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Abstract

Introduction: The molecular biology involving neoadjuvant chemotherapy (NAC) response is poorly understood.
To elucidate the impact of NAC on the breast cancer transcriptome and its association with clinical outcome, we
analyzed gene expression data derived from serial tumor samples of patients with breast cancer who received NAC
in the I-SPY 1 TRIAL.

Methods: Expression data were collected before treatment (T1), 24–96 hours after initiation of chemotherapy (T2) and
at surgery (TS). Expression levels between T1 and T2 (T1 vs. T2; n = 36) and between T1 and TS (T1 vs. TS; n = 39) were
compared. Subtype was assigned using the PAM50 gene signature. Differences in early gene expression changes
(T2 − T1) between responders and nonresponders, as defined by residual cancer burden, were evaluated. Cox
proportional hazards modeling was used to identify genes in residual tumors associated with recurrence-free
survival (RFS). Pathway analysis was performed with Ingenuity software.

Results: When we compared expression profiles at T1 vs. T2 and at T1 vs. TS, we detected significantly altered
expression of 150 and 59 transcripts, respectively. We observed notable downregulation of proliferation and
immune-related genes at T2. Lower concordance in subtype assignment was observed between T1 and TS (62 %)
than between T1 and T2 (75 %). Analysis of early gene expression changes (T2 − T1) revealed that decreased
expression of cell cycle inhibitors was associated with poor response. Increased interferon signaling (TS − T1) and
high expression of cell proliferation genes in residual tumors (TS) were associated with reduced RFS.

Conclusions: Serial gene expression analysis revealed candidate immune and proliferation pathways associated
with response and recurrence. Larger studies incorporating the approach described here are warranted to identify
predictive and prognostic biomarkers in the NAC setting for specific targeted therapies.
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Introduction
Women with locally advanced or high-risk early-stage
breast cancers are eligible for neoadjuvant chemotherapy
(NAC), an approach whereby patients receive systemic
chemotherapy before surgical removal of the tumor. NAC
can downstage tumors to allow breast-conserving surgery
to be performed [1, 2] and permits the evaluation of indi-
vidual tumor response to monitor the effectiveness of
standard and/or investigational systemic therapy [3–6].
Recent clinical studies involving NAC have provided an op-
portunity to evaluate prognosis based on the presence of
residual disease and to elucidate predictors of response to
different types of chemotherapeutics [7–11]. These studies
have consistently shown that cancers in women who re-
spond to NAC with a pathological complete response
(pCR) are much less likely to recur than those in women
with residual disease [5]. Unfortunately, only a subset of pa-
tients achieve a pCR to neoadjuvant treatment [12–14].
The results of a large meta-analysis were recently reported
[15]. To date, there are no genomic markers that can pre-
dict response to NAC [16, 17].
Why many patients fail to respond to NAC is poorly

understood. Questions remain about which genes and
pathways in breast tumors are perturbed in response to
treatment [8, 11] and how these molecular signals differ
between responders and nonresponders, as well as in
those whose cancer recurs early vs. those whose cancer
does not. For example, early changes in the proliferation
marker Ki-67 have been found to correlate positively
with pathological response [18]. Compared with pre-
treatment levels [19], post-NAC Ki-67 levels appeared to
show a stronger relationship with recurrence-free sur-
vival (RFS) [20]. In addition to single-gene studies, gen-
omic approaches are needed to maximize the discovery
of useful classifiers and druggable targets in the NAC
setting.
We performed an exploratory study to investigate the

dynamics of tumor gene expression in early high-risk
breast cancer patients receiving NAC. We analyzed ser-
ial cDNA microarray expression data obtained from
breast tumor biopsies before treatment (T1), at 24–96
hours after the first dose of NAC (T2) and in residual
tumors at the time of surgery (TS). We assessed differ-
entially expressed genes between time points (T1 vs. T2
and T1 vs. TS) as well as changes in pathways and mo-
lecular subtypes. We also explored associations between
early gene expression changes (T2 − T1) and response
to chemotherapy, as well as gene expression in residual
tumors (TS and TS − T1) and recurrence.

