
Chapter 2
Introductory Theory of Interferometry
and Synthesis Imaging

In this chapter, we provide a simplified analysis of interferometry and introduce
several important concepts. We first consider an interferometer in one dimension
and discuss the effect of finite bandwidth and show how the interferometer response
can be interpreted as a convolution. We extend the analysis to two dimensions
and discuss circumstances in which three-dimensional imaging can be undertaken.
This chapter is intended to provide a broad introduction to the principles of
synthesis imaging to facilitate the understanding of more detailed development in
later chapters. A brief introduction to the theory of Fourier transforms is given in
Appendix 2.1.

2.1 Planar Analysis

The instantaneous response of a radio interferometer to a point source can most sim-
ply be analyzed by considering the signal paths in the plane containing the electrical
centers of the two interferometer antennas and the source under observation. For an
extended observation, it is necessary to take account of the rotation of the Earth and
consider the geometric situation in three dimensions, as can be seen from Fig. 1.15.
However, the two-dimensional geometry is a good approximation for short-duration
observations, and the simplified approach facilitates visualization of the response
pattern.

Consider the geometric situation shown in Fig. 2.1, where the antenna spacing
is east–west. The two antennas are separated by a distance D, the baseline, and
observe the same cosmic source, which is in the far field of the interferometer;
that is, it is sufficiently distant that the incident wavefront can be considered to be
a plane over the distance D. The source will be assumed for the moment to have

© The Author(s) 2017
A.R. Thompson, J.M. Moran, and G.W. Swenson Jr., Interferometry and Synthesis
in Radio Astronomy, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-319-44431-4_2

59

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193771464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


60 2 Introductory Theory of Interferometry and Synthesis Imaging

Fig. 2.1 Geometry of an elementary interferometer. D is the interferometer baseline.

infinitesimal angular dimensions. For this discussion, the receivers will be assumed
to have narrow bandpass filters that pass only signal components very close to �.

As explained for the phase-switching interferometer in Chap. 1, the signal
voltages are multiplied and then time-averaged, which has the effect of filtering
out high frequencies. The wavefront from the source in direction � reaches the right
antenna at a time

�g D D

c
sin � (2.1)

before it reaches the left one. �g is called the geometric delay, and c is the velocity of
light. Thus, in terms of the frequency �, the output of the multiplier is proportional to

F D 2 sin.2��t/ sin 2��.t � �g/

D 2 sin2.2��t/ cos.2���g/ � 2 sin.2��t/ cos.2��t/ sin.2���g/ : (2.2)

The center frequency of the receivers is generally in the range of tens of megahertz
to hundreds of gigahertz. As the Earth rotates, the most rapid rate of variation of
� is equal to the Earth’s rotational velocity, which is of the order of 10�4 rad s�1.
Also, becauseD cannot be more than, say, 107 m for terrestrial baselines, the rate of
variation of ��g is smaller than that of �t by at least six orders of magnitude. For an
averaging period T � 1=�, the average value of sin2.2��t/ D 1

2
and the average

value of sin.2��t/ cos.2��t/ D 0, leaving the fringe function

F D cos 2���g D cos

�
2�Dl

�

�
; (2.3)

where l D sin � ; the definition of the variable l is discussed further in Sect. 2.4.
For sidereal sources, the variation of � with time as the Earth rotates generates
quasisinusoidal fringes at the correlator, which are the output of the interferometer.
Figure 2.2 shows an example of this function, which can be envisaged as the
directional power reception pattern of the interferometer for the case in which the
antennas either track the source or have isotropic responses and thus do not affect
the shape of the pattern.



2.1 Planar Analysis 61

Fig. 2.2 Polar plot to illustrate the fringe function F D cos.2�Dl=�/. The radial component is
equal to jFj, and � is measured with respect to the vertical axis. Alternate lobes correspond to
positive and negative half-cycles of the quasi-sinusoidal fringe pattern, as indicated by the plus and
minus signs. To simplify the diagram, a very low value of 3 is used for D=�. The increase in fringe
width due to foreshortening of the baseline as j� j increases is clearly shown. The maxima in the
horizontal direction .� D ˙90ı/ are a result of the arbitrary choice of an integer value for D=�.

An alternate and equivalent way of envisaging the formation of the sinusoidal
fringes is to note that because of the rotation of the Earth, the two antennas have
different components of velocity in the direction of the source. The signals reaching
the antennas thus suffer different Doppler shifts. When the signals are combined in
the multiplying action of the receiving system, the sinusoidal output arises from the
beats between the Doppler-shifted signals.

A development of the simple analysis can be made if we consider two Fourier
components of the received signal at frequencies �1 and �2. These frequency
components are statistically independent so that the interferometer output is the
linear sum of the responses to each component. Hence, the output has components
F1 and F2, as in Eq. (2.3). For frequency �2, the coefficient 2�D=� D 2�D �2=cwill
be different from that for �1, so F2 will have a different period from F1 at any given
angle � . This difference in period gives rise to interference between F1 and F2, so
that the fringe maxima have superimposed on them a modulation function that also
depends on � . Similar effects occur in the case of a continuous band of frequencies.
For example, if the signals at the correlator are of uniform power spectral density
over a band of width �� and center frequency �0, the output becomes

F.l/ D 1

��

Z �0C��=2

�0���=2

cos

�
2�Dl�

c

�
d�

D cos

�
2�Dl�0

c

�
sin.�Dl��=c/

�Dl��=c
: (2.4)

Thus, the fringe pattern has an envelope in the form of a sinc function [sinc.x/ D
.sin�x/=�x�. This is an example of the general result, to be discussed in the
following section, that in the case of uniform power spectral density at the antennas,
the envelope of the fringe pattern is the Fourier transform of the instrumental
frequency response.
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2.2 Effect of Bandwidth

Figure 2.3 shows an interferometer of the same general type as in Fig. 2.1 but with
the amplifiers H1 and H2, the multiplier, and an integrator (with respect to time)
shown explicitly. An instrumental time delay �i is inserted into one arm. Assume
that for a point source, each antenna delivers the same signal voltage V.t/ to the
correlator, and that one voltage lags the other by a time delay � D �g � �i, as
determined by the baseline D and the source direction � . The integrator within the
correlator has a time constant 2T; that is, it sums the output from the multiplier
for 2T seconds and then resets to zero after the sum is recorded. The output of the
correlator may be a voltage, a current, or a coded set of logic levels, but in any case,
it represents a physical quantity with the dimensions of voltage squared.

