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Methods: By introducing a method to judge whether the phone is in a pocket, we
investigated the data collected from six positions of seven subjects, chose five
signals that are insensitive to orientation for activity classification. Decision trees (J48),
Naive Bayes and Sequential minimal optimization (SMO) were employed to
recognize five activities: static, walking, running, walking upstairs and walking
downstairs.

Results: The experimental results based on 8,097 activity data demonstrated that the
148 classifier produced the best performance with an average recognition accuracy
of 89.6% during the three classifiers, and thus would serve as the optimal online
classifier.

Conclusions: The utilization of the built-in sensors of the smartphone to recognize
typical physical activities without any limitation of firm attachment is feasible.
.

Background

Physical activity is becoming a widespread public concern due to its extensive health
benefits, especially on reducing risk of chronic diseases [1]. Daily activities information
is useful for clinicians to accurately diagnose chronic diseases [2] by providing context-
ual information while analyzing vital-signs of patients over a period of time. The phys-
ical activity recognition technique can not only be used to promote the users to
increase physical activity [3], but also can improve the differentiated treatment for the
clinicians on diagnosis of neurological, degenerative and respiratory disorders [4,5].
Mobile activity monitoring also provides us with an opportunity for social interaction
whenever and wherever possible [6].

Although many activity recognition approaches [7,8] have been developed with good
performance, they have difficulties in widely application due to high cost and incon-
venience to use with so many sensors around human body. Wearable sensors have
been proved in previous studies for its feasibility and effectiveness in activity
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recognition [9-12], but sometime users may forget to wear the clothes with micro sen-
sors. Smartphone are now deployed with a variety of built-in sensors for many other
features in addition to the basic telephony, which can be used to monitor activity. It
was also demonstrated in [13] that gait parameters acquired from smartphone are with
a degree of accuracy comparable to that of the tri-axial accelerometer [13]. Until now,
several physical activity recognition methods have been proposed using smartphone
sensors. In 2012, Cho et al. proposed a linear discriminant analysis based activity recog-
nition method using support vector machine to classify five activities including walking,
going upstairs, going downstairs, running and static [14]. Anjum et al. evaluated 4 ma-
chine learning algorithms including Naiive Bayes, Decision tree, K-Nearest Neighbour
and Support Vector Machine classifiers to recognize seven activities (walking, running,
climbing/descending stairs, driving, cycling, and inactive) using smartphone accelerom-
eter and gyroscope [15]. The decision tree was demonstrated to be the best classifier
with the average AUC (area under the ROC curve) larger than 0.9. Arif et al. proposed
to track physical activities with acceleration sensor incorporated in the smartphone in
front pants leg pockets [16]. Six activities were recognized based on the extracted 105
features and then reduced to 30 using K-Nearest Neighbour classifier. To make the ac-
tivity recognition solution more flexible, a phone-position independent algorithm was
developed in [17] to recognize seven activities based on a complex method to analyze
movement periodicity. In addition, some unsupervised learning algorithms were used
for human activity recognition to avoid generating a large number of labelled activities
for the training dataset [18-20]. Compared with supervised learning method, unsuper-
vised algorithms are often weak in accuracy and little number of activities recognized.

In built-in sensors of smartphone, three of them are hardware-based (the accelerom-
eter, gyroscope and magnetic sensor), while others can be either hardware-based or
software-based (the gravity, linear acceleration, and rotation vector sensors). Moreover,
the software-based sensors derive their data from the accelerometer, magnetic sensor
or gyroscope. The software-based sensors are more varying because they often rely on
one or more hardware sensors. Therefore, hardware-based sensors are chosen for mon-
itoring movements in our study, such as tilt, shake, rotation, or swing. In another as-
pect, different from previous studies [21,22], in which the smartphones were fixed in a
certain position and orientation of the body and thus would restrict normal behaviours
while using the device, we will dedicate to a flexible activity recognition solution with
the phone in our pocket or bag, which is closer to the users’ habits. It was also demon-
strated that when we placed a mobile phone in our pocket or bag, it moved with the
pace of our body, thus it appeared to be an ideal location to detect the activities of the
user [23].

