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Abstract
We investigate second order half-linear Euler type difference equations whose
coefficients have mean values. We show that these equations are conditionally
oscillatory and we explicitly identify the corresponding oscillation constants given by
the coefficients. Our results generalize the known ones concerning equations with
positive constant, periodic, or (asymptotically) almost periodic coefficients. We also
demonstrate the obtained results on examples and we give corollaries. In particular,
we get new results even for linear difference equations.
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1 Introduction
This paper is devoted to the oscillatory properties of the half-linear difference equa-
tions

�
[
rk�(�xk)

]
+ ck�(xk+) = , �(x) = |x|p– sgn x, p > , (.)

where rk is positive for all considered k. Throughout the whole paper, we consider inte-
gers k ≥ a for a sufficiently large number a ∈ N. For the reader’s convenience, we use the
notation Na := {n ∈ N : n ≥ a} for a ∈ N. Our aim is to find explicit oscillation constants
for all equations (.) from a large class of equations.

To recall the notion of the (critical) oscillation constant, we consider (.) with

{ck}k∈Na ≡
{

γ sk

(k + )(p)

}

k∈Na

,

i.e., in the form

�
[
rk�(�xk)

]
+

γ sk

(k + )(p) �(xk+) = , (.)

© 2015 Hasil and Veselý. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/193769744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13662-015-0544-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0544-1&domain=pdf
mailto:michal.vesely@mail.muni.cz


Hasil and Veselý Advances in Difference Equations  (2015) 2015:210 Page 2 of 18

where γ ∈ R and k(p) stands for the generalized power function (also called the falling
factorial power) given by

k(p) =
�(k + )

�(k +  – p)
, �(x) =

∫ ∞


e–ssx– ds, x > .

For details about k(p), see, e.g., Chapter  in []. Equation (.) is said to be conditionally
oscillatory if there exists a constant � >  such that (.) is oscillatory for γ > � and non-
oscillatory for γ < �. The constant � (which is dependent on coefficients) is called the
(critical) oscillation constant of (.).

Concerning the conditional oscillation of the studied difference equations, the first re-
sult comes from [], where the equation

�xk +
γ

(k + )k
xk+ = 

was proved to be conditionally oscillatory with the oscillation constant � = /. Equations
with non-constant coefficients were analyzed in []. In [], the conditional oscillation of
the linear equation

�(rk�xk) +
γ sk

(k + )k
xk+ = 

with almost periodic coefficients was obtained. In [], this result was generalized for half-
linear equations of the form (.) with positive asymptotically almost periodic sequences
{rk}, {sk}.

Since the main result of [] is one of the basic motivations for the research presented
here, we reformulate it as follows. We remark that the symbol M(·) stands for the mean
values of the indicated sequences clarified in Definition  below and that the definition of
asymptotic almost periodicity is mentioned in Definition  below.

Theorem  Let γ ∈ R be given and let {rk}k∈Na and {sk}k∈Na be arbitrary positive asymp-
totically almost periodic sequences such that

inf{rk ; k ∈Na} > , lim sup
k→∞

sk > .

Let

� :=
(

p – 
p

)p[
M

({
r


–p
k

})]–p[M
({sk}

)]–.

If γ > �, then (.) is oscillatory. If γ < �, then (.) is non-oscillatory.

Our second basic motivation comes from the continuous case. We begin with a short
historical summary of the studied problem. The first attempt to treat the conditional os-
cillation can be found in [], where the oscillation constant � = / was identified for the
equation

x′′ +
γ

t x = .
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In [, ], this result was extended to linear differential equations

(
r(t)x′)′ +

γ s(t)
t x = 

with positive α-periodic coefficients r, s and with the oscillation constant

� =
α



(∫ α



dτ

r(τ )

)–(∫ α


s(τ ) dτ

)–

.

For more general results, we refer, e.g., to [–].
The concept of the conditional oscillation was transferred to half-linear differential

equations in [] (see also []), where the oscillation constant

� =
(

p – 
p

)p

was obtained for the equation

[
�

(
x′)]′ +

γ

tp �(x) = .

During the last years, the conditional oscillation was resolved for half-linear differential
equations with positive periodic coefficients (see []) and half-linear equations with more
general coefficients (see, e.g., [–]). Along this line, the most relevant result for our
research comes from []. Since it is our second main motivation, we mention the main
result of [] in full. We remark that Ra := [a,∞) and M(·) also stands for the mean values
of considered functions (for details, see []).

