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β-Glucan exacerbates allergic airway
responses to house dust mite allergen
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Bart N. Lambrecht3,6, Frank Brombacher2 and Gordon D. Brown1,7*

Abstract

β-(1,3)-Glucan is present in mould cell walls and frequently detected in house dust mite (HDM) faeces. β-Glucan
exposure is thought to be associated with pulmonary allergic inflammation in mouse and man, although the
published data are inconsistent. Here, we show that highly purified β-glucan exacerbates HDM-induced
eosinophilic, T helper 2 type airway responses by acting as an adjuvant, promoting activation, proliferation and
polarisation of HDM-specific T cells (1-Derβ T cells). We therefore provide definitive evidence that β-glucan can
influence allergic pulmonary inflammation.
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Results
Asthma is a common chronic obstructive airway disease,
which presents as episodes of wheeze, shortness of
breath and chest tightness, and in extreme cases the dis-
ease can be fatal [1, 2]. It is traditionally a disease of the
developed world, with increasing incidence both in
childhood and adulthood [3]. Asthma is widely regarded
as a T helper 2 (Th2) cell-mediated disease, although
other forms exist [2]. Th2 type asthma can be charac-
terised by eosinophil accumulation in the alveolar space
and cytokines, including interleukin (IL-) IL-4, IL-5 and
IL-13, as well as by other physiological changes such as
goblet cell hyperplasia [1]. The underlying factors
contributing to the disease are numerous and not well
understood. Environmental allergen sensitisation is
known to play a major part in asthma development and
exacerbation. Fungal spores are one of many environ-
mental allergens encountered daily and their exposure
directly correlates with increased incidence of asthma
episodes and hospital admission [4]. β-(1,3)-Glucan (β-
glucan) is a pathogen-associated molecular pattern

(PAMP) mainly present in fungal cell walls, but also
present in bacteria, plants and has been detected in
house dust mite (HDM) faeces [5]. β-Glucan has been
implicated in both innate and allergic respiratory inflam-
matory responses, however, studies in both human and
animal models are inconsistent [6]. These discrepancies
are due, in large part, to the purity and solubility of the
β-glucan preparations used [6, 7].
Here, we made use of highly purified particulate β-

glucans of similar size to fungal spores, but without
contaminating agonists [8] and have investigated their ef-
fects on pulmonary inflammation in the context of HDM-
induced responses. For these experiments, we sensitised
C57BL/6 mice intratracheally (i.t) with HDM alone or
with HDM together with β-glucan and subsequently chal-
lenged these mice i.t. with HDM only or PBS as a control
(Fig. 1a). Mice sensitised and challenged with HDM alone
developed eosinophilic pulmonary inflammation in the
bronchoalveolar lavage fluid (BALF) (Fig. 1b), as previ-
ously shown [9]. However, when HDM plus β-glucan sen-
sitised mice were challenged with HDM, they developed a
more profound pulmonary inflammation, characterised by
significantly higher numbers of eosinophils (Fig. 1b).
There were also slight, but significant, increases in the
numbers of neutrophils, monocytes/macrophages and T-
cells (Fig. 1b; note the difference in scales). Consistent
with these observations, higher levels of IL-4, IL-5, IL-13
and IL-17 were detected in the BALF of mice sensitised
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with HDM plus β-glucan (Fig. 1c). Moreover, we also ob-
served increased inflammation by histology in these mice,
but not in mucus-producing goblet cells (Fig. 1d). Similar
effects on Th2-type inflammatory responses were ob-
tained when mice were sensitised with HDM alone and
then challenged with HDM together with β-glucan (data
not shown). Unlike our previous observations following
co-administration of β-glucan plus lipopolysaccharide

(LPS) [10], sensitisation with HDM in the presence of β-
glucan alone did not induce steroid (dexamethasone) re-
sistant responses (Fig. 1e). Thus these results demonstrate
that β-glucan can influence the development of Th2-
mediated allergic inflammatory responses during sensitisa-
tion and challenge.
We next explored the mechanisms underlying the ef-