In our study, the smartphone is freely placed in a user-determined pocket and we
choose five most representative daily activities that are strongly linked to physical exer-
cises for classification. The main purpose of this paper is to automatically detect
whether the smartphone is worn in the pocket before activating physical activity recog-
nition without any limitation of firm attachment. After judging whether the phone is in
a pocket, thirty statistical features were extracted from five signals generated by the ac-
celerometer, gyroscope and magnetic sensor that are insensitive to orientation for clas-
sification. Decision trees (J48), Naive Bayes and Sequential minimal optimization
(SMO) in the WEKA Machine Learning Toolkit [24] were employed to recognize five
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activities: static, walking, running, walking upstairs and walking downstairs. The aver-
age recognition accuracy of 89.6% with J48 demonstrated the feasibility of the proposed
solution. We also investigated the influence of positioning the smartphone in six
pockets with 4 orientations to demonstrate the flexibility of the proposed solution.

Materials and methods

The built-in accelerometer, gyroscope, proximity sensor, light sensor and the magnetic
sensor of a smartphone was used to collect information that reflected acceleration, an-
gular velocity, distance, light changes and orientation of physical activities. Signals were
extracted from the data and the optimal signals were selected in order to classify activ-
ities. Due to the loose placement of the smartphone with varying orientations, we aim
to extract signals that are independent or insensitive to orientation for the activity clas-
sification. The block diagram of the proposed recognition scheme of this work is illus-
trated in Figure 1.

Device and study population

A smartphone (Samsung, [9100GALAXYSII, 125.3 x 66.1 x 8.49 mm3, 116 g, Android
OS 2.3) was worn on six body positions without affixing it, the positions were the two
front and back pockets on the trousers and the two front pockets on the coat, as shown
in Figure 2. The smartphone has a built-in proximity sensor, a light sensor, a triaxial ac-
celerometer (STM K3DH) with 19.6 m/s2 resolution, a triaxial gyroscope sensor (STM
K3G) with 34.9 rad/s maximum range and 0.0012 rad/s resolution, and a triaxial mag-
netic field sensor (Asahi Kasei AK8973) with 2000 uT maximum range and 0.0625 pT
resolution.

Seven healthy volunteers (4 males and 3 females) were recruited to generate a repre-
sentative dataset for activity recognition. The baseline characteristics of the subjects
were: age 30 + 5 years (range 25-36), body weight 65 + 20 kg (range 44—83), and body
mass index 22.0 + 2.8 kg/m2 (range 18.2-25). Every subject was informed and provided

informed consent before the experiment.
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Figure 1 Block diagram of the recognition scheme. (a) The part to determine whether the phone is in a
pocket. (b) In WEKA environment offline activities classification (c) In real-time online activities classification.
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Figure 2 Pocket locations. For each pocket shown, there is a corresponding one in the left side of the body.

\

Identify the location of mobile phone

As our study aims to recognize human activity based on the smartphone in the user’s
pocket, we will automatically identify whether the mobile phone is in the user’s pocket
before analysis with the help of proximity and light sensors. It was also presented in
[25] that the proximity and light sensors of the phone could realize simple forms of
context recognition associated with the user interface. Information about light and
proximity sensors is shown in Table 1. The proximity sensor can determine how far an
object is from a device. It is usually used to determine how far a person’s head is from
the front of a handset, for example, when a user is making or receiving a phone call.
Most proximity sensors return the absolute distance, in cm, but some return only near
and far values. Therefore, we will use the light and proximity sensors to determine
whether the phone is in the user’s pockets. Take Samsung 19100 for example, if an ob-
ject is within a close range or out of range, it will read 0.0 or 5.0 values respectively
(see Figure 3(a)). The light sensor measures the ambient light level in lux. The android
platform supported eight different luminance values, as shown in Table 2.

From Tables 1 and 2 we can see, the phone can be considered as in a pocket when
the luminance value is less than 100 lux and the proximity sensor returns 0.0. But there
is a special case that the user is making or receiving a phone call at night. In order to
judge the special case, we register a Phone State Listener event to monitor the phone
state change in our application. The performance of identifying the locations of the
smartphone using light and proximity sensors and Phone State Listener event will be
given in the Results section.