Theorem  Let r : Ra →R be a continuous function, for which mean value M(r


–p ) exists
and for which we have

 < inf
t∈Ra

r(t) ≤ sup
t∈Ra

r(t) < ∞,

and let s : Ra →R be a continuous function having mean value M(s). Let

� :=
(

p – 
p

)p[
M

(
r


–p

)]–p =
(

p – 
p

)p[
lim

t→∞

t

∫ a+t

a
r


–p (τ ) dτ

]–p

.

Consider the equation

[
r(t)�

(
x′)]′ +

s(t)
tp �(x) = . (.)

Equation (.) is oscillatory if M(s) > �, and non-oscillatory if M(s) < �.

In this paper, we intend to generalize Theorem  to the case that the coefficients have
mean values and the second coefficient can change sign. It means that our aim is to prove
the discrete counterpart of Theorem . For this purpose, we improve the method from [].
Since we study equations with coefficients from more general classes, we have to prove



Hasil and Veselý Advances in Difference Equations  (2015) 2015:210 Page 4 of 18

some new auxiliary results and inequalities (especially, we need Lemmas  and  below).
Note that we partially apply the processes used in [] (see the proof of Theorem  below,
where it is explicitly mentioned).

The paper is organized as follows. In the next section, we state the necessary background
and we recall the so-called Riccati technique, which is essential for our investigation. In
Section , the reader can find preparatory lemmas, results, and corollaries. In Section ,
we collect illustrative examples.

Throughout the paper, we will consider an arbitrarily given number p >  from the shape
of �(x) = |x|p– sgn x. We will use the standard notation of conjugated numbers p, q, which
means that q >  will denote the real number satisfying


p

+

q

= , i.e., p + q = pq.

2 Preliminaries
In this section, we mention the needed background concerning the oscillation theory of
half-linear difference equations. For more details, we refer to Chapter  in [] and Chap-
ter  in [] with references cited therein. In addition, we recall the concept of mean values
which is necessary to find general oscillation constants. We also state the concept of the
(adapted) half-linear Riccati equation which is the main tool in our investigation.

At first, we recall the basic notions from the oscillation theory of the half-linear equation

�
[
rk�(�xk)

]
+ ck�(xk+) = , (.)

where rk >  for all considered k ∈ Na. An interval (l, l + ], l ∈Na, contains the generalized
zero of a solution {xk} of (.) if xl 	=  and xlxl+ ≤ . We say that (.) is disconjugate on a
set {l, l + , . . . , l + n} if any solution of (.) has at most one generalized zero on (l, l + n + ]
and a solution {x̃k} given by the initial value x̃l =  has no generalized zero on (l, l + n + ].
Otherwise, (.) is called conjugate on {l, l + , . . . , l + n}. Now we can formulate the follow-
ing definition.

Definition  Equation (.) is called non-oscillatory if there exists l ∈N with the property
that (.) is disconjugate on {l, l + , . . . , l + n} for all n ∈ N. In the opposite case, (.) is
called oscillatory.

The Sturm type separation theorem (see, e.g., Theorem .. in []) enables us to give
Definition , because the oscillation of an arbitrary non-zero solution of (.) implies the
oscillation of all solutions of (.). We will also use a consequence of the Sturm type com-
parison theorem. We mention only the form that is suitable for our purpose.

Theorem  Let {yk}k∈Na , {Yk}k∈Na , {zk}k∈Na , {Zk}k∈Na be sequences satisfying the inequal-
ities yk ≥ Yk > , Zk ≥ zk for all sufficiently large k. Let us consider the equations

�
[
yk�(�xk)

]
+ zk�(xk+) = , (.)

�
[
Yk�(�xk)

]
+ Zk�(xk+) = . (.)

If (.) is non-oscillatory, then (.) is non-oscillatory as well.
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Proof The theorem follows, e.g., from Theorem .. in []. �

To obtain explicit oscillation constants, we need the definition of the mean value of a
sequence.

Definition  Let a sequence {fk}k∈Na ⊂R be given and let the limit

M
({fk}

)
:= lim

n→∞

n

n+i–∑

k=i

fk (.)

be finite and exist uniformly with respect to i ∈ Na. The number M({fk}) introduced in
(.) is called the mean value of {fk}.

An important class of sequences having mean values is formed by asymptotically almost
periodic sequences (see also []). Hence, we formulate the next definitions.

Definition  A sequence {fk}k∈Z ⊂R is called almost periodic if, for any ε > , there exists
P(ε) ∈N such that any set of the form {i, i + , . . . , i + P(ε) – } ⊂ Z contains an integer l for
which |fk – fk+l| < ε, k ∈ Z.

