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Abstract

Background: Predictive modelling of gene expression is a powerful framework for the in silico exploration of
transcriptional regulatory interactions through the integration of high-throughput -omics data. A major limitation
of previous approaches is their inability to handle conditional interactions that emerge when genes are subject to
different regulatory mechanisms. Although chromatin immunoprecipitation-based histone modification data are
often used as proxies for chromatin accessibility, the association between these variables and expression often
depends upon the presence of other epigenetic markers (e.g. DNA methylation or histone variants). These
conditional interactions are poorly handled by previous predictive models and reduce the reliability of downstream
biological inference.

Results: We have previously demonstrated that integrating both transcription factor and histone modification data
within a single predictive model is rendered ineffective by their statistical redundancy. In this study, we evaluate
four proposed methods for quantifying gene-level DNA methylation levels and demonstrate that inclusion of these
data in predictive modelling frameworks is also subject to this critical limitation in data integration. Based on the
hypothesis that statistical redundancy in epigenetic data is caused by conditional regulatory interactions within a
dynamic chromatin context, we construct a new gene expression model which is the first to improve prediction
accuracy by unsupervised identification of latent regulatory classes. We show that DNA methylation and H2A.Z
histone variant data can be interpreted in this way to identify and explore the signatures of silenced and bivalent
promoters, substantially improving genome-wide predictions of mRNA transcript abundance and downstream
biological inference across multiple cell lines.

Conclusions: Previous models of gene expression have been applied successfully to several important problems
in molecular biology, including the discovery of transcription factor roles, identification of regulatory elements
responsible for differential expression patterns and comparative analysis of the transcriptome across distant
species. Our analysis supports our hypothesis that statistical redundancy in epigenetic data is partially due to
conditional relationships between these regulators and gene expression levels. This analysis provides insight into
the heterogeneous roles of H3K4me3 and H3K27me3 in the presence of the H2A.Z histone variant (implicated in
cancer progression) and how these signatures change during lineage commitment and carcinogenesis.
Background
Understanding the precise spatiotemporal regulation of
eukaryotic gene expression is a central challenge in mo-
lecular biology. Three features are common to the epigen-
etic interactions that underlie transcriptional regulatory
programs [1]: sequence-specific recruitment of regulatory
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factors to binding sites (e.g. transcription factors and non-
coding RNAs); enhanced specificity of regulatory function
through the cooperative interactions of several factors;
and the establishment of positive and negative feedback
mechanisms (corresponding with post-translational his-
tone modifications and DNA methylation) to stabilise
targeted activity and facilitate its propagation through
cell division. Dysregulation of these epigenetic interac-
tions has been implicated with hundreds of develop-
mental, autoimmune, neurological, inflammatory and
neoplastic disorders [2].
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Fig. 1 Illustration of the histone/epigenetic code in the context of
the promoter-localised regulatory elements analysed in this study.
Only active genes exhibit significant expression, corresponding with
H3K4me3 often flanked by H2A.Z. Poised and reversible/permanently
silenced genes are distinguished by decreasing likelihood of genes
returning to an active state; poised genes are marked by bivalent
H3K4/27me3 and H2A.Z, while silent genes are marked by H3K27me3
(facultative heterochromatin), H3K9me3 (constitutive heterochromatin)
and DNA methylation (permanent silencing)
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Characterising gene regulatory programs by studying in-
dividual protein–protein interactions would require a cur-
rently unavailable volume and resolution of proteomics
data. Instead, predictive modelling frameworks [3–7] have
been developed that leverage the wealth of high-throughput
sequencing data generated by recent large-scale consor-
tia (e.g. ENCODE [8]) to predict the (indirect) relationships
between transcription factors, epigenetic modifications and
RNA transcript abundance. The utility of these models
is not in the ability to predict RNA transcript abundance
at the level of individual genes, but in the biological in-
sights into gene expression regulation that can be gained
by exploring genome-wide relationships. Examples of
downstream analysis include: inferring regulatory roles of
transcription factors from their respective binding motifs
[9]; identifying regulatory elements responsible for differ-
ential expression patterns [10]; exploring the relationship
between gene expression and higher-order chromatin do-
mains [11]; and large-scale comparative analysis of the
transcriptome across distant species [12]. In each of these
examples, the gene-level prediction accuracy is used as an
indirect measure of the model’s explanatory potential.
Despite the utility of predictive modelling as a framework