Data collection

An application software of physical activity management was developed and installed
on the investigator’s smartphone that measure distance, intensity of light, acceleration,
angular velocity and orientation, as shown in Figure 3(a). As shown in Figure 3(b), the

Table 1 Description of light sensor and proximity sensor

Sensor Type Description Common uses
LIGHT Hardware Measures the ambient light level (illumination) in lux. Controlling screen
brightness.
PROXIMITY Hardware Measures the proximity of an object in cm relative to the Phone position
view screen of a device. This sensor is used to determine during a call.

whether a handset is being held up to a person’s ear.
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(b)

Figure 3 Software interface and coordinate system of the smartphone. (a) Data collection interface on
Samsung 19100. (b) The coordinate system of the smartphone. For each pocket shown, there is a
corresponding one in the left side of the body.

standard sensor coordinate system of the smartphone is defined relative to the
screen. The X-axis is horizontal and points to the right, the Y-axis is vertical and
points up, and the Z-axis points toward the outside of the screen. The coordinate
system of the accelerometer is the same as the standard sensor coordinate system, so
the acceleration of Ay, Ay, A,, show the accelerometer of X, Y, Z direction, respect-
ively. The software-based low pass filter with 0.25 Hz cutoff frequency was employed
to separate acceleration due to gravity (GA) and linear acceleration (LA). So A, was
separated to GA,, and LA,, the same for A, and A, . And the coordinate system of
the gyroscope is the same as the accelerometer. The raw acceleration, gyroscope and
orientation signals were sampled at 25 Hz and stored in text format on Secure
Digital (SD) card in the smartphone and then transferred to computer for further
analysis.

Table 2 Eight luminance values supported by Android platform

Type Description Constant
value (lux)
LIGHT_NO_MOON luminance at night with no moon in lux 0.0010
LIGHT_FULLMOON luminance at night with full moon in lux 0.25
LIGHT_CLOUDY luminance under a cloudy sky in lux 100.0
LIGHT_SUNRISE luminance at sunrise in lux 400.0
LIGHT_OVERCAST luminance under an overcast sky in lux 10000.0
LIGHT_SHADE luminance in shade in lux 20000.0
LIGHT_SUNLIGHT luminance of sunlight in lux 110000.0

LIGHT_SUNLIGHT_MAX Maximum luminance of sunlight in lux 120000.0
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In order to facilitate data collection, the light and proximity sensors were used to
automatically control the data acquisition. Once the phone was put into subject’s
pocket, the data collection would start working, if it was taken out it would stop col-
lecting data.

In order to reflect the real living status, the experimental protocol was designed as
flexible as possible that each subject was asked to perform each activity listed in Table 3
in their own style and in a random order with each activity lasting for 1 minute each
time with the smartphone in one pocket. Six pocket positions presented in Figure 2 will
be investigated in our study. In order to mark the data efficiently, the subject was kept
stationary for 5 seconds between two different activities. The data at the first and last
5 seconds were cut off to stable the signal since subjects need time to put the phone
inside the pocket and also take it out. Almost 300 activity data were derived from
5-minute motion with a resolution of 0.8 s in one pocket for each subject. With the
proposed 6 pocket position, nearly 1800 activity data were derived from one subject. As
we aim to recognize activities independent of subjects, all the activity data collected
from the seven subjects’ six pocket positions were mingled together to establish an
independent dataset. Overall 8097 data were collected with 1697, 2531, 2080, 675 and
1114 for the 5 activities listed in Table 3 separately.

The original physical activity data, accompanied with the corresponding multiple
features extracted from the sensors of the smartphone, are freely available at
https://github.com/fenmiao/ActivityData for further study.

Feature extraction

The proposed feature extraction process can be expressed as Figure 4. Before feature
extraction, to reduce bias due to sensor sensitivity and noise, sliding window approach
with 50% overlap was employed to divide the signal into smaller time windows with
each window of 1.6 seconds.

Different from most previous works, which realize activity recognition using body-
worn sensors that are fixed on a specified body location and orientation, the orientation
and position of the smartphone in our study can be varying, according to the users” ac-
tual status. We chose two magnitude signals that are insensitive to orientation and pos-
ition, LA3, and gyrs, for classification. LA3, is the signal magnitude vector (SMV) of
linear acceleration, which can be represented as:

LAs, = (/LA + LA} + LA? (1)

Likewise, gyrs, uses the same computational method as LA, with the gyroscope

sensor.

Table 3 Activities performed in this experiment

Number Activity task Activity description

1 Static Standing still/sitting on a sofa/sitting at a desk

2 Walking Walking on a treadmill/walking on the playground
3 Running Running on a treadmill/running on the playground
4 Walking downstairs Walking downstairs at a normal pace

5 Walking upstairs Walking upstairs at a normal pace
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Figure 4 Feature extraction process.

In another aspect, Orel, Orel2 and Orel3, which represents the X, Y, Z direction
value of the magnetic sensor, were collected as the 3 independent signals. Combined
with LAz, and gyrs,, 5 signals were collected in our study.

