the number of monozygotic twin pairs. a2 denotes the percentage of variance explained by additive genetic effects, e2 the percentage of variance explained by unique
environmental effects, and b2 the percentage of variance explained by the interaction between genes and environment.
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To detect linearly modeled G × E interaction, the
MMLT is more powerful than the JFT. This is most pro-
nounced when sample size is small, and both additive
genetic effects and G × E interaction explain only a small
percentage of the total variance. For example, in samples
consisting of 200 MZ twin pairs with additive genetic
effects explaining 20% and G × E explaining only 2.5%
of the total variance, MML detects this interaction in
86% of the cases, while the JFT detects the interaction in
45% of the cases. However, the power of both tests to
detect linear G × E increases greatly when additive
genetic effects are more substantial. For example, when
additive genetic effects explain 50% of the total vari-
ance, the JFT and MML detect small G × E interaction
effects (accounting for only 2.5% of the total variance),
in 92% and 98% of the cases, respectively. Apparently,
detecting a small G × E interaction effect from a large
unshared environmental component is more difficult for
both detection methods (but more so for the JFT).

Clearly, both the MMLT and the JFT have much less
power to detect curvilinearly modeled G × E interaction.
Especially when sample size is small, and both the addi-
tive genetic effect and the curvilinear interaction effect
are small, both tests often fail to detect the interaction.
For example, in samples consisting of 200 MZ twins
with additive genetic factors explaining 20%, and the
curvilinear interaction only 2.5% of the total variance,
the JFT detects this interaction in 10%, and the MMLT
in 16% of the cases. With sample sizes of N = 400 and
N = 800, the JFT detects the interaction in 12% and
21% of the cases, respectively, while the MMLT detects
the interaction in 25% and 44% of the cases, respec-
tively. As with the linear interactive effect, the power of
both tests to detect the interaction improves as the addi-
tive genetic effect increases and the unshared
environmental component, from which the G × E is part,
becomes comparatively smaller.

With regard to normality, results of the Shapiro-Wilk
test show that linear G × E interaction results in a
greater deviation from normality than curvilinear G × E.
Note that the interaction effect is equal in terms of vari-
ance explained by the interaction effect. These results
seem to indicate that the detection of G × E depends
more on the resulting violation of normality than on the
effect in terms of variance explained. To get some insight
into the role of normality in the JFT and MMLT, the
samples including linear G × E interaction were split up
into the set in which the Shapiro-Wilk test was significant
(given α = .05) and the set in which this test was not sig-
nificant. The results obtained in these sets are shown in
Table 2. Differences between the MMLT and the JFT in
the power to detect G × E in normally distributed data
are especially manifest when sample size is small (i.e.,
N = 200 or N = 400), and both the additive genetic effect
and the interaction effect are small (i.e., a2 = .20 and
b2 = .025, or .05); while the MMLT shows satisfactory
power to detect linear G × E in normally distributed data,
the power of the JFT is much lower, and often not suffi-
cient. Both tests detect G × E more readily in

nonnormally distributed data. However, while this dif-
ference is usually considerable for the JFT, it is mostly
negligible for the MMLT as the power of this test seems
overall satisfactory. When the additive genetic effect is
large (70% of the total variance), both tests have power
of 1 to detect G × E, irrespective of the normality of the
data (not shown in Table 2).

Transformation: Normal Scores
As the simulation study above illustrates, data contain-
ing linear G × E interaction are inevitably not normally
distributed. Deviations from normality are no rarity in
psychological data and certainly not only associated
with the presence of (G × E) interaction. Problems like
censoring (i.e., truncation of the scale causing floor or
ceiling effects), resulting in positive/negative skewness
or kurtosis, are frequently encountered. Whatever the
reasons for nonnormality of the scale distribution (e.g.,
poor test design, selective sampling, presence of interac-
tion), violations of one of the most basic assumptions
of all parametrical statistical tests (i.e., normally distrib-
uted residuals) may have consequences for the
interpretability of results. For this reason, researchers
often choose to transform their data to achieve normal-
ity. Although it is generally accepted that normalizing
transformation may remove interactions (e.g., Martin,
1999), we would like to establish whether the effects of
such a transformation on the power to detect G × E
differ between the JFT and MMLT, as the results above
suggest. To address this, we chose one of the most thor-
ough procedures to normalize data, that is, the normal
scores transformation, which is available in the LISREL
program (Jöreskog & Sörbom, 2001). Figure 4 depicts
the normalizing effect of the normal scores transforma-
tion. Because both the JFT and the MMLT
demonstrated reasonable to perfect power to detect
even small linear interaction effects in samples consist-
ing of 400 MZ twins (see Table 1), we chose to limit
the following simulations to samples of this size.