Fig. 2.3 Elementary interferometer showing bandpass amplifiers H1 and H2, the geometric time
delay �g, the instrumental time delay �i, and the correlator consisting of a multiplier and an
integrator.
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The output from the correlator resulting from a point source1 is

r D 1

2T

Z T

�T
V.t/V.t � �/ dt : (2.5)

We have ignored system noise and assumed that the two amplifiers have identical
bandpass characteristics, including finite bandwidths �� outside which no frequen-
cies are admitted. The integration time 2T is typically milliseconds to seconds, that
is, very much larger than ���1. Thus, Eq. (2.5) can be written as

r.�/ D lim
T!1

1

2T

Z T

�T
V.t/V.t � �/ dt ; (2.6)

which is an (unnormalized) autocorrelation function. The condition T ! 1 is
satisfied if a large number of variations of the signal amplitude, which have a
duration � ���1, occur in time 2T. The integration time used in practice must
clearly be finite and much less than the fringe period.

As described in Chap. 1, the signal from a natural cosmic source can be
considered as a continuous random process that results in a broad spectrum, of
which the phases are a random function of frequency. It will be assumed for our
immediate purpose that the time-averaged amplitude of the cosmic signal in any
finite band is constant with frequency over the passband of the receiver.

The squared amplitude of a frequency spectrum is known as the power density
spectrum, or power spectrum. The power spectrum of a signal is the Fourier
transform of the autocorrelation function of that signal. This statement is known
as the Wiener–Khinchin relation (see Appendix A2.1.5) and is discussed further in
Sect. 3.2. It applies to signals that are either deterministic or statistical in nature and
can be written

ˇ̌
H.�/

ˇ̌2 D
Z 1

�1
r.�/e�j2���d� ; (2.7)

and

r.�/ D
Z 1

�1
ˇ̌
H.�/

ˇ̌2
ej2���d� ; (2.8)

where H.�/ is the amplitude (voltage) response, and hence jH.�/j2 is the power
spectrum of the signal input to the correlator. In this case, because the cosmic
signal is assumed to have a spectrum of constant amplitude, the spectrum H.�/

is determined solely by the passband characteristics (frequency response) of the
receiving system from the outputs of the antennas to the output of the integrator.
Thus, the output of the interferometer as a function of the time delay � is the

1For simplicity, we consider only the signals from a point source, which are identical except for
a time delay. In practical systems, the input waveforms at the correlator may contain the partially
correlated signals from a partially resolved source as well as instrumental noise.
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Fourier transform of the power spectrum of the cosmic signal as bandlimited by the
receiving system. Assume, as a simple example, a Gaussian passband centered at �0:

ˇ̌
H.�/

ˇ̌2 D 1

2	
p

2�

�
exp

�
� .� � �0/

2

2	2

�
C exp

�
� .� C �0/2

2	2

��
; (2.9)

where 	 is the bandwidth factor (the full bandwidth at half-maximum level isp
8 ln 2 	). Note that to perform the Fourier transforms in Eqs. (2.7) and (2.8),

we include a negative frequency response centered on ��0. The spectrum is then
symmetrical with respect to zero frequency, which is consistent with the fact that
the autocorrelation function (which is the Fourier transform of the power spectrum)
is real. The negative frequencies have no physical meaning but arise mathematically
from the use of the exponential function. The interferometer response is

r.�/ D e�2�2�2	2

cos.2��0�/ ; (2.10)

which is illustrated in Fig. 2.4a. Note that r.�/ is a cosinusoidal function multiplied
by an envelope function, in this case a Gaussian, whose shape and width depend on
the amplifier passband. This envelope function is referred to as the delay pattern or
bandwidth pattern.

By setting the instrumental delay �i to zero and substituting for the geometric
delay �g D .D=c/ sin � in Eq. (2.10), we obtain the response

r.�g/ D exp

"
�2

�
�D	

c
sin �

�2
#
cos

�
2��0D

c
sin �

�
: (2.11)

The period of the fringes (the cosine term) varies inversely as the quantity
�0D=c D D=� and does not depend on the bandwidth parameter 	 . The width
of the bandwidth pattern (the exponential term), however, is a function of both
	 and D ; wide bandwidths and long baselines result in narrow fringe envelopes.
This result is quite general. For example, a rectangular amplifier passband of
width ��, as considered in Eq. (2.4), results in an envelope pattern of the form
Œsin.����/�=.����/, as shown in Fig. 2.4b.

In imaging applications, it is usually desirable to observe the fringes in the
vicinity of the maximum of the pattern, where the fringe amplitude is greatest. This
condition can be achieved by changing the instrumental delay �i continuously or
periodically so as to keep � D �g � �i suitably small. If �i is adjusted in steps of
the reciprocal of the center frequency2 �0, the response remains cosinusoidal with
�g. Note that for wide bandwidths, as �� approaches �, the width of the envelope
function becomes so narrow that only the central fringe remains. This occurs mainly
in optics, where a central fringe of this type is often called the “white light” fringe.

2This adjustment method is useful to consider here, but more commonly used methods are
described in Sects. 7.3.5 and 7.3.6.
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Fig. 2.4 Point-source
response of an interferometer
with (a) Gaussian and (b)
rectangular passbands. The
abscissa is the geometric
delay �g. The bandwidth
pattern determines the
envelope of the fringe term.
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2.3 One-Dimensional Source Synthesis

In the analysis of an interferometer in which the antennas and the instrumental delay
track the position of the source, as is the norm for frequencies above� 1 GHz, it is
convenient to specify angles of the antenna beam and other variables with respect to
a reference position on the sky, usually the center or nominal position of the source
under observation. This is commonly referred to as the phase reference position.
Since the range of angles required to specify the source intensity distribution relative
to this point is generally no more than a few degrees, small-angle approximations
can be used to advantage. The instrumental delay is constantly adjusted to equal the
geometric delay for radiation from the phase reference position. If we designate this
reference position as the direction �0, then �i D .D=c/ sin �0. For radiation from a
direction .�0 ���/, where �� is a small angle, the fringe response term is

cos.2��0�/ D cos

�
2��0

�
D

c
sin.�0 ���/� �i

��

' cosŒ2��0.D=c/ sin�� cos �0� (2.12)

for cos�� ' 1. When observing a source at any position in the sky, the angular
resolution of the fringes is determined by the length of the baseline projected onto
a plane normal to the direction of the source. In Fig. 2.1, for example, this is the
distance designated D cos � . We therefore introduce a quantity u that is equal to the
component of the antenna spacing normal to the direction of the reference position
�0. u is measured in wavelengths, �, at the center frequency �0, that is,

u D D cos �0

�
D �0D cos �0

c
: (2.13)