for exploring fundamental molecular biology, a major limi-
tation of current approaches is their inability to model the
conditional associations that emerge between histone mod-
ifications and gene expression in the presence of other epi-
genetic markers (e.g. in methylated or bivalent promoters).
To highlight this shortcoming, we formulate and evaluate
several methods of quantifying promoter-localised DNA
methylation and demonstrate that its naïve integration into
previous models is unable to improve prediction accuracy.
These results are due to statistical redundancy between
DNA methylation and histone modification data (previ-
ously studied in transcription factors [11]) despite substan-
tial anti-correlation between gene expression and promoter
methylation levels.
In this study, we introduce a modelling framework that

allows the integration of conditional regulatory data by un-
supervised identification of latent regulatory classes. We
demonstrate that this approach is effective at identifying
gene silencing events (promoter methylation) and isolating
the heterogeneous roles of H3K4me3 and H3K27me3 con-
ditioned upon the H2A.Z histone variant (promoter biva-
lency), leading to substantial improvements in genome-
wide accuracy of gene expression predictions. Specifically,
our model integrates high-throughput sequencing data for
DNA methylation, H3K4me3, H3K27me3, H3K9me3 and
H2A.Z to predict mRNA transcript abundance levels
(RNA-seq) across all ENCODE Tier1 cell lines [8]. A sim-
plified histone/epigenetic code for these modifications in a
promoter-localised context is illustrated in Fig. 1. The
remaining histone modifications available on ENCODE are
unsuitable for this study as they either target non-promoter
regions (e.g. H3K36me3 in the 3′-UTR [13]) or are mutu-
ally exclusive and thus highly redundant with those selected
for this study (e.g. H3K9/27 ac).

Results and discussion
Standard predictive modelling is unable to derive the
regulatory signature of the H2A.Z histone variant
Using a regression-based gene expression modelling frame-
work [4], we evaluated the accuracy of predicted RPKM-
normalised transcript abundance compared to actual
RNA-seq data genome-wide for H1-hESC, GM12878 and
K562 cell lines. These results are presented in Fig. 2. The
performance of these models (adjusted R2 = 0.43 for H1-
hESC and KM562, 0.47 for GM12878) are comparable to
those of previous studies [9, 10, 14, 15], supporting our
data pre-processing steps and the formulation of our his-
tone score (Equation 1) and regression model (Equation 2).
Figure 2 also presents the distribution of gene expres-

sion levels and data-derived regulatory roles of each his-
tone modification genome-wide, with positive/negative
loadings suggesting activator/repressor roles, respectively.
The data-derived roles reflect the well-established associa-
tions between promoter-localised H3K4me3, H3K27me3
and H3K9me3 with respect to genome-wide transcrip-
tional activity. However, it is evident that this approach is
unable to identify a consistent role for the H2A.Z histone
variant (repressor in dissimilar H1-hESC/K562 and activa-
tor in GM12878), which we hypothesise is due to its con-
ditional associations with H3K4me3 and H3K27me3
(promoter bivalency).
Interestingly, the differentiated lymphoblastoid GM12878