fects of β-glucan on allergic responses. We first
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Fig. 1 β-Glucans promote Th2 allergic airway inflammation to HDM allergen both during sensitisation and challenge stages through IL-4Rα. a
Timeline for HDM sensitisation and challenge of C57BL/6 mice. Mice were sensitised i.t. with HDM alone (10 μg, Greer Laboratories, Lenoir, NC,
Dermatophagoides pteronyssinus (Der p1) 145.56 mcg per vial, endotoxin 31.25 EU per vial, 2.87 mg protein per vial and 11.6 mg dry weight per
vial) or together with β-glucan (1×107 particles ≈ 10 μg), highly purified from Saccharomyces cereviseae [8] at day 0 and 7 and challenged i.t. with
HDM (10 μg) alone at day 20, 21 and 22. Control mice were sensitised and challenged with PBS at the same time-points. b Number of total
leukocytes, eosinophils (Siglec-FhiGr-1loCD11clo), neutrophils (Gr-1hiCD11bhiF4/80lo), monocytes/macrophages (F4/80hiGr-1loCD11bhi) and T-cells
(CD3+CD4+) in the BALF of mice at day 23. c Cytokine concentrations in BALF were detected by Bio-Plex Pro Mouse cytokine 23-plex Assay
(Bio-Rad Laboratories Ltd, USA), according to the manufacturer’s specifications. d Haematoxylin and eosin h & e) and Periodic Acid Schiff (PAS)
stained lung sections, wax embedded and formalin fixed. Bar charts (right) show quantification of the inflammation and of mucus producing
goblet cells in the H&E and PAS stained sections, respectively. Scale bars represent 100 μm (H&E) and 50 μm (PAS). e Mice were sensitised and
challenged as in (a), except one group of animals received dexamethasone 21-phosphate disodium salt (Sigma-Aldrich, St. Louis, MO, USA) i.p.
(3 mg/kg in 100 μl) on days 20, 21 and 22. f Number of eosinophils (Siglec-FhiGr-1loCD11clo) in the BALF of wild type and IL-4Rα−/− mice. g
Number of eosinophils (Siglec-FhiGr-1loCD11clo) in the BALF of wild type and Dectin-1−/− mice. h Proliferation (CFSE dilution frequency) or GATA3
expression (CD45.1+CD3+CD4+CD44hiGATA3+) or RORγt expression (CD45.1+CD3+CD4+CD44hiRORγt+) in adoptively transferred 1-Derβ specific T
cells (CD45.1+CD45.2−CD3+CD4+CD44hiCFSE+) in the MLN of recipient mice three days after sensitisation. For adoptive transfer, 1-Derβ TCR T cells
were isolated from spleen and MLNs of naïve 1-Derβ TCR transgenic mouse, stained with CFSE and then transferred (1×107 cells/mouse) to WT
C57BL/6 mice 2 h before sensitisation (i.t.) with HDM alone or together with β-glucan. i Cytokine production by MLN cell suspensions isolated
from mice three days after sensitisation, as above, restimulated ex vivo with HDM (15 μg) for 3 days (cytokines were detected by ELISA (eBiosciences),
according to manufacturer’s instructions). Shown are the mean ± SD of pooled data from at least two independently repeated experiments. *, p < 0.05,
ns, not significant
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determined if IL-4 receptor α (IL-4Rα) was essentially
required for the β-glucan-mediated effects observed in
our model [11]. Indeed, loss of IL-4Rα completely abro-
gated the eosinophilic airway inflammation in the pres-
ence of β-glucans (Fig. 1f ). We then determined if the
exacerbated responses induced by β-glucan were being
mediated by the major beta-glucan receptor, Dectin-1
[12]. Unexpectedly, we found that loss of this receptor
had no significant effect on the enhanced eosinophilic
response induced by β-glucans (Fig. 1g). This suggests
that other systems are mediating these activities, or
compensating for the loss of Dectin-1, such as CR3 and/
or complement [7, 13].
To gain further insights, we next explored allergic T-cell

responses by making use of a T cell receptor (TCR) trans-
genic (Tg) mouse that recognises an immuno-dominant
peptide from the HDM-derived allergen, Derp-1 (1-Derβ
Tg) [14]. We found that adoptively transferred naïve 1-
Derβ T cells proliferated in mice sensitised with HDM
alone, but proliferated more in mice sensitised with HDM
plus β-glucan (Fig. 1h). Moreover, in mice sensitised with
HDM plus β-glucan, adoptively transferred 1-Derβ T cells
expressed higher intracellular levels of the transcriptional
factor GATA3 compared to 1-Derβ T cells from HDM
sensitised mice or PBS controls (Fig. 1h). This enhanced
Th2 polarisation of HDM-specific T cells could also be
demonstrated by the increased levels of relevant cytokines,
including IL-4, IL-5 and IL-13 that were produced by ex-
vivo HDM stimulated MLNs (Fig. 1i). There was a slight
increase in RORγT in 1-Derβ T cells from mice sensitised
with HDM plus β-glucan, which did not translate into in-
creased levels of IL-17 upon restimulation in vitro. There
was no significant effect of β-glucan on IFN-γ production,
but these carbohydrates did increase the production of IL-
10 (Fig. 1i). Although we cannot exclude some contribu-
tion from innate lymphoid cells [15], we show here that
particulate β-glucans exacerbate airway inflammation to
HDM by promoting HDM-specific T cell priming.

Abbreviations
AHR: Airway hyper-reactivity; HDM: House dust mite; IL: interleukin;
PAMPs: Pathogen-associated molecular patterns; Th2: T helper 2.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Conceived and designed the experiments: GDB, FB. Performed the experiments:
SH, FK, PR, KF. Analysed the data: GIM, SH, BL, FB, GDB. Contributed reagents/
materials/analysis tools: BL, DLW. Wrote the paper: SH, GDB. All authors
discussed the results and commented on the manuscript. All read and
approved the final manuscript.