Definition  We say that a sequence {fk}k∈Na ⊂ R is asymptotically almost periodic if
there exists a pair of sequences {f 

k }k∈Z, {f 
k }k∈Na ⊂R such that {f 

k } is almost periodic, {f 
k }

satisfies limk→∞ f 
k = , and {fk}k∈Na ≡ {f 

k + f 
k }k∈Na .

Finally, we describe the half-linear Riccati equation and its adapted version. Using the
so-called Riccati substitution

wk = rk�

(
�xk

xk

)

to (.), we obtain the associated Riccati equation

�wk + ck + wk

(
 –

rk

�[�–(rk) + �–(wk)]

)
= , (.)

where �– denotes the inverse function of �, i.e., �–(x) = |x|q– sgn x. Under the condition
wk + rk > , we can express (see Lemma .., (I) in [])

wk

(
 –

rk

�[�–(rk) + �–(wk)]

)
=

(p – )|wk|q|βk|p–

�[�–(rk) + �–(wk)]
,

where βk is between �–(rk) and �–(rk) + �–(wk); i.e., for wk + rk > , we have the Riccati
equation (.) associated to (.) in the form

�wk + ck +
(p – )|wk|q|βk|p–

�[�–(rk) + �–(wk)]
= . (.)

The following theorem is typically known as the Riccati method. It shows the way in
which the non-oscillation of (.) is connected to the solvability of (.).



Hasil and Veselý Advances in Difference Equations  (2015) 2015:210 Page 6 of 18

Theorem  Equation (.) is non-oscillatory if and only if there exist an integer b and a
sequence of wk which solves (.) and satisfies wk + rk >  for k ∈Nb.

Proof The theorem is a consequence of the well-known roundabout theorem (see, e.g.,
Theorem .. in [] or directly Theorem .. in []). �

Taking into account the second substitution

ζk = –k(p–)wk (.)

together with the Riccati equation (.), we obtain the adapted Riccati equation associated
to (.) as

�ζk =


k – p + 

[
(p – )ζk + (k + )(p)ck +

(k + )(p – )|βk|p–|ζk|q
[k(p–)]q–�[�–(rk) + �–(– ζk

k(p–) )]

]
, (.)

where βk is between �–(rk) and �–(rk) + �–(– ζk
k(p–) ).

In fact, we will consider (.) in the form

�
[
rk�(�xk)

]
+

sk

(k + )(p) �(xk+) = , (.)

where sequence {rk}k∈Na has mean value M({r–q
k }) =  and

 < r– := inf
k∈Na

rk ≤ sup
k∈Na

rk =: r+ < ∞ (.)

and where sequence {sk}k∈Na has a positive mean value, i.e., M({sk}) > . Therefore, we will
deal with the Riccati equation associated to (.) in the form (see (.))

�wk +
sk

(k + )(p) +
(p – )|wk|q|βk|p–

�[�–(rk) + �–(wk)]
=  (.)

and with the adapted Riccati equation (see (.))

�ζk =


k – p + 

[
(p – )ζk + sk +

(k + )(p – )|βk|p–|ζk|q
[k(p–)]q–�[�–(rk) + �–(– ζk

k(p–) )]

]
. (.)

More precisely, we will study (.) using (.).

3 Results
To prove the main results, we need the following lemmas.

Lemma  Let a sequence {fk}k∈Na ⊂ R have mean value M({fk}). There exists a number
K({fk}) >  for which |fk| < K({fk}), k ∈Na.

Proof The existence of M({fk}) gives m ∈N such that

∣∣
∣∣
∣
M

({fk}
)

–


m + l

i+m+l–∑

k=i

fk

∣∣
∣∣
∣

< , i ∈Na, l ∈N∪ {}. (.)
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From (.) it follows that

∣∣
∣∣
∣


m

i+m∑

k=i+

fk –

m

i+m–∑

k=i

fk

∣∣
∣∣
∣

< , i ∈Na,

∣
∣∣
∣∣


m + 

i+m+∑

k=i+

fk –


m + 

i+m∑

k=i

fk

∣
∣∣
∣∣

< , i ∈Na.

Especially,

|fi – fm+i| < m, i ∈Na,

|fi – fm+i+| < (m + ), i ∈ Na.

Thus, we have

|fm+i – fm+i+| < m + , i ∈Na.