and cancerous K562 cell lines exhibit more near-zero ex-
pression (silenced) genes than pluripotent H1-hESC, con-
sistent with an increase in DNA methylation-associated
gene silencing events during lineage commitment and car-
cinogenesis. DNA methylation is further implicated by the
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Fig. 2 Analysis of predictive models of genome-wide transcript abundance for a H1-hESC, b GM12878 and c K562 cell lines, constructed from
H2A.Z, H3K4me3, H3K27me3 and H3K9me3 histone scores. Each cell line demonstrates the following: (top) the distribution of arsinh-transformed
RPKM-normalised transcript abundance derived from RNA-seq data; (middle) predicted-versus-measured transcript abundance for the linear
regression model, with performance quantified as an adjusted R2 score; and (bottom) the data-derived putative regulatory roles of each histone
modification, with positive/negative loadings suggesting activator/repressor roles, respectively. Of particular interest is the latent signature of
DNA methylation-associated gene silencing, with GM12878 and K562 exhibiting a higher proportion of near-zero expression genes and strikingly
stronger regulatory signal for H3K9me3 (implicated in DNA de novo methyltransferase activity)
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stronger regulatory signal for H3K9me3 in GM12878
and K562, which is associated with DNA de novo meth-
yltransferase activity [16]. It is also interesting to note
that principal component 2 (PC2; for which the loadings
are presented in Fig. 2) was consistently the only accur-
ate predictor of gene expression (adjusted R2

PC2 > 0.4,
adjusted R2

PCx < 0.05 ∀ x ≠ 2), despite PC1 capturing the
most variation in the histone score matrix, A, by defin-
ition. The orthogonality of PCA thus suggests that PC1
may capture a (linearly uncorrelated) functional signa-
ture of histone modification coordination unrelated to
transcriptional regulation (e.g. DNA replication [17, 18]
or repair [19, 20]).
MMFS-quantified promoter methylation is anti-correlated
with gene expression
It is widely accepted that promoter-localised CpG methyla-
tion prevents the initiation of eukaryotic gene transcription
[21]. By extension, a suitable gene-level DNA methylation
score should be anti-correlated with transcript abundance
derived from genome-wide RNA-seq data. Figure 3 pre-
sents the correlation between transcript abundance and
the four DNA methylation scores proposed in this study
(sum of methylation fractions by site (SMFS), mean methy-
lation fraction by site (MMFS), mean methylation fraction
by region (MMFR) and sum of scaled methylation reads by
region (SMRR)) for all replicate combinations. MMFS
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Fig. 3 Evaluation of gene-level DNA methylation scores (SMFS, MMFS, MMFR and SMRR). (Left) MMFS exhibits the strongest overall anti-correlation
with RPKM-normalised transcript abundance (Pearson’s r = −0.39), indicating that it is most appropriate for capturing the gene silencing effect
of promoter-localised methylation. Model performance is colour-coded by correlation within each cell line, with the best/worst-performing
models highlighted in green/red, respectively. (Right) promoter methylation (MMFS) versus transcript abundance genome-wide for GM12878
(regression line shown in red), demonstrating two distinct gene clusters: active/unmethylated (green) and silent/methylated (red). It is also
evident that a large number of genes exhibit near-zero expression despite a lack of substantial DNA methylation (blue); these genes reduce the
predictive power of DNA methylation genome-wide and are likely silenced by other mechanisms (e.g. repressor/silencer transcription factors
[22] or H3K27me3-associated Polycomb activity [16])
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performed equal-best for H1-hESC (Pearson’s r = −0.25)
and outright best for GM12878 and K562 (Pearson’s
r = −0.31 and −0.39, respectively), with all scores exhibiting
stronger anti-correlation in the differentiated cell lines than
hESC as expected from the previous discussion.
The distribution of promoter methylation (MMFS) ver-

sus transcript abundance presented in Fig. 3 demonstrates
two distinct clusters, corresponding with active/unmethy-
lated (green) and silenced/methylated genes (red). It is
also evident that many genes exhibit near-zero expression
despite a lack of substantial DNA methylation (blue),
which we attribute to repression driven by other regula-
tory mechanisms (e.g. repressor/silencer transcription
factors [22] or H3K27me3-associated Polycomb activity
[16]). This figure illustrates the need to identify and iso-
late these latent regulatory classes in order to accurately
identify the associations between epigenetic regulators
and genome-wide mRNA transcript abundance.