Methods
Ethics, consent and permissions
The protocol for the Investigation of Serial Studies to
Predict Your Therapeutic Response with Imaging And
moLecular Analysis (I-SPY 1 TRIAL; registration num-
bers CALGB 150007/150012, ACRIN 6657) was ap-
proved by the institutional review boards at all
participating institutions [7] (Additional file 1). All pa-
tients signed informed consent forms to allow molecular
analyses to be performed on their tissue samples.
Patients and tissue samples
Eligible patients were women with histologically con-
firmed invasive breast tumors greater than 3 cm in
diameter with no evidence of distant metastatic dis-
ease (Table 1). Figure 1a shows the study schema.
Core needle (16-gauge) biopsies were taken from the
primary breast tumors before treatment (T1) and be-
tween 24 and 96 hours after the first dose (T2) of
chemotherapy. After four cycles of anthracycline-
based therapy, patients received a taxane regimen
followed by surgery, when another biopsy was taken
(TS). Collected tissue samples were immediately fro-
zen in Tissue-Tek O.C.T.™ embedding media (Sakura
Finetek, Alphen aan den Rijn, the Netherlands) and
then stored at −80 °C until further processing. Using a
cryostat, four 14-μm sections were obtained for RNA
isolation. An additional 8-μm section was stained with
hematoxylin and eosin (H&E), and a histopathological
evaluation was performed (by AA) to demarcate tissue
containing at least 50 % tumor. The H&E-stained slide
was then used as a guide to macrodissect tumors on
the remaining nonstained dehydrated sections.
cDNA microarray gene expression profiling
Total RNA isolation, amplification and cDNA micro-
array analysis have been previously described [21, 22].
The microarray was composed of 39,347 cDNAs repre-
senting 20,862 annotated genes. Clone annotation was
updated using the SOURCE database [23], and the
UCSC Genome Browser database and software tools
[24] were used for clones without UniGene annota-
tions. The quality of the arrays was analyzed using the
arrayQuality package in Bioconductor.
Amplified RNA samples were hybridized to six differ-

ent batches of printed cDNA microarrays. Arrays in each
print batch were normalized, and data from different
batches were combined by mapping using gene symbols
and averaging probe values from replicate genes. The
print run effect was then controlled for by fitting a linear
model with the response expressed as the log2 ratio and
batch effect as the explanatory variable and using the re-
siduals from the fit for further analyses [21]. The micro-
array data were deposited in the Gene Expression
Omnibus database [GEO:GSE32603].



Table 1 Patient and clinical characteristics

Characteristics I-SPY 1 TRIAL evaluable patients
(n = 221)

Matched T1-T2 pairs
(n = 36)

P-value Matched T1-TS pairs
(n = 39)

P-value

Age, yr 0.77a 0.86a

Median (range) 49 (26–28) 47 (31–68) 48 (34–65)

Clinical tumor size, cm

Median (range) 6 (0–25)c 6 (3–17) 0.55a 6 (0–25)c 0.88a

Clinically node-positive at diagnosis 143 (65 %) 25 (69 %) 26 (67 %)

Histological grade (baseline)

Low 18 (8 %) 1 (3 %) 0.39b 4 (10 %) 0.83b

Intermediate 96 (43 %) 20 (56 %) 17 (44 %)

High 103 (47 %) 15 (42 %) 18 (46 %)

Indeterminate 4 (2 %) 0 0

Clinical stage (baseline)

I 3 (1 %) 0 0.80b 0 0.66b

II 104 (47 %) 15 (42 %)

III 96 (43 %) 18 (50 %) 16 (41 %)

Inflammatory 17 (8 %) 3 (8 %) 5 (13 %)

Indeterminate 1 (<1 %) 0 0

Hormone receptor-positive (ER or PR) at baseline 131 (59 %) 24 (67 %) 0.55b 26 (68 %) 0.41b

HER2-positive at baseline 67 (31 %) 6 (17 %) 0.12b 3 (8 %) 0.006b

Neoadjuvant treatment

AC only 11 (5 %) 3 8 %) 0.21b 2 (5 %) 0.38b

AC + taxane 187 (85 %) 33 (92 %) 33 (85 %)

AC + T + Trastuzumab 20 (9 %) 0 2 (5 %)

AC + T + Other 3 (1 %) 0 2 (5 %)

Surgery type

Mastectomy 123 (56 %) 19 (53 %) 0.95b 22 (56 %) 0.58b

Lumpectomy 92 (41 %) 16 (44 %) 17 (44 %)

No surgery 6 (3 %) 1 (3 %)

RCB

0 56 (25 %) 6 (17 %) 0.29b 0 0.0002b

I 18 (8 %) 1 (3 %) 1 (3 %)

II 86 (39 %) 16 (44 %) 18 (46 %)

III 41 (19 %) 10 (28 %) 16 (41 %)

Undetermined 20 (9 %) 3 (8 %) 4 (10 %)
aWilcoxon rank-sum test. bχ2 test. cOne patient had a tumor that measured 0 cm with calipers by clinical examination but had a >3-cm tumor revealed by mag-
netic resonance imaging (MRI) and was therefore eligible for the trial. Abbreviations: AC anthracycline, ER estrogen receptor, HER2 Human epidermal growth factor
receptor 2, PR progesterone receptor, RCB residual cancer burden

