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Abstract. Possible approaches to real-time order tracking are discussed. Two methods for real-time order

tracking are developed and validated experimentally for the entire audible spectrum. An adaptive heterodyne

filter bank is compared to a direct integral transform. The performance of both methods is adequate for usage in

an active vibration control (AVC) algorithm. Vold-Kalman filters are not suitable for AVC. The vibration data of

three different planetary gearboxes is analyzed using order tracking. While some of the existing research could

be reproduced, the data contradicts statements made by several authors. Lastly, the architecture of a novel AVC

algorithm is sketched out.

1 Introduction

The vibration of planetary gearboxes is highly modulated.

An explanation for this has been reported first by McFadden

and Smith [1]. For an accurate analysis of the vibration a

technique called order tracking has to be employed. Order

tracking decomposes the vibration signal into its individ-

ual spectral components, often referred to as orders. It is

mostly performed off-line using recorded vibration data.

Borghesani et al. [2] explain how this can be performed

using state of the art methods. They categorize the known

approaches into three classes: “the resampling methods, the

Kalman filter based methods and the transform based meth-

ods”. For off-line analysis, resampling remains a popular

choice because of its accuracy and robustness.

The goal of this paper is to extend order tracking to

real-time and to fast running planetary gearboxes. The

spectral components of the vibration signal are extracted at

the same time they occur. While real-time order tracking

can still be used for off-line analysis, it may also be used

for on-line condition monitoring or active vibration control

(AVC). Here, the focus will be on AVC.

The class of resampling methods will not be inves-

tigated in this paper, because these inherently rely on

recorded data. Instead, a transform based concept will

be developed, leading to two different methods. The Vold-

Kalman filter (VKF) will also be discussed briefly. The

obtained methods will be implemented on a test rig and

a brief analysis of the experimentally acquired gearbox

vibration will be given. Lastly, an AVC algorithm using

real-time order tracking will be sketched out. However,

an implementation of AVC is not within the scope of this

paper.

⋆e-mail: ploeger@ims.tu-darmstadt.de

2 Experimental Set-Up

The experimental set-up is depicted in Figure 1 and consists

of an asynchronous motor (1) that drives the sun gear of the

planetary gearbox (3) and an eddy current brake (5) that

is connected to the planet carrier. Metal bellow couplings

(2) and (4) connect the shafts of motor, eddy current brake

and gearbox. Using this setup the gearbox can be oper-

ated at input speeds up to 10 000 min−1 and output torques

up to 40 N m. The gearbox mount is supported by two

triaxial force sensors (6). Figure 1 shows the coordinate

systems for both sides of the mount. Furthermore the gear-

box mount is equipped with eight accelerometers (7). The

experimental setup allows measuring the gear mesh forces

that are transmitted through the gearbox mount (8) into the

surrounding structure. This work focuses on the data of

the accelerometer on the right side of the gearbox mount

in x1 direction to investigate the online order-tracking ap-

proaches. The experimental setup enables measurement of

run-ups as well as stationary operation. A speedgoat per-

formance real-time target machine featuring an Intel Core

i7 3770K 3.5 GHz quadcore CPU allows for a frequency

of 80 kHz in closed loop operation. The piezoelectric ac-

celerometers are of type MMF KS78B.10 and their signal

is fed into a MMF M208B measurement amplifier featuring

a low-pass filter with cut-off frequency of 30 kHz. Three

commercially available planetary gearboxes are selected

for the investigation as presented in Table 1.

3 Modeling Gear Mesh Vibration

It is known from existing research [3] that the vibration

of planetary gearboxes may be modeled accurately as a

Fourier series. Using this approach, a vibration model has

been presented by the authors [4]. This paper will extend

its application to real time. On behalf of briefness, only a
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Table 1. Selected planetary gearboxes.

Gearbox A B C

Gear spur spur helical

Z 84 84 108

Ratio 3 3 3

Outer diameter 60 mm 40 mm 68 mm

Mass 0.9 kg 0.35 kg 1.9 kg

Figure 1. Set-up: Motor shaft (1), metal bellow couplings (2, 4),

planetary gearbox (3) within gearbox mount (8), eddy current

brake (5), triaxial force sensors (6) and accelerometers (7).

rough outline on the vibration model will be discussed. For

a detailed derivation refer to [4]. In this paper planetary

gearboxes with a fixed ring gear will be discussed.