Naïve model integration is unsuitable for DNA
methylation data
As demonstrated in Fig. 3, all four gene-level DNA
methylation scores are anti-correlated with genome-wide
RNA transcript abundance, as expected due to the well-
established silencing role of promoter-localised CpG
methylation [21]. Intuitively, integrating any of these
scores into a gene expression model (particularly MMFS)
should yield improved prediction accuracy due to the
addition of information regarding methylation-associated
silencing.
A naïve approach to integrating DNA methylation into

a predictive gene expression model would amount to
simply concatenating the vector of methylation scores as
a new column of the n ×m histone score matrix, A,
where n is the number of genes and m is the number of
histone modifications. In this study, A contains histone
scores for H3K4me3, H3K27me3, H3K9me3 and the
H2A.Z histone variant, as described in the ‘Methods’
section. We constructed such models for all combina-
tions of cell line and DNA methylation score and found
that the resultant improvement in prediction accuracy
was negligible in all cases (|adj. R2| ≤ 10−3).
Despite the anti-correlation shown between each

methylation score and RNA transcript abundance, the
naïve integration of this information into predictive
models trained on histone modification data yields prac-
tically zero improvement in prediction accuracy (irre-
spective of score or cell line). Within the constraints of a
linear model, DNA methylation and the four considered
histone modifications are statistically redundant with re-
spect to gene expression. This may be partially due to
the well-established negative associations between DNA
methylation and H3K4me3/H2A.Z [23–25] and positive
associations with H3K9ac [16], and we have previously
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explored the causes of similar redundancy between tran-
scription factor and histone modification data [11]. In
the following section, we propose a new framework de-
signed to model the conditional relationships underlying
this redundancy, both to provide new insights regarding
transcriptional regulation and to allow the information
content of DNA methylation data to be effectively lever-
aged in future integrative studies.

Modelling transcriptional regulation of methylated and
bivalent promoters
To explore the hypothesis that statistical redundancy be-
tween histone modification and DNA methylation data is
caused by conditional relationships in methylated pro-
moters, the MMFS score was selected to separate genes
into two latent regulatory classes (MMFS+ versus MMFS−)
on the basis of a threshold determined through the un-
supervised approach described in the methods. Intuitively,
this approach should isolate genes subject to H3K9me3/
DNA methylation-associated silencing from an otherwise-
heterogeneous set.
Unmethylated genes are still subject to a variety of

transcriptional regulatory mechanisms, including H3K4me3-
associated euchromatinisation (activation) and H3K27me3-
associated facultative heterochromatinisation (repression)
[26]. H2A.Z was chosen from the remaining set of epi-
genetic markers (H3K4me3, H3K27me3, H3K9me3 and
H2A.Z) to further separate the set of MMFS− genes into
two subclasses (H2A.Z+ and H2A.Z−) due to our earlier
observations and other studies supporting its bivalent
regulatory role [27–29]. We believe that histone biva-
lency confounds the regulatory roles of H3K4me3 and
H3K27me3 by maintaining these otherwise-antagonistic
markers in metastable equilibrium. The final decision
tree structure constructed to test these hypotheses is
shown in Fig. 4.
In addition to the decision tree structure, Fig. 4 also

demonstrates the following for the K562 cell line: the
unsupervised threshold selection process for the propor-
tion of genes attributed to each latent regulatory class;
and the respective performance results (Δadj. R2) relative
to a standard predictive model constructed from the
same data. The statistics across all ENCODE Tier1 cell
lines are presented in Table 1.
By separating genes into regulatory classes based on the