Since �� in Eq. (2.12) is small, we can assume that the bandwidth pattern is near
maximum (unity) in the direction �0 � �� . Then, from Eqs. (2.12) and (2.13), the
response to radiation from that direction is proportional to

F.l/ D cos.2��0�/ D cos.2�ul/ ; (2.14)

where l D sin�� . This is the response to a point source at � D �0 � �� of an
interferometer whose net delay �g � �i is zero at � D �0. As we shall show, the
quantity u is interpreted as spatial frequency. It can bemeasured in cycles per radian,
since the spatial variable l, being small, can be expressed in radians.

2.3.1 Interferometer Response as a Convolution

The response of a single antenna or an interferometer to a source can be expressed
in terms of a convolution. Consider first the response of a single antenna and a
receiver that measures the power received. Figure 2.5 shows the power reception
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Fig. 2.5 The power pattern
A.�/ of an antenna pointed in
the direction OC, and the
intensity profile of a source
I1.� 0/, used to illustrate the
convolution relationship. The
angle � is measured with
respect to the beam center
OC. The profile of the source
is a function of � 0, measured
with respect to the direction
of the nominal position of the
source OB.

pattern of the antenna A.�/, which is a polar plot of the effective area of the antenna
as a function of angle from the center of the antenna beam. Also shown is the one-
dimensional intensity profile of a source I1.� 0/, as defined in Eq. (1.9), in which
� 0 is measured with respect to the center, or nominal position, of the source. The
component of the output power in bandwidth �� contributed by each element d� 0
of the source is 1

2
��A.� 0 � �/I1.� 0/d� 0, where the factor 1

2
takes account of the

ability of the antenna to respond to only one component of randomly polarized
radiation. The total output power from the antenna, omitting the constant factor
1
2
��, is proportional to

Z
source

A.� 0 � �/I1.�
0/d� 0 : (2.15)

This integral is equal to the cross-correlation of the antenna reception pattern and
the intensity distribution of the source. It is convenient to define A.�/ D A.��/,
whereA is the mirror image of Awith respect to � . Then expression (2.14) becomes

Z
source

A.� � � 0/I1.� 0/d� 0 : (2.16)

The integral in expression (2.15) is an example of the convolution integral;
see Appendix 2.1, Eq. (A2.33). We can say that the output power of the antenna is
given by the convolution of the source with the mirror image of the power reception
pattern of the antenna. The mirror-image3 reception pattern can be described as the
response of the antenna to a point source.

3In many cases, the beam is symmetrical, and the mirror image is identical to the beam.
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In the case of an interferometer, we can express the response as a convolution
by replacing the antenna power pattern in Eq. (2.16) by the overall power pattern of
the interferometer. From the results presented earlier, we find that the response of
an interferometer is determined by three functions:

• The reception pattern of the antennas, which we represent as A.l/,
• The fringe pattern, F.l/, as in the example of Fig. 2.2 and given by Eq. (2.14).

Note that the fringe term in the interferometer output, being the product of two
voltages, is proportional to power.

• The bandwidth pattern, for example, as given by the sinc-function factor in
Eq. (2.4). In the general case, we can represent this by FB.l/.

Note that the antenna beam is often symmetrical, in which case, if the interferometer
fringes are aligned with the beam center, we can disregard the distinction between
the interferometer power pattern and its mirror image in using the convolution
relationship.

Next, consider an interferometer with tracking antennas and an instrumental
delay that is adjusted so the bandwidth pattern also tracks the source across the
sky. In effect, the intensity distribution is modified by the antenna and bandwidth
patterns. We can therefore envisage the output of the interferometer as the convolu-
tion of (the mirror image of) the fringe pattern with the modified intensity. In terms
of the convolution integral, the response can be written as

R.l/ D
Z
source

cos
�
2�u.l� l0/

	
A.l0/FB.l0/I1.l0/dl0 : (2.17)

or, more concisely,

R.l/ D cos.2�ul/ � ŒA.l/FB.l/I1.l/� ; (2.18)

where the in-line asterisk symbol (�) denotes convolution. The intensity distribution
measured with the interferometer is modified by A.l/ and FB.l/, but since these
are measurable instrumental characteristics, I1.l/ can generally be recovered from
the product A.l/FB.l/I1.l/. In many cases, the angular size of the source is small
compared with the antenna beams and the bandwidth pattern, so these two functions
introduce only a constant in the expression for the response. To simplify the
discussion, we shall consider this case, and omitting constant factors, we can write
the essential response of the interferometer as

R.l/ D cos .2�ul/ � I1.l/ : (2.19)

In the case of the early interferometer shown in Fig. 1.6, in which the antennas are
fixed in the meridian and do not track the source, the delays in the signal paths
between the antennas and the point at which the signals are multiplied are equal,
and there is no variable instrumental delay. Thus, the three functions that determine
the interferometer power pattern are all fixed with respect to the interferometer
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baseline. The interferometer power pattern is of the form A.l/ cos .2�ul/FB.l/, and
the response of the interferometer to the source is ŒA.l/ cos .2�ul/FB.l/� � I1.l/.

Most interferometers for operation at meter wavelengths, that is, at frequencies
below about 300 MHz, use antennas that are arrays of fixed dipoles. At such long
wavelengths, it is possible to obtain large collecting areas and still have wide enough
beams that some minutes of observing time are obtained as a source passes through
in sidereal motion. Often the bandwidth of such low-frequency instruments is small,
so that the bandwidth pattern, FB.l/, is wide and this factor can be omitted. Also, the
antenna beams are usually wider than the source and sufficiently wide that several
cycles of the fringe pattern can be measured as the source transits the beam. So
in the nontracking case, the essential form of the response is also represented by
Eq. (2.19). However, fixed antennas with nontracking beams are mainly a feature of
the early years of radio astronomy, and in more recent meter-wavelength arrays, the
phases of individual dipoles, or small clusters of dipoles, can be adjusted to provide
steerable beams.