Table 3 shows the power results before and after the
normal scores transformation. As we saw previously, the
MMLT always detects linear G × E interaction when
N = 400, even when the effect size is small. When addi-
tive genetic effects only explain 20% of the total
variance, the JFT is somewhat less powerful, but for
higher heritability coefficients, the JFT also detects G × E
in all cases. As expected, the normalizing transformation
greatly affects the results. When additive genetic effects
explain only 20% of the total variance, neither the
MMLT nor the JFT detect G × E interaction after trans-
formation, regardless of the effect size of the interaction
effect. When additive genetic effects explain 50% of the
variance, the power of both the JFT and the MMLT to
detect G × E improves somewhat, but is still far from
satisfactory, especially for small interaction effects.
However, when the additive genetic component becomes
larger, and the unshared environmental component (of
which the G × E effect is part) becomes comparatively
smaller, the normalizing transformation no longer has a
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nullifying effect on the power to detect G × E, even when
the interaction only explains a small part of the total
variance. For almost all studied scenarios, the power of
the JFT surpasses the power of the MMLT after the
normal scores transformation, and while both tests show
the tendency to detect nonlinear G × E after the normal
scores transformation, while linear G × E was simulated,
this tendency is most marked for the MMLT.

Discussion
The simulation studies showed that generally the power
of the MMLT was greater than the power of the JFT in
detecting linear and curvilinear G × E interaction,
regardless of whether the Shapiro-Wilks test detected

the inherent deviation from normality. Both the
MMLT and the JFT detected G × E interaction more
easily when the additive genetic effect was greater, and
when the G × E interaction effect was linear. For our
simulations, we defined effect sizes in terms of the per-
centage of variance explained. However, based on the
present results, it is clear that the percentage of vari-
ance explained is not a good measure of effect size.
The greater probability of detecting G × E in the cir-
cumstances mentioned is due to these circumstances
resulting in a greater departure from normality. In the
MMLT especially, it is the greater degree of het-
eroscedasticity that results in the greater probability of
rejecting the hypothesis that either the linear or the
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Table 2

Results of Linear G × E as Presented in Table 1, Subdivided for Normally and Nonnormally Distributed Samples

N = 200 N = 400 N = 800

a2 = .20 Normal Ns = 689 n-Normal Ns = 311 Normal Ns = 541 n-Normal Ns = 459 Norma Ns = 316 n-Normal Ns = 684

e2 = .775 JFT lin .35 .66 .62 .83 .91 .99
b2 = .025 JFT nonlin .28 .58 .51 .76 .85 .97

MMLT lin .81 .97 .99 1 1 1
MMLT nonlin .73 .95 .97 .99 1 1

Normal Ns = 449 n-Normal Ns = 551 Normal Ns = 284 n-Normal Ns = 716 Normal Ns = 73 n-Normal Ns = 927

e2 = .75 JFT lin .59 .87 .89 .97 .99 1
b2 = .05 JFT nonlin .50 .78 .82 .94 .99 1

MMLT lin .97 .99 1 1 1 1
MMLT nonlin .95 1 1 1 1 1

Normal Ns = 326 n-Normal Ns = 674 Normal Ns = 130 n-Normal Ns = 870 Normal Ns = 25 n-Normal Ns = 975

e2 = .725 JFT lin .71 .89 .96 .99 1 1
b2 = .075 JFT nonlin .67 .86 .95 .99 1 1

MMLT lin 1 1 1 1 1 1
MMLT nonlin 1 1 1 1 1 1

a2 = .50 Normal Ns = 428 n-Normal Ns = 572 Normal Ns = 186 n-Normal Ns = 814 Normal Ns = 38 n-Normal Ns = 962

e2 = .475 JFT lin .90 .93 .99 1 1 1
b2 = .025 JFT nonlin .83 .91 .99 1 1 1

MMLT lin .97 .99 1 1 1 1
MMLT nonlin .98 .99 1 1 1 1

Normal Ns = 149 n-Normal Ns = 851 Normal Ns = 33 n-Normal Ns = 967 Normal Ns = 1 n-Normal Ns = 999