Finally, we have

|fi – fi+| ≤ L
({fk}

)
:= max

{
m + , |fa – fa+|, . . . , |fm+a– – fm+a|

}
, i ∈Na.

On the contrary, let us suppose that lim supk→∞ |fk| = ∞. If

fi ≥ M
({fk}

)
+  + (m – )L

({fk}
)

for some i ∈Na, then

fi+j ≥ M
({fk}

)
+ , j ∈ {, , . . . , m – }. (.)

Analogously, if

fi ≤ M
({fk}

)
–  – (m – )L

({fk}
)

for some i ∈Na, then

fi+j ≤ M
({fk}

)
– , j ∈ {, , . . . , m – }. (.)

Of course, each one of inequalities (.), (.) gives a contradiction with (.) for l = . It
means that it suffices to put

K
({fk}

)
:=

∣
∣M

({fk}
)∣∣ +  + (m – )L

({fk}
)

for m from (.). �

Henceforth, let m ∈N be such that

M({sk})


>


m + l

i+m+l–∑

k=i

sk >
M({sk})


> , i ∈Na, l ∈N∪ {}. (.)
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We also put (cf. (.))

s+ := sup
k∈Na

|sk| < ∞, (.)

where we use Lemma .

Lemma  If (.) is non-oscillatory, then there exist L ∈N and a negative solution {ζk}k∈NL

of (.) such that

lim
k→∞

ζk

k(p–) = . (.)

Proof Considering Theorem , the non-oscillation of (.) implies that there exist L ∈ N

and a solution {wk}k∈NL of (.) such that wk + rk >  for k ≥ L. Considering (.), it gives
the solution {ζk}k∈NL ≡ {–wkk(p–)}k∈NL of (.). We show that this solution {ζk} is negative
and satisfies (.).

In fact, we show that the sequences {wmk}, {wmk+}, . . . , {wmk+m–} are decreasing for suf-
ficiently large k and tend to zero. Let j ∈ {, , . . . , m – } be arbitrarily given. From (.),
we have

w(k+)m+j – wmk+j = –
(k+)m+j–∑

i=mk+j

si

(i + )(p) –
(k+)m+j–∑

i=mk+j

(p – )|wi|q|βi|p–

�[�–(ri) + �–(wi)]
(.)

for all considered k. Since {sk} is bounded (consider Lemma ) and

lim
l→∞

(l + m)(p)

(l + )(p) = ,

using (.), we obtain

–
(k+)m+j–∑

i=mk+j

si

(i + )(p) <  (.)

for all large k. Considering wk + rk >  for k ≥ L, it is seen that

�
[
�–(rk) + �–(wk)

]
> , k ≥ L. (.)

From (.), (.), (.), we get w(k+)m+j < wmk+j for all large k. Thus, there exist limits (as
real numbers or –∞)

L := lim
k→∞

wmk , L := lim
k→∞

wmk+, . . . , Lm– := lim
k→∞

wmk+m–.

Our aim is to prove that Lj =  for each j ∈ {, , . . . , m – }. On contrary, let us consider
that Lj 	=  for some j. Denote W := maxk∈NL wk .

Let Lj > ε > . We know that

�–(W ) + �–(r+) ≥ βkm+j ≥ �–(rkm+j) ≥ �–(r–)
>  (.)
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and that

�
[
�–(rkm+j) + �–(wmk+j)

]
< �

[
�–(r+)

+ �–(W )
]

(.)

for all k. Hence (see (.)), there exists Bj >  with the property that

|βmk+j|p– > Bj, k ≥ L. (.)

In addition, for large k, we have (see (.), (.), (.), (.), and (.))

w(m+)k+j – wmk+j < –
(k+)m+j–∑

i=mk+j

(p – )|wi|q|βi|p–

�[�–(ri) + �–(wi)]

< –
(p – )|wmk+j|q|βmk+j|p–

�[�–(rmk+j) + �–(wmk+j)]
< –

(p – )εqBj

�[�–(r+) + �–(W )]
.