latent signature of methylated and bivalent promoters, it
is evident from Table 1 that the inferred relationships be-
tween epigenetic and expression data are strengthened for
the majority of genes; e.g. 55 and 17 % of K562 genes are
classified as MMFS+ and H2A.Z−, and our ability to pre-
dict the expression of these genes improves substantially
(Δadj. R2 = 0.03 and 0.14, respectively).
We note that H2A.Z+ genes are actually reduced in pre-

diction accuracy, particularly in GM12878. We speculate
that this is due to further latent subclasses of H2A.Z-as-
sociated regulation. H2A.Z flanks the TSS during tran-
scriptional activation but is evicted during transcript
elongation [30, 31], suggesting that a temporal model
may be necessary to fully resolve its complex regulatory
role. It is also likely that the collection and integration
of RNA polymerase II CTD-S2 phosphorylation data
(an indicator of paused elongation at H2A.Z-flanked
CpG islands [32]) would improve our ability to precisely
model this process. Irrespectively, this study has pro-
vided an unsupervised framework for identifying these
difficult-to-model genes and demonstrated that the oc-
currence and regulatory signature of promoter bivalency
changes significantly following lineage commitment and
carcinogenesis. A list of the regulatory classes assigned
to each gene across all ENCODE Tier1 cell lines is pro-
vided in Additional file 1, demonstrating substantial
poised ↔ active plasticity compared to greater stability
in DNA methylation-associated silencing. These find-
ings are of particular importance in the context of re-
cent studies linking H2A.Z over-expression to the
progression of various cancers [33–35].
Importantly, previous downstream analyses [9–12] can

be applied to any latent regulatory class-specific gene set
in isolation (MMFS+, H2A.Z+, H2A.Z−), allowing re-
searchers to investigate regulatory activity specific to a
particular chromatin context. Although this study has
utilised prior knowledge to structure a decision tree spe-
cific to our regulatory context of interest (methylated
and bivalent promoters), the approach can be extended
to an arbitrary set of epigenetic markers by systematic-
ally evaluating all possible tree structures.

Conclusions
Predictive gene expression modelling is an essential tool
in computational biology, due to both the critical import-
ance of understanding transcriptional regulation and the
current inability to source sufficient proteomics to resolve
data on a gene-by-gene basis. However, we believe that
previous predictive models designed to explore regulatory
activity have been confounded by conditional associations
between epigenetic regulators and gene expression within
a dynamic chromatin context. This study extends our pre-
vious investigation of statistical redundancy between tran-
scription factors and histone modifications [11], which
concluded that the principled integration of additional
epigenetic variables (e.g. DNA methylation and H2A.Z)
would be necessary to effectively model these processes.
Our results demonstrate that the naïve integration of

DNA methylation data into a standard predictive model
is unable to improve prediction accuracy despite strong
anti-correlation between gene expression and our pro-
posed gene-level methylation scores, strongly suggesting
that more complex regulatory logic is involved. Instead,
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we present a new modelling framework that substantially
improves genome-wide predictions of mRNA transcript
abundance by using DNA methylation data to identify and
separate genes into latent regulatory classes. These im-
provements were demonstrated across all ENCODE Tier1
cell lines [8], using a minimal set of epigenetic markers
(H2A.Z, H3K4me3, H3K9me3 and H3K27me3) chosen
for their indirect and context-sensitive regulatory roles in
a promoter-localised context.
The improved performance across multiple dissimilar cell

lines supports our hypothesis that statistical redundancy in
Table 1 Proportion of genes attributed to each latent regulatory cla
(relative to a standard model constructed from the same data) for h

MMFS+ H2A.Z

Genes (%) Δadj. R2 Genes

H1-hESC 46 +0.03 25

GM12878 40 +0.06 29

K562 55 +0.03 28
epigenetic data is caused by conditional associations be-
tween regulators and gene expression. In addition to le-
veraging DNA methylation data to identify the latent
signature of epigenetically silenced genes, we identified
the conditional, bivalent associations of H3K4me3 and
H3K27me3 with the H2A.Z histone variant. Although
predictive models at bivalent promoters remain less ac-
curate than for non-bivalent genes, this study has pro-
vided a framework for identifying these genes and
demonstrated that the occurrence and regulatory signa-
ture of promoter bivalency changes substantially across
ss and respective improvement in prediction accuracy, Δadj R2