e2 = .45 JFT lin 1 .99 1 1 1 1
b2 = .05 JFT nonlin .98 .99 1 1 1 1

MMLT lin 1 1 1 1 1 1
MMLT nonlin 1 1 1 1 1 1

Normal Ns = 79 n-Normal Ns = 921 Normal Ns = 79 n-Normal Ns = 921 Normal Ns = 7 n-Normal Ns = 993

e2 = .425 JFT lin 1 1 1 1 1 1
b2 = .075 JFT nonlin 1 1 1 1 1 1

MMLT lin 1 1 1 1 1 1
MMLT nonlin 1 1 1 1 1 1

Note: N is the number of monozygotic twin pairs. Ns is the number of simulated samples. JFT is Jinks and Fulker test, MMLT is test based on Marginal Maximum Likelihood. a2 denotes the
percentage of variance explained by additive genetic effects, e2 the percentage of variance explained by unique environmental effects, and b2 the percentage of variance explained
by the interaction between genes and environment. For a2 = .7, and b2 = .025/.05/.075, both methods always detect G x E, independent of the normality of the data.
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curvilinear interaction effect is nonsignificant (φ1 = 0
or φ1 = φ2 = 0, see Equation 4).

The effects of the normalizing transformation were
generally in line with expectation: the transformation
greatly reduced the power to detect the interaction.
However, given a sufficiently large effect size, that is, a
linear G × E in combination with relatively large
genetic effects, we found that both the MMLT and the
JFT continued to pick up G × E. The reason for this is
that we applied univariate normal scores transforma-
tions. That is, the two observed scores were separately
subjected to a normal scores transformation, as is the
common practice. As is well known, however, perfect
marginal normality does not guarantee multivariate, or
in the present case, bivariate normality. Explorations
of the data indicated that especially the MZ twin dif-
ference scores were not normally distributed (as it would
be in case of bivariate normality). This is illustrated for a
single simulated dataset in Figure 5, where the distribu-
tion of the MZ differences in normal scores are clearly
leptokurtic (kurtosis = 2.45). The reason that the JFT
performs slightly better in terms of power after the

normal scores transformation is presumably because it
focuses on these differences scores, whereas the MMLT
is based on the full bivariate distribution.

For the present simulations, data were simulated
according to an AE-model. Given MZ but not DZ
twin data, modeling options are limited to the AE-
model, that is, a restrictive, but not uncommon model.
An important question is what influence the presence
of shared environmental effects (C), or dominance
effects (D) could have on the power to detect G × E in
MZ twins. Since both the common environment and
the dominance effects are fully shared in MZ twins,
these effects will end up in the ‘A’-factor of the AE-
model. This factor is then a convolution of effects:
additive genetic, common environmental, dominance
and other nonadditive genetic factors. Our simulations
showed that the power to detect an interaction
improved when the additive genetic factor became
comparatively large. However, both with the present
MMLT and the JFT, one will not be able to distin-
guish between A × E, C × E, or D × E, because the A,
C, and D effects are combined in one factor, and thus

386 Twin Research and Human Genetics June 2006

Sophie van der Sluis, Conor V. Dolan, Michael C. Neale, Dorret I. Boomsma, and Danielle Posthuma

Figure 4
Illustrative histograms and density plot. 
Note: Top left: NMZ = 2000 cases, including linear G × E interaction (a2 = .40, e2 = .40, interaction accounts for 20% of the variance). The data display clear positive skew. Bottom left:

histogram and density of same data following normal score transformation; the distribution no longer deviates from normality. Top right: 2000 cases, including curvilinear 
G × E interaction (a2 = .50, e2 = .40, interaction accounts for 10% of the variance). The data display kurtosis. Bottom right: histogram and density of same data following normal
score transformation; the distribution no longer deviates from normality.



confounded. The presence of C or D in the observed
data will thus complicate the interpretation of the
results. A partial solution to this problem may lie in
the extensions of the MMLT and JFT with additional
data (e.g., DZ twin or adoption data).