Acknowledgements
We also thank Animal Unit staff for care of the animals used in this study.
Funding: The authors thank the Wellcome Trust (102705) and the Universities
of Aberdeen and Cape Town for funding. DLW is partly supported by
National Institutes of Health GM53522, GM083016 and C06RR0306551. KF
and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the

recipient of an European Research Commission consolidator grant and
participates in the European Union FP7 programs EUBIOPRED and MedALL.
The funders had no role in study design, data collection.

Author details
1Aberdeen Fungal Group, Infection, Immunity and Inflammation Programme,
University of Aberdeen, Aberdeen, UK. 2International Centre for Genetic
Engineering and Biotechnology and Division of Immunology, Institute of
Infectious Disease and Molecular Medicine, Faculty of Health Science,
University of Cape Town, Cape Town, South Africa. 3VIB Inflammation
Research Center, Laboratory of Immunoregulation and Mucosal Immunology,
University Ghent, Ghent 9000, Belgium. 4Pathology, Division of Applied
Medicine, Institute of Medical Sciences, Foresterhill, University of Aberdeen,
Aberdeen AB25 2ZD, UK. 5Department of Surgery and Center for
Inflammation, Infectious Disease and Immunity, James H. Quillen College of
Medicine, East Tennessee State University, Johnson City, TN, USA.
6Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The
Netherlands. 7Aberdeen Fungal Group, MRC Centre for Medical Mycology,
Infection, Immunity and Inflammation Programme, School of Medicine &
Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill,
Aberdeen AB25 2ZD, UK.

Received: 22 January 2016 Accepted: 25 March 2016

References
1. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary

disease. Nat Rev Immunol. 2008;8:183–92.
2. Fahy JV. Type 2 inflammation in asthma–present in most, absent in many.

Nat Rev Immunol. 2015;15:57–65.
3. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol.

2015;16:45–56.
4. O’Driscoll BR, Hopkinson LC, Denning DW. Mold sensitization is common

amongst patients with severe asthma requiring multiple hospital
admissions. BMC Pulm Med. 2005;5:4.

5. Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the
recognition of Candida albicans by the innate immune system. Nat Rev
Microbiol. 2008;6:67–78.

6. Douwes J. (1→3)-Beta-D-glucans and respiratory health: a review of the
scientific evidence. Indoor Air. 2005;15:160–9.

7. Brown GD, Gordon S. Fungal beta-glucans and mammalian immunity.
Immunity. 2003;19:311–5.

8. Dennehy KM, Ferwerda G, Faro-Trindade I, Pyz E, Willment JA, Taylor PR,
Kerrigan A, Tsoni SV, Gordon S, Meyer-Wentrup F, et al. Syk kinase is
required for collaborative cytokine production induced through Dectin-1
and Toll-like receptors. Eur J Immunol. 2008;38:500–6.

9. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN.
House dust mite allergen induces asthma via Toll-like receptor 4 triggering
of airway structural cells. Nat Med. 2009;15:410–6.

10. Hadebe S, Kirstein F, Fierens K, Chen K, Drummond RA, Vautier S, Sajaniemi S,
Murray G, Williams DL, Redelinghuys P, et al. Microbial Ligand Costimulation
Drives Neutrophilic Steroid-Refractory Asthma. PLoS One. 2015;10, e0134219.

11. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM,
Sheppard D, Mohrs M, Donaldson DD, Locksley RM, Corry DB. Requirement for
IL-13 independently of IL-4 in experimental asthma. Science. 1998;282:2261–3.

12. Brown GD, Gordon S. Immune recognition: A new receptor for beta-glucans.
Nature. 2001;413:36–7.

13. McDonald JU, Rosas M, Brown GD, Jones SA, Taylor PR. Differential
dependencies of monocytes and neutrophils on dectin-1, dectin-2 and
complement for the recognition of fungal particles in inflammation. PLoS
One. 2012;7, e45781.

14. Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira
F, Toussaint W, Vanhoutte L, Neyt K, Killeen N, Malissen B, et al. Conventional and
Monocyte-Derived CD11b +Dendritic Cells Initiate and Maintain T Helper 2 Cell-
Mediated Immunity to House Dust Mite Allergen. Immunity. 2013;38:322–35.

15. Klein Wolterink RG, Kleinjan A, Van Nimwegen M, Bergen I, De Bruijn M,
Levani Y, Hendriks RW. Pulmonary innate lymphoid cells are major
producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J
Immunol. 2012;42:1106–16.

Hadebe et al. Respiratory Research  (2016) 17:35 Page 3 of 3


	Abstract
	Results
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