1-hESC, GM12878 and K562 cell lines
+ H2A.Z−

(%) Δadj. R2 Genes (%) Δadj. R2

−0.01 28 +0.05

−0.13 30 +0.16

−0.04 17 +0.14



Table 2 All ENCODE Tier1 cell line data used in this study [8]

Data type Data source

RNA-seq GSM958730 (GM12878, 2 replicates)

GSM958737 (H1-hESC, 2 replicates)

GSM958731 (K562, 2 replicates)

TSS Ensembl hg19/GRCh37 [44]

Methyl RRBS (GM12878) GSM683906 (replicate 1)

GSM683927 (replicate 2)

ChIP-seq (GM12878) GSM733767 (H2A.Z)

GSM733758 (H3K27me3)

GSM733708 (H3K4me3)

GSM733664 (H3K9me3)

Methyl RRBS (H1-hESC) GSM683770 (replicate 1)

GSM683879 (replicate 2)

ChIP-seq (H1-hESC) GSM1003579 (H2A.Z)

GSM733748 (H3K27me3)

GSM733657 (H3K4me3)

GSM1003585 (H3K9me3)

Methyl RRBS (K562) GSM683856 (replicate 1)

GSM683780 (replicate 2)

ChIP-seq (K562) GSM733786 (H2A.Z)

GSM733658 (H3K27me3)

GSM733680 (H3K4me3)

GSM733776 (H3K9me3)
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the lineage commitment spectra (from H1-hESC to
GM12878) and carcinogenesis (K562). These findings
are of particular importance in the context of recent
studies linking H2A.Z over-expression to the progres-
sion of various cancers [33–35].
It is well-established in previous literature that the utility

of gene expression models extends beyond the ability to
predict the expression levels of individual genes. The in-
terpretability of these models across all biological prob-
lems is, however, limited by prediction accuracy at this
level. As well as allowing us to investigate gene expression
at methylated and bivalent promoters, we anticipate that
this interpretation of conditional regulatory activity in pre-
dictive models will improve the explorative potential of fu-
ture in silico studies in two fundamental ways. Firstly, the
accuracy of gene expression models is substantially im-
proved by unsupervised separation of genes into latent
regulatory classes. Secondly, researchers have the option
of specifying classification variables from prior knowledge
(the approach demonstrated in this study) to investigate
gene regulatory logic specific to a particular chromatin
context (e.g. the role of pioneer transcription factors in
euchromatin versus heterochromatin). Alternatively, all
combinations of classification variables can be exhaust-
ively evaluated to provide a fully generalisable and un-
supervised analysis.

Methods
Cell line data
ENCODE Tier1 cell lines (H1-hESC, GM12878 and K562)
were selected to explore methylated and bivalent pro-
moters, as functional patterns of DNA methylation vary
substantially during lineage commitment and carcinogen-
esis. All cell line gene expression (RNA-seq), histone modi-
fication (ChIP-seq) and DNA methylation (methyl RRBS)
data were downloaded from ENCODE [8]. Specific GEO
accession numbers for each dataset are provided in
Table 2. The TSS for each gene was taken from the gene
annotation dataset for the human genome (hg19/GRCh37).
Multiple transcripts or isoforms were removed by con-
sidering only the most 5′-located TSS for each unique
Ensembl gene identifier, resulting in a set of 11,806
genes with unambiguous mappings. RNA-seq data was
re-mapped to hg19 using Subread [36] and RPKM-
normalised using edgeR [37, 38].