But we obtain the contradiction Lj = –∞, because the last term is a negative constant.
Let Lj < –ε < , i.e., wmk+j < –ε for large k. In this case, for large k, we have

w(m+)k+j – wmk+j < –
(k+)m+j–∑

i=mk+j

(p – )|wi|q|βi|p–

�[�–(ri) + �–(wi)]

< –
(p – )|wmk+j|q|βmk+j|p–

�[�–(rmk+j) + �–(wmk+j)]

< –
(p – )|ε|q[�–(rmk+j) + �–(wmk+j)]p–

�[�–(rmk+j) + �–(wmk+j)]

= –
(p – )|ε|q

�–(rmk+j) + �–(wmk+j)
< –

(p – )εq

�–(r+)

if p ≥ ; and

w(m+)k+j – wmk+j < –
(p – )|wmk+j|q|βmk+j|p–

�[�–(rmk+j) + �–(wmk+j)]

< –
(p – )|ε|q[�–(rmk+j)]p–

�[�–(rmk+j)]
< –

(p – )εq

�–(r+)

if p ∈ (, ). Again, for any p > , we get Lj = –∞, which cannot be true, because wk + rk > 
for all k and {rk} is bounded.

Altogether, we know that {wk} is positive and

lim
k→∞

wk = . (.)

Thus, {ζk} is negative and (.) follows from (.). �

We remark that, in the case that the sequence of sk is positive, the statement of Lemma 
follows from Lemma , (v) and Theorem  in [] combined with Lemma .. in [] or
with Lemma .. in [].
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Lemma  If there exists a negative solution {ζk}k∈NL of (.), then (.) is non-oscillatory.

Proof A negative solution {ζk}k∈NL of (.) gives {wk}k∈NL ≡ {–ζk/k(p–)}k∈NL , which is a
positive solution of (.). Thus, the lemma follows from Theorem . �

Applying the above lemmas, we can obtain the announced result. For the reader’s con-
venience, we recall the assumptions on the coefficients.

Theorem  Let sequence {rk}k∈Na have mean value M({r–q
k }) =  and satisfy (.) and let

sequence {sk}k∈Na have mean value M({sk}) > . Then (.) is oscillatory for M({sk}) > q–p

and non-oscillatory for M({sk}) < q–p.

Proof At first, let us approach the oscillatory part of the theorem. By contradiction, we
suppose that M({sk}) > q–p and that (.) is non-oscillatory. Using Lemma , we obtain
the existence of a negative solution {ζk}k∈NL of (.); i.e., we have

�ζk =


k – p + 

[
(p – )ζk + sk +

(k + )(p – )βp–
k |ζk|q

[k(p–)]q–�[�–(rk) + �–(– ζk
k(p–) )]

]
, k ≥ L, (.)

where

 < �–(rk) ≤ βk ≤ �–(rk) + �–
(

–
ζk

k(p–)

)
, k ≥ L. (.)

From Lemma  (see (.), (.), and (.)), we also obtain

 ≤ lim inf
k→∞

βk

�–(rk)
≤ lim sup

k→∞
βk

�–(rk)
≤ lim

k→∞
�–(rk) + �–(– ζk

k(p–) )
�–(rk)

= . (.)

From (.) it follows that

lim
k→∞

β
p–
k rq–

k

�[�–(rk) + �–(– ζk
k(p–) )]

= lim
k→∞

[rq–
k ]p–rq–

k
rk

= lim
k→∞

r–q
k rq–

k
rk

= . (.)

It is well known that

lim
k→∞

k + 
[k(p–)]q– = lim

k→∞
k

[k(p–)]q– = lim
k→∞

k
[kp–]q– = . (.)

Thus (see (.), (.), and (.)), we can assume that L > p –  is so large that


(
√

r+)q–
≤ 

(
√

rk)q–
≤ β

p–
k

�[�–(rk) + �–(– ζk
k(p–) )]

≤
(√


rk

)q–

≤
(√


r–

)q–

, k ≥ L, (.)

and that

(
√


)q–

≤ k + 
[k(p–)]q– ≤ 

q–
 , k ≥ L. (.)
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Combining (.) and (.), we obtain

(p – )|ζk|q
[r+]q– ≤ (k + )(p – )βp–

k |ζk|q
[k(p–)]q–�[�–(rk) + �–(– ζk

k(p–) )]
≤ q–(p – )|ζk|q

[r–]q– (.)

for all k ≥ L.
Considering (.) and (.), we have (see also (.))

�ζk ≥ 
k – p + 

[
(p – )ζk – s+ +

(p – )|ζk|q
[r+]q–

]
, k ≥ L, (.)

and

�ζk ≤ 
k – p + 

[
s+ +

q–(p – )|ζk|q
[r–]q–

]
, k ≥ L. (.)

If

ζi < X := –r+
[

 +
s+

p – 

] 
q–

–  (.)

for some i ≥ L, then

ζi –
s+

p – 
+

|ζi|q
[r+]q– > |ζi|

(
– +

[ |ζi|
r+

]q–

–
s+

p – 

)
> |ζi|(– + ) > –X > . (.)