2.3.2 Convolution Theorem and Spatial Frequency

We now examine the interferometer response, as given in Eq. (2.19), using the
convolution theorem of Fourier transforms (see the derivation in Appendix A2.1.2),
which can be expressed as:

f � g ! FG ; (2.20)

where f  ! F, g ! G, and ! indicates Fourier transformation. Consider the
Fourier transforms with respect to l and u of the three functions in Eq. (2.19). For
the interferometer response, we have r.u/ ! R.l/. For a particular value u D u0,
the Fourier transform of the fringe term is given by [see Fourier transform example
in Eq. (A2.15)]

cos.2�u0l/ ! 1
2

Œı.uC u0/C ı.u� u0/� ; (2.21)

where ı is the delta function defined in Appendix 2.1. The Fourier transform of I1.l/
is the visibility functionV.u/. Thus, from Eqs. (2.19), (2.20), and (2.21), we obtain

r.u/ D 1
2

Œı.uC u0/C ı.u� u0/�V.u/

D 1
2

ŒV.�u0/ı.uC u0/CV.u0/ı.u� u0/� : (2.22)

This result shows that the instantaneous output of the interferometer as a function
of spatial frequency consists of two delta functions situated at plus and minus u0 on
the u axis. Now, V.u/, the Fourier transform of I1.l/, represents the amplitude and
phase of the sinusoidal component of the intensity profile with spatial frequency u
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cycles per radian. The interferometer acts as a filter that responds only to spatial
frequencies ˙u0. The negative spatial frequency �u0 has no physical meaning.
It arises from the use, for mathematical convenience, of the exponential Fourier
transform rather than the sine and cosine transforms, which correspond more
directly to the physical situation. As a result, the spatial frequency spectra are
symmetrical about the origin in the Hermitian sense, that is, with even real parts and
odd imaginary parts, which is appropriate since the intensity is a real, not complex,
quantity.

Fringe visibility, as originally defined by Michelson [VM , see Eq. (1.9)], is a real
quantity and is normalized to unity for an unresolved source. Complex visibility
(Bracewell 1958) was defined to take account of the phase of the visibility, measured
as the fringe phase, to allow imaging of asymmetric and complicated sources. The
normalization is convenient when comparing measurements with simple models,
as shown in Fig. 1.5. However, in images, it is desirable to display the magnitude
of the intensity or brightness temperature, so the general practice is to retain the
measured value of visibility, without normalization, since this incorporates the
required information. Thus, visibility V as used here is an unnormalized complex
quantity with units of flux density (W m�2 Hz�1). The quantity u, which was
introduced as the projected baseline in wavelengths, is seen also to represent the
spatial frequency of the Fourier components of the intensity. The concepts of spatial
frequency and spatial frequency spectra are fundamental to the Fourier synthesis of
astronomical images, and this general subject is discussed in a seminal paper by
Bracewell and Roberts (1954).

2.3.3 Example of One-Dimensional Synthesis

To illustrate the observing process outlined in this chapter, we present a rudimentary
simulation of measurements of the complex visibility of a source using arbitrary
parameters. The source consists of two components separated by 0:34ı of angle,
the flux densities of which are in the ratio 2 W 1. The measurements are made with
pairs of antennas placed along a line parallel to the direction of separation of the
two components. Measurements are made for antenna spacings that are integral
multiples of a unit spacing of 30 wavelengths. All spacings from 1 to 23 times the
unit spacing are measured. These results could be obtained using two antennas and
a single correlator, observing the source as it transits the meridian on 23 different
days and moving the antennas to provide a new spacing each day. Alternately, the 23
measurements could be made simultaneously using 23 correlators and a number of
antennas that could be as small as 8 (if they were set out with minimum redundancy
in the spacings, as discussed in Sect. 5.5). The angular sizes of the two components
of the source are too small to be resolved by the interferometer, so they can be
regarded as point radiators. The two components radiate noise, and their two outputs
are uncorrelated. The source is at a sufficient distance that incoming wavefronts can
be considered to be plane over the measurement baselines.
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Figure 2.6a and b show, respectively, the amplitude4 and phase of the visibility
function as it would be measured. Since the data are derived from a model, there
are no measurement errors, so the points indicate samples of the Fourier transform
of the source intensity distribution, which can be represented by two delta functions
with strengths in the ratio 1 W 2. Taking the inverse transform of the visibility yields
the synthesized image of the source in Fig. 2.6c. The two components of the source
are clearly represented. The extraneous oscillations arise from the finite extent of
the visibility measurements, which are uniformly weighted out to a cutoff at 23
times the unit spacing. This effect is further illustrated in Fig. 2.6d, which shows
the response of the measurement procedure to a single point source; equivalently,
it is the synthesized beam. The profile of this response is the sinc function that
is the Fourier transform of the rectangular window function, which represents the
cutoff of the measurements at the longest spacing. In the image domain, the double-
source profile can be viewed as the convolution of the source with the point-source
response. The point-source nature of the model components maximizes the sidelobe
oscillations, which would be partially smoothed out if the width of the components
were comparable to that of the sidelobes.

As is clear from the convolution relationship, information on the structure of
the source is contained in the whole response pattern in Fig. 2.6c, that is, in the
sidelobe oscillations as well as the main-beam peaks. A way to extract the maximum
information on the source structure would be to fit scaled versions of the response
in Fig. 2.6d to the two peaks in Fig. 2.6c and then subtract them from the profile.
In an actual observation, this would leave the noise and any structure that might
be present in addition to the point sources but would remove all or most of the
sidelobes. The fitting of the point-source responses could be adjusted to minimize
some measure of the residual fluctuations, and further components could be fitted
to any remaining peaks and subtracted. This technique would clearly be a good
way to estimate the strengths and positions of the two components and to look
for evidence of any low-level structure that could be hidden by the sidelobes in
Fig. 2.6c. The CLEAN algorithm, which is discussed in Chap. 11, uses this principle
but also replaces the components that are removed by model beam responses that
are free of sidelobes. Removal of the sidelobes allows any lower-level structure to
be investigated, down to the level of the noise. Most synthesis images are processed
by nonlinear algorithms of this type, and the range of intensity levels achieved in
some two-dimensional images exceeds 105 to 1.