The vibration of a planetary gearbox can be expressed

as a modulated signal. This has been first recognized by

McFadden and Smith [1]. The fundamental frequency cor-

responds to the nominal gear mesh frequency ω0, which is

defined by the angular velocity of the planet carrier ϕ̇ and

the number of teeth on the ring gear Z.

ω0 = Zϕ̇ (1)

If the angular velocity is constant, the modulation will be

periodic w. r. t. time. In transient operation the modulation

A can be modeled periodic w. r. t. the carrier angle ϕ, if

the angular acceleration is not too large. In this model, a

complex modulation A will be used. Two counter rotating

phasors are introduced in order to constrain the signal v to

real values.

v =
1

2
A(ϕ)eiω0t

+
1

2
A(ϕ)e−iω0t (2)

The signal v may represent any observable vibration, such

as a force, acceleration, displacement or similar. Because

the modulation A is periodic w. r. t. the angle ϕ of the

planet carrier it may be expressed as a Fourier series. In

anticipation of the next step the index of the series has

already been shifted by the number of teeth Z.

A(ϕ) =

∞
�

k=−∞

ck−Zeikϕ (3)

The shift is only a change in notation from a mathematical

standpoint. However, the shifted index k is closely con-

nected to the properties of the vibration signal. This will

be validated later in Section 7. In summary it means that

the most significant vibration occurs at frequencies close

to the nominal gear mesh frequency ω0. It also means that

the spectral components are spaced evenly in the frequency

domain at a distance corresponding to the frequency ϕ̇ at

which the planet carrier rotates. Thus, the index k uniquely

identifies a spectral component. Now (3) is inserted into

(2) and (1) is applied to the result.

v =
1

2















∞
�
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(4)

Without loss of generality it may be assumed that the coef-

ficients c are complex conjugate pairs.

ck =



























a0 for k = 0
1
2
(ak − ibk) for k > 0

1
2
(a−k + ib−k) for k < 0 .

(5)

Therefore (4) reduces to

v =

∞
�

k=−∞

ckeikϕ
=

a0

2
+

∞
�

k=1

(ak cos kϕ + bk sin kϕ) . (6)

The expressions cos kϕ and sin kϕ may be interpreted as

reference oscillators.

This very basic model of the vibration signals may serve

different purposes. It is a useful analytical tool because it

reduces substantial amounts of data to a set of coefficients.

It compares favorably to the use of the FFT, which does not

reduce the amount of data without averaging of the spec-

trum. In contrast to FFT based approaches it also utilizes

the sparsity of the vibration signal in the frequency do-

main. The FFT of steady-state gearbox vibration is zero at

many frequencies. In addition, approximately 80 % of the

nonzero spectral lines are only nonzero because of spectral

leakage. The model (6) presumes this structure inherently

and does not need to express it explicitly by yielding van-

ishing spectral components at certain frequencies. Also it

performs acceptably in the case of non-constant angular

velocity. Here FFT based approaches need to re-sample the

measured data as explained in [2].

If used for analysis, the task is to compute the coeffi-

cients ck from measured data. However, the model is not

limited to analysis. Because it describes the vibration of

planetary gearboxes precisely and efficiently, it is suited

as the foundation from which active vibration control can

be derived. This will be sketched out in Section 8. The

intermediate goal is to arrive at a real-time capable esti-

mation of ck, where the estimated coefficients are updated

on-line at a rate of 80 kHz, observing the entire audible
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Figure 2. Ring buffer structure.

range. In the following sections, three possible approaches

will be discussed: First, the coefficients may be calculated

by integral transform. Second, a heterodyne filter bank may

be employed. Third, a Vold-Kalman filter can be used.

4 Integral Transform

From the infinite series of (6) any coefficient ck may be

computed by solving

ak =
1

π

∫ 2π

0

v(ϕ) cos kϕ dϕ (7)

and the analogous Equation for bk. Because the only differ-

ence between ak and bk is the use of sin instead of cos, the

derivation of bk is mostly omitted from this study. More

details may be found in [4]. For a numerical computation

the continuous time signals have to be substituted by their

discrete time approximations

ak ≈
1

2π

n
∑

l=m

v[l] (ϕ[l + 1] − ϕ[l − 1]) cos kϕ[l] (8)

bk ≈
1

2π

n
∑

l=m

v[l] (ϕ[l + 1] − ϕ[l − 1]) sin kϕ[l] (9)

where the start index m and the stop index n have to satisfy

the limits of the original integral, such that

ϕ[n] − ϕ[m] ≈ 2π . (10)

The method was originally used for off-line analysis in [4].