Gene-specific histone modification scores
The association strength between a gene, i, and histone
modification, j, is calculated using the constrained sum-
of-tags histone score [4]:

aij ¼
X

k

gk ; ð1Þ
where gk is the number of ChIP-seq reads (or normal-
ised equivalent) for j mapped to position k relative to the
TSS of i. As ChIP-seq involves sequencing of DNA cor-
responding with the end of each nucleosome, the pos-
ition for each read was shifted by ±73 bp (for ± strand,
respectively) to centre on the modified nucleosome [15].
Integrating over a region 2000 bp either side of the TSS
(approximating the average width of histone modifica-
tion ChIP-seq binding regions) is standard for this ap-
proach [9, 10, 14] and applied throughout this study.

Gene-specific DNA methylation scores
Compared to CpG-level methylation scores, gene/region-
level DNA methylation scores are not well-established in
previous literature. We explore four possible promoter-
localised scores in the context of predictive gene expres-
sion modelling, considering a window 2000 bp either side
of the respective gene’s TSS:

� Sum of methylation fractions by site (SMFS): Sum of
the CpG-level methylation scores within a region,
similar to the constrained sum-of-tags score previously
applied to the analysis of ChIP-seq data [4]
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� Mean methylation fraction by site (MMFS):
Equivalent to the SMFS score divided by the
number of assayed CpGs within the region, similar
to the mean methylation level described by Shultz
et al. [39]

� Mean methylation fraction by region (MMFR):
proportion of raw reads that were found to be
methylated, similar to the weighted methylation
level described by Schultz et al. [39]

� Sum of scaled methylation reads by region (SMRR):
Equivalent to the MMFS score except each read is
multiplied by − exp(d/d0), where d is the distance
(bp) from the TSS and d0 = 5000, similar to the
exponentially decaying affinity score previously
applied to the analysis of ChIP-seq data [4]

Regression-based predictive modelling of gene
expression
In this study, we model the RPKM-normalised transcript
abundance, yi, of each gene, i, as a general linear func-
tion of its association, aij, with each histone modifica-
tion, j:

sinh−1 yið Þ ¼ μþ
X

j

βjaij þ εi; ð2Þ

where βj captures the influence of histone modification j
on gene expression, μ is the basal expression level, and εi
is the gene-specific error term. The inverse hyperbolic sine

(arsinh) transformation, sinh−1 xð Þ ¼ log xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p� �
; is

approximately equal to log (2x) for x≫ 0, allowing it
to be regarded as practically equivalent to the log-
transformation applied in previous gene expression
modelling studies [4]. Unlike log (x), sinh−1(x) is defined
for x = 0, removing the need to meta-optimise small con-
stant to add to x (leading to spurious inflation of reported
prediction accuracy) and making it better-suited to inte-
grating ChIP-seq and RPKM-normalised RNA-seq data.

Evaluation of prediction accuracy
Prediction accuracy is assessed for each regression model
using an adjusted R2 score, which in comparison to the
standard R2 approach prevents spurious inflation of
the statistic due to the introduction of additional ex-
planatory variables [40]. Separate RNA-seq replicates
and cross-validation were used for model training and
evaluation to prevent over-fitting to experimental noise
where appropriate.

Derivation of putative regulatory roles
Putative regulatory roles are inferred for each histone
modification using principal component analysis (PCA).
Specifically, the histone score matrix, A (see Equation 1),
for a gene set of interest is arsinh-transformed (see
Equation 2) and reformulated using the following singu-
lar value decomposition [41]:

sinh−1 Að Þ ¼ UΣVT; ð3Þ

where U is the matrix of component scores, Σ is the
diagonal matrix of the singular values of A, and V is the
matrix of loadings (weights by which the histone scores
are multiplied to derive their respective component
scores). In the context of modelling gene expression, the
columns of the matrix UΣ are the principal components
(PCs), and the rows correspond with eigengenes [42].
The data-derived regulatory role of each histone modifi-
cation is simply its contribution (loading) toward the in-
dividual PC most predictive of gene expression [4].