4It is arguable that the modulus of the complex visibility should be referred to as magnitude rather
than amplitude since the dimensions of visibility include power rather than voltage. However,
the term visibility amplitude is widely used in radio astronomy, probably resulting from the early
practice of recording the fringe pattern as a quasi-sinusoidal waveform, and subsequently analyzing
the amplitude and phase of the oscillations.
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2.4 Two-Dimensional Synthesis

Synthesis of an image of a source in two dimensions on the sky requires measure-
ment of the two-dimensional spatial frequency spectrum in the .u; v/ plane, where
v is the north–south component as shown in Fig. 2.7a. Similarly, it is necessary to
define a two-dimensional coordinate system .l;m/ on the sky. The .l;m/ origin is
the reference position, or phase reference position, introduced in the last section.
In considering functions in one dimension in the earlier part of this chapter, it was
possible to define l in Eq. (2.3) as the sine of an angle. In two-dimensional analysis,
l and m are defined as the cosines of the angles between the direction .l;m/ and the
u and v axes, respectively, as shown in Fig. 2.7c. If the angle between the direction
.l;m/ and the w axis is small, l and m can be considered as the components of this
angle measured in radians in the east–west and north–south directions, respectively.

For a source near the celestial equator, measuring the visibility as a function of
u and v requires observing with a two-dimensional array of interferometers, that is,
an array in which the baselines between pairs of antennas contain components in the
north–south as well as the east–west directions. Although we have considered only
east–west baselines, the results derived in terms of angles measured with respect to
a plane that is normal to the baseline hold for any baseline direction.

A source at a high declination (near the celestial pole) can be imaged in two
dimensions with either one- or two-dimensional arrays, as shown in Fig. 1.15 and

Fig. 2.7 (a) The .u; v/ plane in which the arrow point indicates the spatial frequency, q cycles per
radian, of one Fourier component of an image of the intensity of a radio source. The components u
and v of the spatial frequency are measured along axes in the east–west and north–south directions,
respectively. (b) The .l;m/ plane in which a single component of spatial frequency in the intensity
domain has the form of sinusoidal corrugations on the sky. The figure shows corrugations that
represent one such component. The diagonal lines indicate the ridges of maximum intensity. The
dots indicate the positions of these maxima along lines in three directions. In a direction normal to
the ridges, the frequency of the oscillations is q cycles per radian, and in directions parallel to the u
and v axes, it is u and v cycles per radian, respectively. (c) The u and v coordinates define a plane,
and the w coordinate is perpendicular to it. The coordinates .l;m/ are used to specify a direction
on the sky in two dimensions. l and m are defined as the cosines of the angles made with the u and
v axes, respectively.
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Fig. 2.8 Illustration of the projection-slice theorem, which explains the relationships between one-
dimensional projections and cross sections of intensity and visibility functions. One-dimensional
Fourier transforms are organized horizontally and projections vertically. The symbols F and 2F
indicate one-dimensional and two-dimensional Fourier transforms, respectively. See the text for
further explanation. From Bracewell (1956). © CSIRO 1956. Published by CSIRO Publishing,
Melbourne, Victoria, Australia. Reproduced with permission.

further explained in Sect. 4.1. As the Earth rotates, the baseline projection on the
celestial sphere rotates and foreshortens. A plot of the variation of the length and
direction of the projected baseline as the antennas track the source across the sky is
an arc of an ellipse in the .u; v/ plane. The parameters of the ellipse depend on the
declination of the source, the length and orientation of the baseline, and the latitude
of the center of the baseline. In the design of a synthesis array, the relative positions
of the antennas are chosen to provide a distribution of measurements in u and v

consistent with the angular resolution, field of view, declination range, and sidelobe
level required, as discussed in Chap. 5. The two-dimensional intensity distribution
is then obtained by taking a two-dimensional Fourier transform of the observed
visibility,V.u; v/.

2.4.1 Projection-Slice Theorem

Some important relationships between one-dimensional and two-dimensional func-
tions of intensity and visibility are summarized in Fig. 2.8, which illustrates the
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projection-slice theorem of Fourier transforms (Bracewell 1956, 1995, 2000). At the
top left is the two-dimensional intensity distribution of a source I.l;m/, and at the
bottom right is the corresponding visibility function V.u; v/. These two functions
are related by a two-dimensional Fourier transform, as indicated on the arrows
shown between them. Note the general property of Fourier transforms that the width
in one domain is inversely related to the width in the other domain. At the lower
left is the projection of I.l;m/ on the l axis, which is equal to the one-dimensional
intensity distribution I1.l/. This projection is obtained by line integration along lines
parallel to the m axis, as defined in Eq. (1.10). I1 is related by a one-dimensional
Fourier transform to the visibility measured along the u axis at the lower right, that
is, the profile of a slice V.u; 0/ through the visibility function V.u; v/, indicated
by the shaded area in the diagram. V.u; 0/ could be measured, for example, by
observations of a source made at meridian transit with a series of interferometer
baselines in an east–west direction. This relationship was encountered in Chap. 1
in the description of the Michelson interferometer, and examples of such pairs of
functions are shown in Fig. 1.5. At the upper right is a projection of V.u; v/ on
the u axis, V1.u/ D R V.u; v/dv, and this is related by a one-dimensional Fourier
transform to a slice profile of the source intensity I.l; 0/ along the l axis at the upper
left, indicated by the shaded area. The relationships between the projections and
slices are not confined to the u and l axes but apply to any sets of axes that are
parallel in the two domains. For example, integration of I.l;m/ along lines parallel
to OP results in a curve, the Fourier transform of which is the profile of a slice
throughV.u; v/ along the line QR.

The relationships in Fig. 2.8 apply to Fourier transforms in general, and their
application to radio astronomy was recognized during the early development of the
subject. For example, in determining the two-dimensional intensity of a source from
a series of fan-beam scans at different angles, one can perform one-dimensional
transforms of the scans to obtain values of V along a series of lines through the
origin of the .u; v/ plane, thus obtaining the two-dimensional visibility V.u; v/.
Then, I.l;m/ can be obtained by two-dimensional Fourier transformation. In the
early years of radio astronomy, before computers were widely available, such
computation was a very laborious task, and various alternative procedures for
image formation from fan-beam scans were devised (Bracewell 1956; Bracewell
and Riddle 1967).