This approach may be adapted to real-time. In this real-

time context the index n denotes the current step. From (10)

it follows that the index m[n] is a function of n, because

at any time n there needs to be one full turn of the planet

carrier between m and n.

The sum in Eq. (8) may be split up in its individual

summands.

ak[n] =

n
∑

l=m[n]

∆ak[l] (11)

∆ak[l] =
1

2π
v[l] (ϕ[l + 1] − ϕ[l − 1]) cos kϕ[l] (12)

ak[n] = ak[n − 1] + ∆ak[n] −

m[n]−1
∑

l=m[n−1]

∆ak[l] (13)

During stationary operation in every time step there will

be one summand added and one will be subtracted. If

the gearbox speeds up, more than one summand needs to

be removed. Conversely at time steps where the gearbox

slows down there it is possible that no summand needs to

be subtracted.

In a practical implementation this will be realized using

a circular buffer memory as visualized in Figure 2. This

buffer is able to store a certain amount of past data. Its

length is adjusted to the lowest angular velocity of the

planet carrier at which the algorithm is to be executed.

Numerical stability has to be considered. In fixed point

arithmetic, the summands added can be removed exactly by

subtraction. In a floating point arithmetic this is not always

true, as the exponent might change after addition. If single

precision floating point arithmetic is used, the coefficients

may have to be reset in regular intervals, which can be

done without loss of information. Using double precision,

the round-off error can safely be ignored. Here, double

precision arithmetic will be used.

5 Heterodyne filtering

The heterodyne principle moves the contents of a time

domain signal in the frequency domain. This technique

has been known for more than a century. For the historical

context see [5] or [6]. The principle has been used in radio

applications since. It also may be employed to create digital

adaptive band pass filters as discussed in [7].

The heterodyne principle has been applied to planetary

gearboxes before. [8]. However, it has been employed to

shift high frequency acoustic emission signals below the

Nyquist frequency of the DAQ hardware. This paper uses

the heterodyne principle for an entirely different purpose.

Here, instead of a single heterodyne unit, a filter bank

consisting of several units is used to decompose the signal

in its spectral components. The filter bank needs to be

adaptive because the frequencies at which the components

are located depend on the angular velocity of the planet

carrier.

Figure 3 shows how an adaptive band pass filter may

be realized. From the signal v the k-th spectral component

will be extracted. The instantaneous angle ϕ of the planet

carrier is fed into the reference oscillator. Here, the filter is

split into a real path (cosine) and an imaginary path (sine).

All operations are performed equally on both paths. The

mixer multiplies the signal v by the output of the reference

oscillator.
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This mixing is the key step in the heterodyne principle.

It shifts the frequency of the k-th spectral component to

the base band. Because of this, an ordinary low pass filter

can be used to remove all other spectral components. The

design of the filter determines the actual performance of

the heterodyne unit. It will be discussed in detail later. Be-

cause the frequency of the spectral component of interest

has been shifted to DC, the two low pass filters extract real

and imaginary part of the Fourier coefficient ck. Multiplica-

tion of these weights by the reference oscillation yields a

reconstruction of the time domain signal.

Of course, this arrangement only extracts one spectral

component ṽk from v.

ṽk = ak cos kϕ + bk sin kϕ (14)

In order to extract multiple components, a parallel array

of identical units has to be employed. This is known as

a filter bank. It is able to extract any number of Fourier

coefficients concurrently. In turn, using the extracted coef-

ficients and the reference oscillators, the original signal v

may be reconstructed. The quality of a filter design may be

judged by the reconstruction error

ε = v −

N
∑

k=0

ṽk (15)

where N is the Number of spectral components present in

the signal.

However if the filter exhibits a phase of ±π/2 in the

stop band, the reconstruction error will be a superficial

measure of the performance of the filter design. This can

be most easily explained using the experimental data of

Section 7. Consider the spectral component of the highest

magnitude. For gearbox A this is k = 83 at most operating

conditions. If the planet carrier turns at ϕ̇/2π = 3000 min−1,

the distance between the spectral components will amount

to 50 Hz. Heterodyne unit number 82 will shift spectral

component to 50 Hz with a phase of −π/2 and an attenua-

tion specific to the filter design. Unit 84 will also shift it

to 50 Hz, but with a phase of π/2 and the same amount of

attenuation. In Equation (15) this will cancel out. While

the reconstruction is successful, the decomposition is not.