The above signals were extracted from each sliding window and then for statistical
processing. Six kinds of statistical features for all the windows with high popularity in
many pattern recognition and machine learning problems were computed for activity

classification. They are defined as follows:

Mean: the average value of the signal over the window

Standard Deviation: the standard deviation value over the window

Median: the median value over the window

o Skewness: the statistic value to describe the overall distribution of all values in the
form of steep slow degree,

n

Skewness = CECE) lzzl(x, -~ Avg)® /std® 2)

Where Avg is the mean of x;, std is the standard deviation of x;.
o Kurtosis: the degree of peakedness of the distribution over the time window,

n(n+1)> —Avg)4—3(2(xi—Avg)2)2(n— 1)
(n-1)(n-2)(n-3)std*

Kurtosis =

Where Avg is the mean of x;, std is the standard deviation of x;.

e Inter-quartile-Range (IR):
IR = Q;-Q, (4)
Where Qs, Q; is the 75th and 25th percentiles over the window, respectively.

At last, a 30 feature vector was obtained for classification, which was also presented

in Figure 4.

Page 7 of 15
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Classification

We classified the five activities from daily life data presented above employing three differ-
ent classifiers in WEKA environment [24]. The data classification process is presented in
Figure 5. We compared and evaluated the performance of three activity recognition classi-
fiers: decision trees (J48), Naive Bayes and Sequential minimal optimization (SMO). In
order to give insights on how the models will generalize to an independent dataset with
large number of features (overall 30 features) and relatively small size of data, cross valid-
ation [26] were employed. In k-fold cross-validation, the original sample is randomly parti-
tioned into k equal size subsamples. A single subsample is selected from the k subsamples
as the validation dataset for testing the model, and the remaining k-1 subsamples are used
as the training dataset. The cross-validation process repeat for k times, with each of the k
subsamples used exactly once as the validation data. The results from the k processes can
then be averaged to produce a single estimation. In general, 10-fold cross-validation is com-
monly used in most of situations. Therefore, 10-fold cross validation was used to optimize
the three classifiers in our study.

(1) J48 is an open source Java implementation of the C4.5 algorithm in the weka data
mining tool. It builds decision trees from the training dataset based on the concept
of information entropy. The following design elements should be considered in the
training phase:

e At each node of the tree, the attribute of the data that splits its sample set into
subsets concentrated in one class or the other most effectively, that is, with the
highest normalized information gain, is chosen to make a decision.

e A stop-splitting rule is required to control the growth of the tree, and the
terminal node is declared as a leaf node.

e If a smaller tree structure was able to achieve a performance comparable to a
larger one, the smaller one was chosen. It should be noted that the size of the
tree might be different in each training phase.

J48 was chosen to give results of the decision tree, which can be easily transformed

for real-time applications. And it has been successfully applied to activity

recognition earlier. The parameters for the J48 decision tree are defined as follows:

(i) confidence factor = 0.25;

(i) minimum number of objects = 30, numFolds = 3;

(iii) unpruned = True.

(2) In the Naive Bayes [27] classification scheme, the estimate of the probability density
functions (PDF) at a point x = [x(1), ..., x())]” € # is given as

10-fold Classification

‘ Decision tree (J48 classifier) ‘

Performance comparison

Identification accuracy
. . — (confusion matrix) — Choose the
Data > ‘ Naive Bayes classifier ‘ optimal classifier
Computational complexity (time
‘ SMO classifer ‘ consuming)

Figure 5 Data classification process.
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l

p(x) = [T () (5)

j=1

That is, the components of the feature vector x are assumed to be statistically
independent. In order to ensure good estimates of the PDF, the number of the
training samples, N, must be large enough. Although the independence assumption
may not be valid with the Naive Bayes classifier, the final result turns out to be that
the Naive Bayes classifier can be very robust. And it has been reported to perform
well for many real-world data sets.

(3) Instead of previous SVM learning algorithms that use numerical quadratic
programming (QP) as an inner loop, SMO uses an analytic QP step by
decomposing the overall QP problem into a series of small QP problems. SMO
chooses to solve the smallest possible optimization problem at every step. For the
standard SVM QP problem, the smallest possible optimization problem involves
two Lagrange multipliers, because the Lagrange multipliers must obey linear
equality constraint. At every step, SMO chooses two Lagrange multipliers to
jointly optimize, find the optimal values for these multipliers, and updates the
SVM to reflect the new optimal values. The advantage of SMO is that solving for
two Lagrange multipliers can be done analytically. Thus, numerical QP
optimization can be avoided entirely. The inner loop of the algorithm can be
expressed in a short amount of C code, rather than invoking an entire QP library
routine. Even though more optimization sub-problems are solved in the course of
the algorithm so that each sub-problem is so fast that the overall QP problem can
be solved quickly [28], the operation is time-consuming while the training data set
is very large. So we just employ this method for comparison.