As this introductory chapter has shown, much of the theory of interferometry
is concerned with data in two forms or domains. Within the literature, there is
some variation in the associated terminology. The observations provide data in
the visibility domain, also variously referred to as the spatial frequency, .u; v/, or
correlation domain. The astronomical results are shown in the image domain, also
variously referred to as the brightness, intensity, sky, or map domain. “Map” was
appropriate in earlier years when the image was sometimes in the form of contours
of intensity.
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2.4.2 Three-Dimensional Imaging

Three-dimensional images can be made of objects that are optically thin and
rotating. An image taken at a particular time is the projected image along the line
of sight. A series of images taken at different projection angles can be combined to
obtained an estimate of the three-dimensional distribution of emitters in the source.
This can be done in a straightforward fashion by use of the three-dimensional
generalization of the projection-slice theorem, described in Sect. 2.4.1, to build up a
three-dimensional visibility function. Such a technique was developed and first used
to image the radiation belts of Jupiter by Sault et al. (1997). A somewhat different
tomographic technique was developed by de Pater et al. (1997). The techniques
were compared by de Pater and Sault (1998). These techniques might be applicable
to extended stellar atmospheres observed with VLBI arrays.

Appendix 2.1 A Practical Fourier Transform Primer

This appendix is intended to provide a brief introduction to the principles of Fourier
transform theory most relevant to radio interferometry. For more comprehensive
treatment, see Bracewell (1995, 2000), Champeney (1973), and Papoulis (1962).

The Fourier transform of a function f .x/ can be written as

F.s/ D
Z 1

�1
f .x/ e�j2�sxdx : (A2.1)

The inverse transform is

f .x/ D
Z 1

�1
F.s/ e j2�sxds : (A2.2)

The transform pair is written symbolically as

f .x/ ! F.s/ : (A2.3)

If x has units of meters, then s has units of cycles/meter; if x has units of time, then s
has units of cycles/second, i.e., hertz. The Fourier transform pair can also be written
in the form normally used in the time-frequency domains as

F.!/ D
Z 1

�1
f .t/ e�j!tdt ; (A2.4)

f .t/ D 1

2�

Z 1

�1
F.!/ e j!td! : (A2.5)
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In this case, the frequency is an angular frequency in radians/sec. We use the
formulation in Eqs. (A2.1) and (A2.2) for three reasons: It is widely used in image
analysis, it allows for easier tracking of 2� factors, and it provides a more natural
segue to the discussion of the discrete Fourier transform (see Appendix 8.4).

We can check that f .x/ can be recovered from F.s/ by the substitution of
Eq. (A2.1) into Eq. (A2.2),

f .x/ D
Z 1

�1

�Z 1

�1
f .x0/ e�j2�sx0

dx0
�
e j2�sxds ; (A2.6)

where we switched the variable x to x0 to allow us to interchange the order of
integration, thereby obtaining

f .x/ D
Z 1

�1
f .x0/

�Z 1

�1
e�j2�s.x0�x/ds

�
dx0 : (A2.7)

The integral in brackets can be evaluated by a limit process, i.e.,
Z 1

�1
e�j2�s.x0�x/ds D lim

s0!1

Z s0

�s0

e j2�s.x0�x/ds

D lim
s0!1 2s0

�
sin 2�s0.x0 � x/

2�s0.x0 � x/

�
: (A2.8)

The function in the brackets is a sinc function (see Fig. A2.1) centered at x0 D x,
having a width between first nulls of 2=s0 and an integral, which happens to equal
the area of the triangle formed by the peak and the first nulls, of unity. The limit of
this function can be used as a definition of the Dirac delta function (often called the
impulse function in much of engineering literature),

ı.x0 � x/ � lim
s0!1 2s0

�
sin 2�s0.x0 � x/

2�s0.x0 � x/

�
; (A2.9)

which is undefined at x0 D x and has the properties

ı.x0 � x/ D 0 ; x0 6D x (A2.10a)

and Z 1

�1
ı.x0 � x/ dx0 D 1 : (A2.10b)

Substitution of Eqs. (A2.9) and (A2.8) into Eq. (A2.7) gives

f .x/ D
Z 1

�1
f .x0/ ı.x0 � x/ dx0 : (A2.11)
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Fig. A2.1 The sinc function in Eq. (A2.9), whose limiting form is a delta function, ı.x0 � x/.

Since ı.x0 � x/ is nonzero only at x0 D x, it is clear from Eq. (A2.10b) that we
can factor f .x/ out of the integral in Eq. (A2.11), which gives the desired result,
f .x/ D f .x/, and proves that f .x/ can be recovered from its transform, F.s/.
Equation (A2.11) is called the sifting property of ı.x/.

A2.1.1 Useful Fourier Transform Pairs

Wemention five Fourier transform pairs of particular interest to readers of this book.
The first pair is

f .x/ D 1 ; jxj � x0

2
;

D 0 ; otherwise; (A2.12a)

F.s/ D x0

sin�sx0

�sx0

D x0sinc.sx0/ : (A2.12b)

f .x/ is called a boxcar or unit rectangular function and denoted as
Q

.x/.
The second Fourier transform is of a Gaussian function

f .x/ D e� x2

2a2 ; (A2.13a)

F.s/ D p2� a e�2�2a2s2 : (A2.13b)
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F.s/ can be calculated by a procedure called “completing the square”:

F.s/ D
Z 1

�1
e� x2

2a2 e�j2�sxdx : (A2.14)

The term in the exponent is .x2 C j4�a2sx/=2a2 D Œ.x � j2�a2s/2 C 4�2a4s2�=2a2.
The term involving 4�2a4s2 can be factored out of the integral, which leads to
Eq. (A2.13b).

The third useful Fourier transform pair is

f .x/ D cos 2�s0x ; (A2.15a)

F.s/ D 1

2
Œı.s� s0/C ı.sC s0/� : (A2.15b)

F.s/ is calculated by writing f .x/ in terms of exponentials and by use of the same
limiting process used in deriving Eq. (A2.9).

The fourth Fourier transform pair is for an infinite train of delta functions, which
is also an infinite train of delta functions, i.e.,

1X
kD�1

ı.x� kx0/ !
1X

mD�1
ı

�
s � m

x0

�
: (A2.16)

This relation can be proved by starting with a finite train of impulses and applying
the shift property [Eq. (A2.22)]. The Fourier transform is an infinite series of sinc
functions at intervals of x�1

0 . Then, by the same process used in Eq. (A2.9), the sinc
functions become Dirac delta functions in the limit as k!1.