Modelling conditional regulatory interactions with
decision trees
We provide a framework for improved modelling of
conditional and synergistic interactions from matched
transcriptomic and epigenomic data. As an illustrative
example, gene-level H2A.Z scores (an indicator of his-
tone bivalency) could be used to separate genes into two
subsets: those associated with H2A.Z (bivalent) and
those that are not. Separate predictive models can then
be constructed and evaluated for both subsets from the
remaining regulatory elements (i.e. no longer using
H2A.Z as a predictor), as illustrated in Fig. 5; statistical
artefacts introduced by the reduced degrees-of-freedom
are corrected by the adjusted R2 evaluation metric [40].
This model is implemented in a binary decision tree,

where each node represents a linear regression model over
a subset of genes and each non-leaf node represents a cat-
egorisation step (e.g. associated with H2A.Z (bivalent) or
not). The genes associated with each leaf node partition
the full set of genes from the histone score matrix, A, and
the respective models are presumed to capture homoge-
neous regulatory logic. Regression models associated with
non-leaf nodes are only used for the assignment of cat-
egorisation thresholds.
We use an unsupervised method to define the thresh-

old, γ, above which a gene-level histone score is accepted
to represent actual regulatory activity. More formally,
given an n ×m matrix A of histone scores (n genes by m
histone modifications), histone modification vector Ax

T

(x ∈ [1, m]) is selected to partition A into two regulatory
classes, Ak ×m − 1

left and An − k ×m − 1
right , where k is the number

of genes for which Ax
T ≤ γ. In a tree-based representation

where Ak ×m − 1
left and An − k ×m − 1

right are the left and right
children of A, respectively, there are two scenarios for
the unsupervised assignment of the threshold γ:

� If exactly one child of the H2A.Z node is a leaf, the
threshold is optimised to maximise the prediction
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Fig. 5 Illustration of our predictive modelling approach where the
H2A.Z histone variant has been used to separate genes into two
classes. Categorising genes by the presence of promoter-localised
H2A.Z removes context sensitivity in the regulatory role of H3K4me3;
H3K4me3 in the presence of H2A.Z is often a hallmark of low
expression (i.e. bivalent genes), whereas H3K4me3 is otherwise
associated with active transcription. These conditional interactions
are poorly handled by previous regression models
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accuracy of the respective model. This model is
assumed to capture genes subject to homogeneous
regulation.

� Otherwise, the threshold is optimised to maximise
the prediction accuracy of both left and right
child models (i.e. the adjusted R2 calculated over
the concatenated predictions for both regulatory
classes).

This approach can be repeated recursively for a binary
decision tree of arbitrary height (constrained by the
number of epigenetic variables, m) and balance. At
each step, the selection of which variable is used to par-
tition A into separate models can be either manually
selected to explore specific regulatory contexts (the
approach demonstrated in this study) or automated to
exhaustively evaluate all possible tree structures (compu-
tationally tractable for a practical number of matched
epigenetic datasets). In the latter scenario, the greedy na-
ture of the threshold selection procedure still does not
guarantee a globally optimal set of values; improved pre-
diction accuracy could be obtained by multivariate opti-
misation across the full set of non-leaf thresholds for an
arbitrarily large tree, although we argue that this ap-
proach would a) lose the biological meaning (regulated-
or-not) underlying the methodology presented, and b)
be poorly suited to the recursive implementation prefer-
able for tree-based algorithms.

Implementation
All scripts used in this study are implemented using
open-source software and made available as a pre-
configured bootable virtual environment [43]. This en-
vironment was created using a minimal installation of
Lubuntu 13.10; a lightweight Linux distribution which
supports all the tools required. R version 3.0.1 was in-
stalled, along with the core set of packages and utilities
required to explore the presented results. This environ-
ment, along with all data and scripts, are available online
at http://sourceforge.net/projects/budden2015treeome/.

Additional file

Additional file 1: Regulatory classes. Regulatory class assigned to
each gene across all ENCODE Tier1 cell lines.
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