Magbanua et al. Breast Cancer Research  (2015) 17:73 Page 3 of 13
Molecular subtype assignment
Each sample was assigned to a molecular subtype using
the PAM50 method [25]. Concordance of molecular
subtype assignment of paired samples between time
points was calculated by dividing the number of
matched pairs with identical assignment by the total
number of matched pairs.
Identifying changes in expression between different time
points
To determine genes that were differentially expressed
between time points (T1 vs. T2 and T1 vs. TS), the
resulting normalized dataset was analyzed using a paired
sample permutation test based on the t-statistic. The
Benjamini-Hochberg false discovery rate adjustment
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Fig. 1 Serial gene expression analysis in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy (NAC). a Study schema. Gene
expression analysis was performed on breast cancer tumors collected before treatment (T1), 24–96 hours after initiation of anthracycline-based NAC
(T2) and at the time of surgery (TS). b Heat map showing results of supervised clustering analysis of expression profiles of tumors before treatment (T1)
and 24–96 hours after initiation of NAC (T2). Rows indicate expression levels for each gene, and columns indicate individual samples. Blue indicates
downregulation of gene expression, and red indicates upregulation of gene expression. The upper color bar indicates response to NAC as defined by
residual cancer burden (RCB 0/I or RCB II/III). Bars on the left indicate assignment of genes to an ontology group (i.e., immune system– or proliferation-
related genes). Her2 Human epidermal growth factor receptor 2, LumA luminal A, Lum B luminal B. c Subtype assignments of matched tumors at T1
and T2. Dark gray boxes running diagonally downward from top left indicate no change between two time points. d Heat map showing result
of supervised clustering analysis of expression profiles of known nonresponding tumors at T1 and TS. The upper color bar indicates hormone
receptor (HR) and HER2 status (blue = HR+HER2−; green = HR−HER2+; red = HR−HER2−; white = no data). The 10 most significant differentially
expressed genes are indicated at the right of the heat map. Blue indicates downregulation of gene expression, and red indicates upregulation
of gene expression. e Subtype assignments of matched tumors at T1 and TS. Dark gray boxes running diagonally downward from top left
indicate no change between two time points
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(multitest package in R) was applied to correct for mul-
tiple comparisons. Probes with adjusted P-values less
than 0.05 were considered significant.

Association of changes in gene expression with clinical
endpoints
Outcome parameters included residual cancer burden
(RCB) after therapy and RFS. RCB categories assigned at
the surgery time point were retrospectively used to com-
pare gene expression between T1 and T2. Owing to a
limited sample size, we divided patients into two groups:
RCB 0/I and RCB II/III. RCB 0/I was defined as no or
minimal residual tumor cells in both the breast and axil-
lary lymph nodes, and RCB II/III was used to denote
nonresponse with moderate to extensive residual disease
[6]. At T2, tumor tissue was still available for analysis in
patients eventually classified as RCB 0/I. Differential
expression analysis between RCB 0/I and RCB II/III at
T1, T2 and T2 − T1 was performed using a permutation
test based on the t-statistic. Cox proportional hazards
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modeling was used to identify genes associated with
RFS. For analyses involving TS and TS − T1, we in-
cluded only data from nonresponding patients (i.e., RCB
I/II/III). Owing to the small sample sizes, we adopted a
relaxed significance threshold for outcome associations
(P < 0.005 without correction for multiple testing). To il-
lustrate the association with RFS using Kaplan-Meier
survival analysis, genes that were significantly associated
with RFS as continuous variables were dichotomized as
top vs. combined middle and bottom tertiles.
Assessment of Ki-67 expression
Immunohistochemical (IHC) staining to assess Ki-67 pro-
tein expression was performed as previously described
using a standard avidin-biotin complex technique [5]. IHC
staining was done centrally, and a single pathologist (CL)
interpreted the results. The percentage of Ki-67-positive
nuclei was quantified using the Aperio Nuclear V9 (cell
quantification) algorithm (Leica Biosystems, Buffalo
Grove, IL, USA). Each case was assigned a Ki-67 score, de-
fined as the percentage of total number of tumor cells
positive for nuclear staining by the antibody.
Pathway analysis
Ingenuity Pathway Analysis (IPA; Ingenuity Systems/
Qiagen, Redwood City, CA, USA) was used to map lists
of significant genes to gene ontology groups and bio-
logical pathways. IPA then uses Fisher’s exact test to
calculate a probability value to indicate the association
between each gene in the list and IPA-curated pathways
and biological functions. A P-value less than 0.05 was
considered statistically significant overrepresentation of
genes in a canonical pathway or gene ontology group
(e.g., molecular and cellular functions).
Results
Patient and microarray data
Patient characteristics are summarized in Table 1. Of
the 237 patients enrolled, 221 patients completed NAC,
of whom 56 (25 %) achieved a complete pathological
response (Additional file 2). Arrays were available for
141, 45 and 54 patients corresponding to time points
T1, T2 and TS (Fig. 1a). Paired expression data for T1
vs. T2 and T1 vs. TS were available for 36 and 39 pa-
tients, respectively. The patients in this study had clin-
ical characteristics similar to those of the whole patient
cohort in the I-SPY 1 TRIAL [7], except for fewer hu-
man epidermal growth factor receptor 2 (HER2)-posi-
tive tumors. Also, a different distribution of RCB cases
was observed because only nonresponders were in-
cluded for TS.
Differentially expressed genes, pathways and molecular
subtype before treatment vs. 24–96 hours after initiation
of chemotherapy
To determine perturbations in gene expression after the
first dose of chemotherapy, we performed differential ex-
pression analysis between pretreatment (T1) and post–
cycle 1 (T2) biopsies. The results revealed significantly
altered expression of 150 probes (124 genes) (Fig. 1b
and Additional file 3). Interestingly, most genes were
downregulated at T2 (106 probes, 93 genes). Gene
ontology enrichment analysis revealed a significant over-
representation of genes involved in cell cycle and in
cell death and survival (Additional file 4). These in-
cluded genes encoding kinases, such as AURKA and
PLK1, which play key roles in cell proliferation. Note-
worthy also was downregulation of immune function–
related genes such as HLA-DOA, HLA-DQA1, TLR7,
TLR8 and MAP3K14. In pathway analysis, we identified
35 enriched canonical pathways, including immune sig-
naling, p53 signaling, mammalian target of rapamycin
signaling, cell cycle signaling and carbohydrate metabolic
pathways. Of note, most of the modulated pathways
were immune-related (e.g., altered T cell and B cell sig-
naling in rheumatoid arthritis, dendritic cell maturation
and Toll-like receptor and TREM1 signaling), suggesting
the suppression of immune function at this early time
point.
Comparison of molecular subtypes of paired samples