The fifth Fourier transform pair is for the Heaviside step function

f .x/ D 1 ; x � 0 ;

f .x/ D 0 ; x < 0 ; (A2.17a)

F.s/ D 1

2
ı.s/C 1

j2�s
: (A2.17b)

The calculation of F.s/ requires some care. Decompose f .x/ into fe.x/ D 1
2
and

fo.x/ D 1
2
sgn.x/ � 1

2
for x � 0 and � 1

2
for x < 0. The Fourier transform of fe.x/ is

Fe.s/ D 1
2
ı.s/. We replace fo.x/ with the functions 1

2
e�ax, x � 0, and � 1

2
eax, x < 0,

and evaluate Fo.s/ in a limit as a! 0. Hence

Fo.s/ D lim
a!0

�
�

Z 0

�1
eaxe�j2�sxdxC

Z 1

0

e�axe�j2�sxdx

�

D lim
a!0
� j2�s

a2 C .2�s/2
D 1

2�js
: (A2.18)

Combining these results gives F.s/ D Fe.s/C Fo.s/, which proves Eq. (A2.17b).
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A2.1.2 Basic Fourier Transform Properties

We list several important properties that are readily provable.

• Integral property

F.0/ D
Z 1

�1
f .x/ dx ; (A2.19a)

f .0/ D
Z 1

�1
F.s/ ds : (A2.19b)

The application of Eq. (A2.19) to example five above [Eq. (A2.17)] gives the
interesting result that f .0/ D 1

2
[see Bracewell (2000) for a discussion of this

point].

• Linearity property. If f .x/ and g.x/ have transforms F.s/ and G.s/, then

af .x/ ! aF.s/ ; (A2.20)

and

f .x/C g.x/ ! F.s/C G.s/ : (A2.21)

Equation (A2.21) is fundamental and particularly useful. In terms of interferom-
etry, it means that the visibility function is the sum of the visibility functions of
all the components in the image.

• Shift property

f .x � x0/ ! e�j2�sx0F.s/ ; (A2.22a)

and

F.s� s0/ ! e j2�s0xf .x/ : (A2.22b)

• Modulation property. From the shift property, it follows that

f .x/ cos s0x ! 1
2

ŒF.s� s0/C F.sC s0/� : (A2.23)

• Similarity property

f .ax/ ! 1

jajF

 s

a

�
: (A2.24)

This important relation shows that if a function f .x/ narrows, then F.s/ broadens
proportionally and vice versa, so that the product of the widths of functions in
the x and s domains, �x and �s, respectively, satisfies the relation

�x�s � 1 : (A2.25)
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This result is the basis of the uncertainty principle in quantummechanics, a wave
theory. It is called the time-bandwidth product in signal-processing applications
and the ambiguity function in radar astronomy. If �x and �s are defined as the
full width at half-maximum (FWHM), then for the boxcar–sinc function pair
[Eq. (A2.12)], �x�s D 1:21, and for the Gaussian function pair [Eq. (A2.13)],
�x�s D 4 ln 2=� D 0:88.

• Derivative property

dnf

dxn
 ! . j2�s/nF.s/ ; (A2.26)

and

dnF

dsn
 ! .�j2�x/nf .x/ : (A2.27)

• Symmetry properties. Symmetry properties are very useful in calculating and
visualizing Fourier transforms. Any function can be divided into even and odd
components, fe.x/ and fo.x/, respectively, which are defined as

fe.x/ D 1
2

Œ f .x/C f .�x/� ; (A2.28a)

fo.x/ D 1
2

Œ f .x/� f .�x/� : (A2.28b)

Hence, if f .x/ is real and even, then F.s/ is also real and even. If f .x/ is real and
odd, then F.s/ is imaginary and odd. The Fourier transform pair in Eq. (A2.17)
is a nice example of these symmetry properties.

• Moment property. The moments of f .x/ are

mn D
Z 1

�1
xnf .x/ dx : (A2.29)

Hence, from the derivative and the integral properties,

dnF.0/

dsn
 ! .�j2�/nmn : (A2.30)

If these moments exist, then the Taylor expansion of F.s/ is

F.s/ D
1X
nD0

.�j2�/n

nŠ
mns

n : (A2.31)

Hence, if f .x/ is an even function and its moments exist, the lead terms of F.s/
are

F.s/ D m0 � 2�2m2s
2 : (A2.32)
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• Convolution property. The convolution of two functions, f .x/ and g.x/, which
have Fourier transforms F.s/ and G.s/, respectively, is defined as

h.y/ D
Z 1

�1
f .x/g.y � x/ dx ; (A2.33)

which can be written with the convolution operator, *, as

h.y/ D f .y/ � g.y/ : (A2.34)

Note that f � g D g � f . The convolution property is

f .y/ � g.y/ ! F.s/G.s/ : (A2.35)

This property can be demonstrated as follows. The Fourier transform of h.y/ is

H.s/ D
Z 1

�1

" Z 1

�1
f .x/g.y � x/ dx

#
e�j2�sydy ; (A2.36)

or, interchanging the order of integration,

H.s/ D
Z 1

�1
f .x/

" Z 1

�1
g.y� x/ e�j2�sydy

#
dx : (A2.37)

We make the variable substitution, z D y � x, to obtain

H.s/ D
Z 1

�1
f .x/

" Z 1

�1
g.z/ e�j2�szdz

#
e�j2�sx dx : (A2.38)

The term in brackets is G.s/, which can be factored out of the remaining integral,
which is F.s/, so

H.s/ D F.s/G.s/ : (A2.39)

Hence, the Fourier transform of the convolution of two functions is the product
of their Fourier transforms. This relationship, known as the convolution theorem,
is shown diagrammatically in Fig. A2.2. It follows that the convolution of two
functions in the frequency domain corresponds to multiplication in the time
domain.