Classification performances for above three classifiers were measured by confusion

matrix, which will be presented in the Results section.

Results

The result of recognizing whether the phone is in the pocket

In our study, motion sensors start to collect data only when the phone has been put in-
side the pocket. In order to judge whether the phone is put inside the pocket or not,

we set the following rules:

1) The proximity sensor: If the proximity sensor returns near, we use the value 0 to
indicate the near state, otherwise we use the value 1 to indicate the far state.

2) The light sensor: Normalize the intensity value of light sensor of Table 3 to the
range [0, 1].

3) The Listener for Call State: The Android system provides LISTEN_CALL_STATE
in the class of PhoneStateListener which is the listener for monitoring changes in
call state on the device. When the phone is calling, the value 1 is used to indicate
the call state, otherwise the value 0 is utilized to indicate the uncalled state.

From the classification result demonstrated in Figure 6, we can see the in-pocket case
can be well identified according to the proposed rules in our study.
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The activities recognition results
As the features were extracted from the sliding windows, classification was done with
0.8 seconds time resolution. An example of one subject’s LA3, curves from three differ-
ent positions is shown in Figure 7. From the figure we can see, the value of LAz, in
coat pocket is smaller than that in trousers pockets as bigger acceleration would be
produced from the lower limbs than that from the trunk part while the subject is mov-
ing. In another aspect, the waveform of the coat pocket seems to be more regular as
the phone in trousers pockets often shakes more severely than that in coat pockets.
The scatterplot of five activities employing a combination of gyr3zStd, gyr3zMean
and LA3aMean are shown in Figure 8. In Figure 8, the star-shape scatter area repre-
sents static, the plus sign scatter area represents walking, the circle scatter area repre-
sents running, the diamond scatter area represents downstairs and the square scatter
area represents upstairs. From Figure 8 we can see, the distribution of data from the
five activities are with a certain degree of overlap with just gyr3zStd, gyr3zMean and
LA3aMean, especially for waking, walking upstairs and walking downstairs. Two

T T T
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Figure 7 Acceleration data collected from three different positions.
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Figure 8 The scatter graphs of five activities, employing a combination of gyr3zStd, gyr3zMean and LA3aMean.

reasons may be responsible for this phenomenon. Firstly, the subject needs time to
switch from one activity to another but the reading of sensors is consecutive. The fea-
tures of the switch time maybe confused between the two adjacent activities. Secondly,
the same acceleration magnitude will be produced while subject is walking upstairs or
downstairs and this will result in visible recognition inaccuracy.

Table 4 shows the confusion matrix of the J48 classifier developed based on the pro-
posed 30 statistical features, with each row representing the number of activity data
classified to one class with the proposed model and each column showing the actual
number of activity data belonging to all classes. The performance of the three classifiers
in terms of average recognition accuracy and time taken to build the model on recog-
nizing five activities is listed in Table 5. From the table we can see, decision tree classi-
fiers showed the best performance with an overall accuracy of 89.6% for the five
activities. Therefore, in the real application of physical activity recognition, the J48 was
chosen as the optimal classifier to recognize activities real-time with the highest accur-

acy and reasonable time to build the model.

Discussion
Most previous studies [15-22,29-31] have focused on recognizing activities with wear-
able sensors. However, most of these works required accelerometers to be attached to a

Table 4 Confusion matrix of J48 decision tree

Model actual Walking upstairs Walking downstairs Walking Running Static
Walking upstairs 915 18 160 21 0
Walking downstairs 22 454 158 41 0
Walking 127 85 2268 51 1
Running 23 51 68 1938 0

Static 0 0 16 0 1681
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Table 5 Classification results

Methods Accuracy (%) Root mean Time taken to
squared error build model (s)

J48 89.6 0.1804 0.65

Naive Bayes 753 0.283 0.12

SMO 81.1 0332 1.74

specific location. Table 6 gives the comparison between the previous typical studies
with the proposed method in our study. From the table we can see, the proposed solu-
tion in our study can automatically identify the locations of the smartphone and realize
convenient activity recognition from the smartphone at any pockets with quite good ac-
curacy. Even though in-pocket case in this paper is an ideal position to realize quite
high accuracy, we believe that an efficient solution in the future study to deal with
more cases, such as in the hand and making a call, is needed to adapt to more
situations.