Thus, in this case, we have ζi+ > ζi. Indeed, (.) and (.) give

�ζi ≥ p – 
i – p + 

[
ζi –

s+

p – 
+

|ζi|q
[r+]q–

]
>

p – 
i – p + 

|X| >  (.)

if (.) is valid. Let us consider the smallest integer l ≥ L such that ζl ≥ X. Note that
such a number l has to exist because its existence follows from (.) and from

∞∑

i=L

p – 
i – p + 

|X| ≥ (p – )
∞∑

j=L–p+


j

= ∞.

Using (.), we have

ζl+ ≥ X := X +


l – p + 
[
(p – )X – s+]

.

Analogously, one can get that ζj+ ≥ X if ζj ≥ X for some j ≥ l. Hence, there exists N > 
satisfying

ζk ∈ (–N , ), k ≥ L. (.)

In fact, it suffices to put

N := min{ζL, ζL+, . . . , ζl , X}.
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Trivially, from (.) and (.) (or directly from (.)), it is seen that

|�ζk| ≤ 
k – p + 

[
(p – )N + s+ +

q–(p – )Nq

[r–]q–

]
, k ≥ L. (.)

Therefore, there exists P >  for which

|�ζk| <
P
k

, k ≥ L. (.)

Especially, (.) gives Q >  such that

|ζk+i – ζk+j| <
Q
k

, i, j ∈ {, . . . , m – }, k ≥ L. (.)

Indeed (consider (.)), inequalities (.) and (.) are valid for

P := sup
k∈NL

k
k – p + 

[
(p – )N + s+ +

q–(p – )Nq

[r–]q–

]

= max

{
,

L
L – p + 

}[
(p – )N + s+ +

q–(p – )Nq

[r–]q–

]

and Q := (m – )P.
In addition (see Definition ), we can assume that m ∈N from (.) is so large that


m + j

i+m+j–∑

k=i

sk > q–p

(


m + l

i+m+l–∑

k=i

r–q
k

)–p

, i ∈Na, j, l ∈N∪ {}. (.)

To obtain the oscillatory part of the theorem, one can proceed as in the proof of Theo-
rem . in [], where only (.), (.), (.), (.), (.), and (.) are used to get a
contradiction with the existence of the negative solution {ζk}k∈NL (in fact, these inequali-
ties are used only in special forms therein).

In the non-oscillatory part of the proof, we consider that m ∈N satisfies


m + j

i+m+j–∑

k=i

sk < q–p

(


m + l

i+m+l–∑

k=i

r–q
k

)–p

, i ∈Na, j, l ∈N∪ {}. (.)

Let {ζk}k∈NL be the solution of the Cauchy problem given by (.) and

ζL = –

(
q
m

L+m–∑

i=L

r–q
i

)–p

,

where L ∈N is sufficiently large. As in the first part of the proof, we obtain (.) and (.)
if ζk is negative. Thus, we can assume that L is so large that

ζL < ζL+i < , i ∈ {, . . . , m}. (.)

In addition (compare (.) with (.)), as in the first part, one can estimate

|�ζL+i| <
P̃
L

, i ∈ {, , . . . , m – }, (.)
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|ζL+i – ζL+j| <
Q̃
L

, i, j ∈ {, , . . . , m}, (.)

for some P̃, Q̃ > . Now the process from the proof of Theorem . in [] shows that ζk is
negative for all k ≥ L, because only (.), (.), (.), (.), (.), and (.) are used
therein. Hence, to complete the proof, it suffices to apply Lemma . �

We slightly improve Theorem  into the following form (more common in the literature).
In particular, we remove the requirement on sequence {sk} that it has a positive mean
value.

Theorem  Let us consider the equation

�
[
r̃k�(�xk)

]
+

s̃k

(k + )(p) �(xk+) = , (.)

where the coefficients {r̃k}k∈Na , {s̃k}k∈Na be such that the mean values of sequences {r̃–q
k },

{s̃k} exist and {r̃k} is bounded and positive. Let us denote

� := q–p[M
({

r̃–q
k

})]–p. (.)

Equation (.) is oscillatory if M({s̃k}) > �. Equation (.) is non-oscillatory if M({s̃k}) <
�.

Proof Considering Lemma  for {r̃–q
k } and the boundedness of {r̃k}, we know that

 < inf
k∈Na

r̃–q
k ≤ sup

k∈Na
r̃–q

k < ∞, i.e.,∞ > sup
k∈Na

r̃k ≥ inf
k∈Na

r̃k > . (.)