The issue remains whether G × E detection methods
are useful, given their sensitivity to (normalizing) scale
transformations. Our position is that these methods are
useful in the situation that there is no obvious source of
nonnormality, such as censoring or poor scaling.3 For
instance, if one can demonstrate that G × E, as defined in
the JFT or MMLT, is absent, one can certainly have a
little more confidence in validity of the results of genetic
covariance modeling. A significant JFT or MMLT result,
even though it may be due to a variety of factors, is a
cause for concern regardless of its exact cause.
Normalizing transformations may remove this effect, but
they will also affect all other results, for example,
increasing or decreasing a2. This exact effect of the trans-

formation on all other results is likely to differ depend-
ing on the exact transformation (e.g., Box-Cox vs.
normal score transformation), as different transforma-
tions may result in hard to interpret variation in a2.
There may of course be situations in which the choice
for a nonlinear transformation of the data is based on
substantive considerations, rather than on distributional
concerns. For example, logarithmic transformation are
suitable if one wishes to study proportional change
rather than absolute change4 (Falconer & Mackay, 1996;
Zar, 1999) or if one wishes to study genes that act in a
multiplicative fashion with a simple additive genetic
model5 (Mather & Jinks, 1977), while a square root
transformation may be suitable if the character under
study is effectively an area rather than a character of
linear dimensions6 (Mather & Jinks, 1977). Yet, the
fact that nonnormality of the data may either indicate
the presence of G × E (i.e., G × E being the source of
the nonnormality), or mimic the presence of G × E
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Table 3

Power to Detect Linear G × E Before and After Normal Scores Transformation for Different Sizes of the Additive Genetic Effect (a2), the G × E
Interactions (b2), and the Unshared Environment (e2 = 1 – a2 – b2)

b2 = .025 b2 = .05 b2 = .075

Raw Trans Raw Trans Raw Trans

a2 = .20
JFT lin .76 .03 .95 .05 .99 .05
JFT nonlin .66 .01 .91 .02 .98 .02
MMLT lin .99 .00 1 .00 1 .01
MMLT nonlin .98 .02 1 .13 1 .37
SW test .49 .00 .74 .00 .86 .00

a2 = .5
JFT lin 1 .13 1 .37 1 .63
JFT nonlin 1 .11 1 .41 1 .77
MMLT lin 1 .02 1 .11 1 .29
MMLT nonlin 1 .02 1 .25 1 .71
SW test .78 .00 .97 .00 .99 .00

a2 = .6
JFT lin 1 .48 1 .90 1 .99
JFT nonlin 1 .47 1 .93 1 .99
MMLT lin 1 .34 1 .80 1 .95
MMLT nonlin 1 .39 1 .92 1 .94
SW test .73 .00 .94 .00 .99 .00

a2 = .7
JFT lin 1 .92 1 1 1 1
JFT nonlin 1 .92 1 1 1 1
MMLT lin 1 .89 1 1 1 1
MMLT nonlin 1 .90 1 1 1 1
SW test .59 .00 .81 .00 .91 .00

Note: Sample size is N = 400 for all simulated samples. 

N is the number of monozygotic twin pairs. JFT is Jinks and Fulker test, MMLT is test based on Marginal Maximum Likelihood. a2 denotes the percentage of variance
explained by additive genetic effects, e2 the percentage of variance explained by unique environmental effects, and b2 the percentage of variance explained by the interac-
tion between genes and environment.
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(i.e., G × E detection tests pick up a significant G × E
effect, but factors other than G × E are the actual source
of the nonnormality), remains worrisome. For now, the
use of psychometrically sound measurement instruments
would appear to be one way to minimize the problem of
scale-dependency (van den Berg et al., 2006).

A second important issue, discussed by Eaves
(1984) in the light of plant studies, is the possibility
that the genes that control average performance may
very well differ from the genes that control the sensi-
tivity to the environment (i.e., the genes giving rise to
the heteroscedasticity, see Berg et al., 1989, for a
similar distinction between ‘level’ and ‘variability’
genes). Eaves (1984) noted that the JFT is limited in
the sense that it will only reveal interaction effects if
the same set of genes controls both (mean level and

sensitivity). This limitation applies equally to MMLT
as presented here.