In another aspect, based on the observation for a large number of people, we find
that people usually put the mobile phone into the coat pocket vertically, which can re-
sult in four possible orientations: head upward and face inward, head upward and face
outward, head downward and face inward, head downward and face outward. Three
axis linear acceleration curves from two different smartphones worn in different orien-
tations but the same rear trousers are presented in Figure 9(a). The curves of X, Y, Z
axis linear acceleration from two smartphones are quite different due to the different
orientations. However, while the acceleration magnitude which can measure the

Table 6 Comparison with the reported activity recognition methods

Reference Smartphone Activities Contributions Algorithm Limitations
position numbers and accuracy
Anjum et al.  Pant pocket, 7 Activity recognition with Decision tree  Limited activity
[15], 2013 hand, hand smartphone at multiple (AUC 0.985) traces and thus
bag, shirt positions including pant would tradeoff the
pocket pocket, hand, hand bag and performance in
shirt pocket external verification
Arif [16], Leg front 6 Demonstration of better 10-fold KNN Position is fixed in
2014 pants pocket activity classification accuracy  (98.2%) front pants leg
pockets
Romain Leg front 9 Estimation of total energy Total energy Low accuracy
Guidoux pants pocket expenditure with phone- expenditure
et al. [17], position independent by (73.6%)
2013 transform
Yongjin Pants pocket 5 Unsupervised learning Hierarchical Some important
Kwon et al. without labels clustering or activities including
[19], 2014 DBSCAN going upstairs and
(above 90% downstairs were not
accuracy) studied
Sourav Jacket 8 Deal with unlabeled data Sparse coding  Important activities
Bhattacharya  pockets, (80%) including going
[20], 2014 pants upstairs and
pockets, downstairs were not
backpack studied
This paper Any pockets 5 Automatically identify the 10-fold J48 More situations,
locations of the smartphone  (89.6%) such as in the hand,
and conveniently activity should be further
recognition with smartphone studied

at any pockets
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Figure 9 Acceleration data collected from four different orientations of the smartphone. (a) The three axis
linear acceleration of the two phones (b) The LAs, and the average value of LA3a of the two phones with
2 different orientations in rear trousers pocket.

quantity of acceleration but with no directions required is chosen, it is insensitive for
the orientations of the smartphones. Therefore, as shown in Figure 9(b), there were 2
similar LA3, curves from two different mobile phones worn in the same rear trousers
pocket with 2 different orientations. From the plot we can conclude that the orienta-
tions of the two mobile phones have no influence on the extracted features that we
used for classification. Therefore, the proposed activity recognition solution is with high
robustness.

Conclusions

In this study, we investigated the physical activity recognition issue based on built-in
sensors of the smartphone. Different from previous studies in which the phone must be
attached to the subject’s body with fixed orientation and location, our approach is more
convenient as that orientation and position of smartphone can be varying no matter
the material and style of the hosting pocket. In order to improve classification perform-
ance, we explored orientation-independent features extracted from magnitudes as well
as three axis direction components for recognizing five typical physical activities. Two
different smartphones used in our experiments indicated that the universality of classi-
fication model with several typical activities recognized with good accuracy with the
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extracted statistical features. Overall, the approach we proposed is more feasible for
long-term activity monitoring because of its high convenience, low cost, and the ability
to classify several typical activities in daily life with a relatively high accuracy.

As the dataset is with large dimensional features and relatively small size of data,
cross validation was used to assess the classification performance. However, due to the
difference in way of performing activities around different subjects, the performance
maybe varying in recognizing activities for data from external subjects with just seven
subjects employed for training the classifier. In the future, we will recruit a large num-
ber of subjects to eliminate the inter-variability between different subjects and then val-
idate the proposed models in external validation datasets to improve the robustness of
the proposed solution. In addition, with the rapid development of wearable sensors
such as embedded sensors in smart watch and clothes, a new kind of human activity
recognition solution would be studied to monitoring the user’s activity at any time and
any place. We also plan to develop a sport management application that can merge the
physical activity collected from different wearable sensors based on a private cloud plat-
form [32], and thus calculate the user’s physical activity and help them formulate a
daily exercise program. In addition, security of data [33,34] will be considered in our

future system.
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