We use Theorem . Therefore, we assume that M({s̃k}) > .
We divide (.) by the constant value [M({r̃–q

k })]–p >  (see (.)). We obtain the
equation

�

[
r̃k�(�xk)

[M({r̃–q
k })]–p

]
+

s̃k�(xk+)
(k + )(p)[M({r̃–q

k })]–p
= , (.)

which has the form of (.) with the coefficients

rk =
r̃k

[M({r̃–q
k })]–p

, sk =
s̃k

[M({r̃–q
k })]–p

.

Especially, we have

M
({

r–q
k

})
= M

({
r̃–q

k

[M({r̃–q
k })](–p)(–q)

})
=

[
M

({
r̃–q

k
})]–M

({
r̃–q

k
})

= ,

where the identity

( – p)( – q) =  (.)

is used.
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According to Theorem , (.) is oscillatory if

M
({sk}

)
= M

({
s̃k

[M({r̃–q
k })]–p

})
=

[
M

({
r̃–q

k
})]p–M

({s̃k}
)

> q–p,

and non-oscillatory if

M
({sk}

)
=

[
M

({
r̃–q

k
})]p–M

({s̃k}
)

< q–p.

This fact implies the statement of Theorem  for any positive mean value of {s̃k}.
Now, let M({s̃k}) ≤ . Then there exists a positive constant C such that

 < M
({s̃k}

)
+ C = M

({s̃k + C}) < �.

We consider the non-oscillatory equation

�
[
r̃k�(�xk)

]
+

s̃k + C
(k + )(p) �(xk+) = ,

which is a majorant equation of (.). Thus, the proof can be completed by the applica-
tion of Theorem . �

Since the presented results are new also for linear difference equations (the case that
p = q = ), we mention the following direct corollary of Theorem .

Corollary  Let us consider the equation

�[rk�xk] +
skxk+

(k + )k
= , (.)

where the sequences {rk}k∈Na and {sk}k∈Na have the properties that M({r–
k }) and M({sk})

exist and {rk} is bounded and positive. Then (.) is oscillatory for

M
({

r–
k

})
M

({sk}
)

>



and non-oscillatory for

M
({

r–
k

})
M

({sk}
)

<



. (.)

Based on results of [] (see also [, ]), the conjecture is given in our previous paper
[] that the border case M({r–

k })M({sk}) = / from Corollary  is not solvable for general
coefficients; i.e., in the border case, there exist oscillatory equations in the form of (.)
and, at the same time, there exist non-oscillatory equations in this form.

In addition, using the Sturm type comparison theorem, we get the next new result con-
cerning non-oscillatory half-linear difference equations when the coefficient in the differ-
ence term does not need to be bounded.

Theorem  Let us consider (.) and � introduced in (.). Let the coefficients {r̃k}k∈Na ,
{s̃k}k∈Na be such that the mean values of sequences {r̃–q

k }, {s̃k} exist and {r̃k} is positive. Then
(.) is non-oscillatory if M({s̃k}) < �.
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Proof The inequality M({s̃k}) < � can be trivially rewritten into the form

M
({s̃k}

)
< q–p[M

({
r̃–q

k
})]–p – δ

for some δ > . In particular, there exists ϑ >  for which

M
({s̃k}

)
< q–p[M

({
r̃–q

k
})

+ ϑ
]–p. (.)

From Definition  and (.), it is seen that the sequence {R̃k}k∈Na given by

R̃k :=
(
r̃–q

k + ϑ
)–p, k ∈Na,

satisfies

M
({

R̃–q
k

})
= M

({
r̃–q

k + ϑ
})

= M
({

r̃–q
k

})
+ ϑ > . (.)

In addition, sequence {R̃k} is bounded. Thus, we can apply Theorem  which guarantees
that the equation

�
[
R̃k�(�xk)

]
+

s̃k

(k + )(p) �(xk+) =  (.)

is non-oscillatory (see (.) and (.)). Of course, (.) is a majorant of (.) because
R̃k ≤ r̃k for all considered k (see again (.)). Finally, it suffices to use Theorem . �

Again, from the theorem above, we obtain a new result in the linear case. The linear
version of Theorem  reads as follows.

Corollary  Let us consider (.) with the coefficients {rk}k∈Na and {sk}k∈Na such that
M({r–

k }) and M({sk}) exist and {rk} is positive. Then (.) is non-oscillatory if (.) is
valid.