Any low pass filter may be used in the heterodyne unit,

but the performance relies on a good choice. Generally FIR

filters are not investigated in this paper. Compared to IIR

filters they require a much higher order to achieve equal

performance. At a desired cutoff frequency of less than

1/1000 of the Nyquist frequency FIR filters are computa-

tionally too expensive. A FIR design would need a length

of more than 5000 to achieve acceptable performance.

A Chebyshev type II design has been chosen for the low

pass filter. If the order of this filter is odd, the phase will

be −π/2 in the stop band. Only for even orders numerical

optimization of the reconstruction error is sensible. Be-

cause the filter will be implemented as a biquad structure,

an order of 3 would offer no advantage over an order of 4

regarding the computational effort. Orders 1 or 2 cannot

yield valid filter designs. Therefore, an order of 4 has been

chosen. Generally, no improvements could be achieved by

higher filter orders.

The filter may be characterized by the parameters stop-

band frequency fstop and stopband attenuation. They deter-

mine the selectivity of the filter. This means the ability to

extract the spectral component of interest and to reject any

other component. As explained in Section 3, the distance

between the spectral components corresponds to the rate

at which the planet carrier rotates. Therefore the stopband

frequency fstop must never exceed this.

0 < fstop <
ϕ̇

2π
(16)

This means that there is a minimal speed of the gearbox the

filter bank cannot operate below. Therefore it would seem

that the stopband frequency should be as low as possible.

However, a high selectivity comes at a cost. In transient

operation, e. g. a run-up of the gearbox the weights are not

constant, but change slowly. If the selectivity of the filter is

chosen too high, it will also reject fluctuation of the weights.

This will degrade performance significantly. Therefore, at

given minimum and maximum speed of the gearbox there

is an optimal stopband frequency. On the measured data

of gearbox A a stop band frequency of fstop = 22 Hz and

an attenuation of 84 dB yield optimal performance for a

Chebyshev type II filter of order 4.

6 Vold-Kalman filtering

The Vold-Kalman filter serves the same purpose of decom-

posing a signal into spectral components using a reference

oscillator. It has initially been proposed in [9]. There are

two distinct formulations of the algorithm. The first type

calculates the decomposition of the signal v into the spec-

tral components ṽk in the time domain. The second type

calculates the complex magnitude of the spectral compo-

nents. This is equivalent to the determination of the Fourier

coefficients ck. It is generally agreed upon that the accuracy

of Vold Kalman filters is very good. Therefore, researchers

have tried to adapt the filter to real-time [10] or to make it

on-line capable [11].

Because the Vold-Kalman filter calculates a globally

optimal decomposition of the signal into its spectral com-

ponents, the computational effort is higher than that of

comparable methods. While [11] reports real-time capabil-

ity on similar computer hardware as used in this paper, the
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two distinct formulations of the algorithm. The first type

calculates the decomposition of the signal v into the spec-

tral components ṽk in the time domain. The second type

calculates the complex magnitude of the spectral compo-

nents. This is equivalent to the determination of the Fourier

coefficients ck. It is generally agreed upon that the accuracy

of Vold Kalman filters is very good. Therefore, researchers

have tried to adapt the filter to real-time [10] or to make it

on-line capable [11].

Because the Vold-Kalman filter calculates a globally

optimal decomposition of the signal into its spectral com-

ponents, the computational effort is higher than that of

comparable methods. While [11] reports real-time capabil-

ity on similar computer hardware as used in this paper, the

0 84 168 252
0

50

k

m
ea

n
|c

k
|i

n
m
/s

2

Heterodyne filter

Integral transform

−50 0 50

−50

0

50

ℜ{ck} in m/s2

ℑ
{c

k
}

in
m
/s

2

Heterodyne filter

−50 0 50

−50

0

50

ℜ{ck} in m/s2

ℑ
{c

k
}

in
m
/s

2

Integral transform
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Figure 5. Input speed: 7000 min−1, load: 10 N m.

conditions are less demanding than in the case of high speed

planetary gearboxes. There, a sampling rate of 2048 Hz is

used while in this study a sampling frequency of 80 kHz

is required. Also, only five orders are tracked in [11]. In

addition the algorithm is executed in a block-wise fashion

leading to a delay of up to 146 ms. An other investigation

[10] reports that it takes at least 21.7 s to track four orders

in a 5 s signal at a sampling rate of 2 kHz.

These computational properties may be acceptable for

condition monitoring, but are very problematic for active

vibration control. Incorporation of the VKF into an AVC

algorithm seems unlikely in this high speed application.

Therefore, it will be not investigated further.