Like the JFT, the MMLT is quite easy to carry out
in the Mx program (Neale et al., 2003). Its main
advantage when applied to MZ twin data is its greater
power, when applied to untransformed data. In addi-
tion, the MMLT is amenable to various extensions.
These include multigroup analysis, multivariate data,
and the addition of DZ twins, which will allow one to
include a component for the shared or common envi-
ronment (i.e., C). In addition, by viewing the
quadrature point as average levels due to one set of
genes, it may be possible (with DZ twin data) to inves-
tigate whether the residual variance, in the present
article denoted as purely environmental (σ2

E
*), includes

a genetic component. If so, this would suggest that the
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Figure 5
Illustration of the effect of the normal scores transformation with NMZ = 1000, a2 = .70, e2 = .25, and 5% of the variance accounted for by G × E 
(i.e., b2 = .05). 
Note: Top row, left to right: Marginal raw distribution of twin 1, raw MZ difference score, QQ-plot of the raw MZ difference score. Bottom row: Marginal normal score distribution of

twin 1, MZ differences in normal scores, QQ-plot of the differences in normal scores. The normal scores transformation renders the marginal distribution (bottom left) per-
fectly normal. However, the normal score differences remain highly leptokurtic (kurtosis equals 2.45; kurtosis of the raw differences equals 3.13). The QQ-plot (bottom right)
also shows the peakedness of the distribution.



genes controlling the average level are indeed distinct
from those controlling the sensitivity to the environ-
ment. If the residual variance does, however, not
include an additional genetic component, this would
suggest that the finding of different genes controlling
average performance and sensitivity to the environ-
ment, while well established in plant research, does
not hold in outbred populations. 

Endnotes
1 Dominance variance may also be modeled, albeit if

only data on MZ and DZ twins are available, not
simultaneously with C, for reasons of identification.

2 Note that the nodes and weights are usually given for
the error function, not the standard normal distribu-
tion function. But, as Bock and Lieberman (1970)
explain, a simple transformation, render these applica-
ble for the standard normal distribution.

3 If in an average sample, depression, say, is measured
with a clinical depression scale that contains many
extreme items like ‘I often feel that life is not worth
living’ or ‘My future seems hopeless’, the majority of
respondents will respond negatively, and the distribu-
tion of the scores will be skewed for this sample.
Censoring, that is, truncation of the score distribution,
will also result if one uses a test that is much too diffi-
cult or too easy for the sample under study. Finally,
skewness or kurtosis may result if one construes items
with limited answer options (‘never, sometimes,
always’; ‘yes, no’), as these options may not describe
the respondents attitude accurately, and some options
may be much more popular than others. In all exam-
ples, an obvious source of nonnormality would be the
choice of instrument or scale rather than anything else.

4 Consider a reading intervention study, with dyslexic
children reading 10 words before, and 15 words after
the intervention, and nondyslexic children reading 30
words before, and 45 words after the intervention.
Studying the absolute change in number of words read
correctly would lead one to conclude that nondyslexic
children profited more from the intervention than
dyslexic children. However, studying the proportional
change in reading speed, one would conclude that
both groups profited equally well, as the speed of both
groups increased by 50%.

5 Consider the following taken from Mather and Jinks
(1977). If two genes act in a multiplicative fashion, and
their joint effect is the product (xaxb) of their individual
actions rather than the sum (xa + xb), then a simple
additive genetic model is not appropriate. However, if
we replace the measurement of the phenotype with its
logarithm, that is, log(xaxb) = log(xa) + log(xb), then the
multiplicative action has been removed, the genes now
make their individual (independent) contribution, and
a simple additive model will be suitable.

6 Consider the following taken from Mather and Jinks
(1977). If genes are additive in their effect on the
linear dimension of a phenotype (e.g., wing size),
while the character that we study is effectively an area

(i.e., the surface of the wing), the phenotype will
reflect not the sum of the genes effect (as a linear char-
acter would), but the square of the sum. Replacing the
observed phenotype with its square root would restore
its linear basis, that is, the additive action of the genes.
The simple additive genetic model would then fit the
rescaled results.
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Appendix A

The Mx script, presented here, is an implementation of the MML method to detect G × E interaction in MZ
twin data, given an AE model. The quadrature points and weights were obtained from the site
http://www.efunda.com/math/num_integration/findgausshermite.cfm. However, bear in mind that these are pro-
vided for the error function, not the standard normal distribution. The transformation to values suitable for the
standard normal distribution, that is, the values used below, is simple (see Bock & Lieberman, 1970). As men-
tioned, the approximate density function defined in Equation 3, may be viewed as a finite mixture distribution.
The present Mx script defines the model in terms of a finite mixture. We provide comments to underline this. 
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