4 Examples
In this section, we give some simple examples of oscillatory and non-oscillatory equa-
tions whose oscillatory properties do not follow from any previously known oscillation or
non-oscillation criteria. To illustrate Theorems , ,  and Corollaries , , we mention
Examples , ,  and Examples , , respectively.

Example  Let a, b >  be arbitrary. The equation

�
[
�(�xk)

]
+

a| sin k| + b cos k
(k + )(p) �(xk+) =  (.)

has evidently the form of (.). Since

M
({

a| sin k| + b cos k
})

= aM
({| sin k|}) + bM

({cos k}) =
a
π

,

(.) is oscillatory for a > q–pπ and non-oscillatory for a < q–pπ .
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Example  Let λ,μ ∈R be arbitrarily given, where |μ| > |λ|. Let us consider the equation

�

[∣
∣∣
∣sin

(k + )π


∣
∣∣
∣

– p
q
�(�xk)

]
+

λ + (–)kμ

k(p) �(xk+) = , (.)

which has the form of (.) for

r̃k =
∣∣
∣∣sin

(k + )π


∣∣
∣∣

– p
q

, s̃k =
[
λ + (–)kμ

] (k + )(p)

k(p) .

Since

M
({

r̃–q
k

})
= M

({∣∣
∣∣sin

(k + )π


∣∣
∣∣

})
=




∑

k=

∣∣
∣∣sin

(k + )π


∣∣
∣∣

=



(
sin

π


+ sin

π


+ sin

π



)
=




(
sin

π


+ sin

π



)

and

M
({s̃k}

)
= M

({
λ + (–)kμ

})
= λ,

considering Theorem , we know that (.) is oscillatory for

λ > � := q–p
[




(
sin

π


+ sin

π



)]–p

and non-oscillatory for λ < �.

Example  Let K, L, K, L > . We define the sequence {rk}k∈N by the formula

rk :=

⎧
⎨

⎩
K + L, k ∈ {n; n ∈N};
K, k ∈N \ {n; n ∈N},

and the sequence {sk}k∈N by

sk :=

⎧
⎨

⎩
K + (–)nL, k ∈ {n; n ∈N};
K, k ∈N \ {n; n ∈ N}.

If we consider these functions as the coefficients in (.), then this equation is oscillatory
for

M
({

r–
k

})
M

({sk}
)

=
K

K
>




and non-oscillatory for K > K. Indeed, we can apply Corollary .

Example  Let γ > . We use Theorem  for the following equation:

�

[


 + cos k · sin(
√

k)
· �xk√|�xk|

]
+


γ
√

k
· xk+√|xk+| = , (.)



Hasil and Veselý Advances in Difference Equations  (2015) 2015:210 Page 17 of 18

where p = / (i.e., q = ) and

r̃k =


 + cos k · sin(
√

k)
, s̃k =

(k + )(/)

γ
√

k

for all large k ∈N. One can easily verify that

M
({

r̃–
k

})
= M

({[
 + cos k · sin(

√
k)

]})

=  + M
({

cos k · sin(
√

k)
})

=



and that

M
({s̃k}

)
=


γ

lim
k→∞

(k + )(/)
√

k
=


γ

.

Thus, (.) is non-oscillatory if γ > 
√

.

Example  For any c < /, the linear equation

�

[
�xk

 + cos k

]
+

c
(k + )k

xk+ =  (.)

satisfies all assumptions of Corollary . It is seen that

M
({

r–
k

})
M

({sk}
)

= M
({

 + cos k})M
({c}) = c <




,

which means that (.) is non-oscillatory.

Now we briefly explain why the oscillatory problems in the above examples are not cov-
ered by any previously known results (see also Theorem ). In both of Examples  and ,
the second coefficient changes its sign. In Example , the coefficients are not asymptoti-
cally almost periodic. In Example , the coefficient in the difference term is not bounded.
In the last example, the first coefficient is not asymptotically almost periodic and, at the
same time, it is not bounded.

As a final remark, we focus our attention on the denominators of the potentials con-
sidered in Examples  and , where (k + )(p) and (k + )(/) is replaced by k(p) and

√
k,

respectively. In fact, all presented results remain true if we replace the coefficients {sk} or
{s̃k} by {fk · sk} or {fk · s̃k} for any sequence of real numbers fk satisfying limk→∞ fk = . In-
deed, the existence of M({hk}) implies that M({hk · gk}) = M({hk}) whenever limk→∞ gk = 
(consider Definition  and Lemma ). Note that we consider the denominator (k + )(p) due
to the form of previously known results (see Section ).
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