• Correlation property. The correlation function is defined as

r.y/ D
Z 1

�1
f .x/ g.x � y/ dx ; (A2.40)
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Fig. A2.2 Relationships involving Fourier transforms and convolution. As elsewhere in this book,
the in-line asterisk indicates convolution.

which can be written with the correlation operator, ?, as

r.y/ D f .x/ ? g.x/ : (A2.41)

The correlation property is

f .x/ ? g.x/ ! F.s/G�.s/ : (A2.42)

The Fourier transform of Eq. (A2.40) is

R.s/ D
Z 1

�1

�Z 1

�1
f .x/ g.x � y/ dx

�
e�j2�sydy : (A2.43)

Interchanging the order of integration and making the substitution z D x�y gives

R.s/ D
Z 1

�1
f .x/

�Z 1

�1
g.z/ e j2�zdz

�
e�j2�sxdx ; (A2.44)

which results in

R.s/ D F.s/G�.s/ : (A2.45)

This relationship is shown in Fig. 8.1. An example where f .x/ D g.x/ = boxcar
is shown in Fig. A2.3. Since f .x/ is an even function, convolution and correlation
are the same, both producing even functions. Hence, F.s/ is real and even, and
F.s/F.s/ D F.s/F�.s/.
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Fig. A2.3 Example of the correlation and convolution theorems for an even function f .x/. The
vertical arrow on the left indicates f � f for the case of convolution and f ? f for correlation. The
vertical arrow on the right indicates F.s/F.s/ for convolution and F.s/F�.s/ for correlation.

• Parseval’s theorem. The relationship

Z 1

�1
j f .x/j2dx D

Z 1

�1
jF.s/j2ds (A2.46)

is known generally as Parseval’s theorem.5 To prove it, we write

Z 1

�1
f .x/f �.x/ dx D

Z 1

�1

" Z 1

�1
F.s/e j2�sxds

# "Z 1

�1
F�.s0/e�j2�s0xds0

#
dx

(A2.47)

or

Z 1

�1
f .x/f �.x/ dx D

Z 1

�1

Z 1

�1
F.s/F�.s0/

"Z 1

�1
e j2�.s�s0/xdx

#
ds ds0 :

(A2.48)
The integral in brackets is ı.s� s0/, so that

Z 1

�1
f .x/f �.x/ dx D

Z 1

�1
F.s/F�.s/ ds : (A2.49)

5Parseval’s theorem originally applied to Fourier series (see Appendix A2.1.4). Rayleigh gener-
alized it for application to Fourier transforms. Mathematicians often refer to it as Plancherel’s
theorem. As is common practice, we use only the name “Parseval’s theorem” in this book.
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A useful theorem in interferometry is the projection–slice theorem, which is
proved in Sect. 2.4.1.

A2.1.3 Two-Dimensional Fourier Transform

The two-dimensional Fourier transform between f .x; y/ and F.u; v/ can be written

F.u; v/ D
Z 1

�1

Z 1

�1
f .x; y/ e�j2�.uxCvy/dx dy ;

f .x; y/ D
Z 1

�1

Z 1

�1
F.u; v/ e j2�.uxCvy/du dv :

(A2.50)

If x and y are in radians, then u and v are in units of cycles/radian. We write
symbolically

f .x; y/ ! F.u; v/ : (A2.51)

All of the properties in Appendix A2.1.2 have analogs in the two-dimensional
Fourier transform. For example, the shift theorem is

f .x � x0; y � y0/ ! e�j2�.ux0Cvy0/F.u; v/ : (A2.52)

The two-dimensional Fourier transform can be converted to polar coordinates by
defining x D r cos � , y D r sin � , u D q cos
, and v D q sin
, which leads to

F.q; 
/ D
Z 2�

0

Z 1

0

f .r; �/ e�j2�rq.��
/r dr d� : (A2.53)

If f .r; �/ D f .r/, i.e., f is azimuthally symmetric, then

F.q; 
/ D
Z 1

0

f .r/ r dr
Z 2�

0

e�j2�rq.��
/d� : (A2.54)

Since the zeroth-order Bessel function is defined as

J0.z/ D 1

2�

Z 2�

0

e�jz cos �d� ; (A2.55)

F.q; 
/ D F.q/ and

F.q/ D 2�

Z 1

0

f .r/J0.2�qr/r dr : (A2.56a)
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By symmetry,

f .r/ D 2�

Z 1

0

F.q/J0.2�qr/q dq : (A2.56b)

Equations (A2.56a) and (A2.56b) are called the Hankel transform pair.

A2.1.4 Fourier Series

The Fourier series is a special case of the Fourier transform. A periodic function
f .x/, which repeats over the interval �x0=2; x0=2, has the complex Fourier series
representation

f .x/ D
1X

�1
˛k e

j2�kx
x0 ; (A2.57)

where

˛k D
Z x0

2

� x0
2

f .x/ e
� j2�kx

x0 dx : (A2.58)

If we define f0.x/ as f .x/ over the interval �x0=2; x0=2, then its Fourier transform,
F.s/, is given by

F.s/ D
1X
kD0

F0.ks0/ ı.s� ks0/ ; (A2.59)

where s0 D 1=x0 and F0.ks0/ D ˛k. This is called a line spectrum: F.s/ consists
of delta functions spaced at intervals s D 1=x0 with amplitudes corresponding to
the Fourier coefficients. Parseval’s theorem for the Fourier series can be found by
substituting Eqs. (A2.57) and (A2.59) into Eq. (A2.49), yielding

1X
�1

˛2
k D

Z x0
2

� x0
2

f .x/f �.x/ dx : (A2.60)

A2.1.5 Truncated Functions

The Fourier transform theory described above can be applied to functions that
are random processes. If an ergodic random process has an associated temporal
function f .x/, that function generally extends to infinity, and

R j f .x/j2 D1, which
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presents certain theoretical difficulties. These difficulties are mitigated by choosing
a truncated version of the function

fT.x/ D f .x/….x=x0/ ; (A2.61)

where ….x/ is the boxcar function defined after Eq. (A2.12). By the convolution
property [Eq. (A2.35)],

FT.s/ D F.s/ � sinc.sx0/ : (A2.62)

Truncation has the effect of smoothing, or limiting the resolution of, F.s/.
The power spectrum of a truncated function is usually defined as

PT.s/ D 1

T
F.s/F�.s/ ; (A2.63)

which has units of power and does not depend on T. Note that the Fourier
transform as defined for deterministic functions in previous sections is actually an
energy density spectrum. The conditions under which the Fourier transform of an
autocorrelation function and its power spectrum exist for random processes were
first explored and clarified by Wiener and Khinchin. Hence, the Fourier transform
between the autocorrelation function of a random process and its power spectrum is
formally called the Wiener–Khinchin theorem (or relation).
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