7 Results

There are two performance measures for a real-time order

tracking algorithm: Accuracy and execution time. Figure 4

depicts the results of both the heterodyne filter and the

integral transform. The vibration of gearbox A running

at an input speed of 10 000 min−1 and an output load of

30 N m has been recorded for a time of 0.8 s. From this

data, the Fourier coefficients ck are computed. The most

significant coefficients are in the vicinity of the number of

teeth on the ring gear Z. This is expected from Section 3

and Equation (3). Also, the nonlinear dynamics of the gear

meshing excite higher gear mesh order around 2Z and 3Z.

The results of both approaches are very similar. The

integral transform yields a greater fluctuation of the coeffi-

cients than the heterodyne filter bank. The mean values of

the computed coefficients are nearly identical. Therefore it

has to be concluded that there is no significant difference

in accuracy between the two approaches. Both approaches

are then tested in terms of execution time on the test rig.

The number of coefficients to be extracted is increased until

CPU overload occurs. The heterodyne filter bank is able

to extract the 100 most significant spectral components

in real-time. The integral transform can track 20 orders.

However, the program code has not been optimized and

an improvement to the level of the heterodyne filter bank

seems possible. In practice, it may be advisable to leave out

some spectral components. If a certain component does not

contribute to the total power of the signal, unit dedicated to

its extraction will only yield noise. In this application the

best reconstruction of the signal is achieved using 34 orders.

Therefore, neither approach has a significant advantage in

terms of execution speed.

Figure 5 compares the results of all three gearboxes

during equal operating conditions. The load has been set to

the maximum of gearbox B while the speed is limited by C.

Only the vicinity of the gear mesh order is depicted because
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here the most significant spectral component are located.

The difference between spur (A,B) and helical (C) gears is

to be expected. However, gearboxes A and B differ more

than it would be expected from existing research. These

two gearboxes share most constructive parameters (see

Table 1). While the base frequency is mostly suppressed

in A, it is most significant in B. This clearly contradicts

existing research such as [1] or [3].

8 Active Vibration Control

Active vibration control of the gear meshing needs to uti-

lize the specific structure of the excitation. Only this way

sufficient performance may be achieved. One approach is

to adapt the FxLMS algorithm to the planetary gearbox. It

uses reference oscillators similar to those of the heterodyne

filter bank. While it offers good performance, there is one

drawback: The FxLMS algorithm relies on an accurate

model of the secondary path. At frequencies of more than

4 kHz small disturbances, even variations in temperature

may change the frequency response of the secondary path

considerably. Therefore, the performance of the FxLMS

algorithm may degrade quickly. There have been remedies

proposed for this problem. For example, Li et al [12] use

on-line identification of secondary path. But this solution

introduces new problems: The computational requirements

will increase. Also the stability will depend on an accurate

estimation of the secondary path, which is difficult to do

outside of a laboratory.

An algorithm which does not rely on a model of the dy-

namics of the actuator or the structure will avoid this issue.

Therefore, a new algorithm using real-time order tracking

is proposed in Figure 6. From the measured vibration v

the Fourier coefficients ck are estimated using real-time

order tracking. An optimization algorithm then chooses

the output weights wk. The output u of the controller is

determined by the complex weights wk and the reference

oscillators.

u =
∑

k∈K

wkeikϕ (17)

Only a relevant subset K is used for reasons discussed in

Section 7. Because the performance measure is defined in

terms of the Fourier coefficients, the problem will decom-

pose into independent sub-problems. The objective is to

minimize the magnitude of each coefficient |ck | individually

by adjusting the corresponding output weight ℜ{wk} and

ℑ{wk}. This leads to a much easier estimation of the gradi-

ent, because the dimension is reduced to 2. Also, the step

size may be adjusted more efficiently because an estimation

of the Hessian matrix is feasible. A discussion of an actual

implementation would go beyond the scope of this paper.

9 Conclusion

Two methods of real-time order tracking have been devel-

oped: The heterodyne filter bank and the integral transform.

Their respective accuracy and computational efficiency are

both sufficient for the proposed high-speed real-time use.

This has been validated using a test rig. The methods utilize

the characteristic modulation of the vibration excited by a

planetary gearbox. From existing research it it concluded

that the Vold-Kalman filter does not meet the requirements

on the computational effort. The architecture for an active

vibration control algorithm using real-time order tracking

has been proposed. In the next step, an actual implemen-

tation of AVC should be performed. Also the experimen-

tal data shows that the modulation in planetary gearboxes

is more complex than commonly assumed. Therefore, a

comparative study of different commercial gearboxes is

planned.
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