between time points T1 and T2 revealed changes in 9 of
the 36 assignments (concordance rate = 75 %) (Fig. 1c).
Interestingly, half of the luminal B subtypes converted to
luminal A, whereas all 13 basal tumors remained
unchanged.

Early gene expression changes associated with response
to chemotherapy
We used a permutation test based on the t-statistic to
identify associations between early gene expression
changes (T2 − T1) and responses (RCB 0/I vs. RCB II/III).
RCB scores were available for 33 of the 36 patients with
paired T1 and T2 arrays. Because the sample sizes were
small (7 RCB 0/I and 26 RCB II/III cases), we adopted a
relaxed significance threshold (permutation P < 0.005
without correction for multiple testing). The results re-
vealed 123 probes (97 genes) with significantly different
early gene expression changes (T2 − T1) between the two
RCB groups (Additional file 5). A total of 49 of these
probes (30 genes) showed higher expression changes
within the RCB II/III cases, whereas 74 probes (67 genes)
had higher expression changes within the RCB 0/I class.
We observed a significant overrepresentation of cell cycle
genes associated with poor response (Additional file 6).
In pathway analysis, we identified 20 canonical path-

ways significantly associated with early changes in gene
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expression, including several pathways involved in amino
acid metabolism (e.g., glycine biosynthesis and lysine deg-
radation pathways). Interestingly, the translation repressor
EIF4EBP1 and the cell cycle inhibitors CDKN2B and
SMARCB1 showed decreased expression at T2 relative to
A)

C)

Fig. 2 Association between gene expression and response to chemotherap
the expression of a representative cell proliferation gene, CDKN2B, at baseli
color of the points indicating response [red = RCB 0/I (responders); blue = R
gene expression levels (T1 = T2). The length of the vertical lines between p
change from T1 to T2. b–d Box plots show expression of CDKN2B in RCB 0
between two time points (T2 − T1) (d)
T1 within the RCB II/III subset, suggesting an association
between decreased gene expression of negative regulators
of the cell cycle and poor response to chemotherapy.
Figure 2 shows an example where dynamic change [i.e.,
decreased expression of CDKN2B between two time
B)

D)

y as defined by residual cancer burden (RCB). a Scatterplot showing
ne (T1) and 24–96 hours after initiation of chemotherapy (T2) with the
CB II/III (nonresponders)]. The diagonal line represents no change in
oints and the diagonal line represents the magnitude of expression
/I and RCB II/III at T1 (b), at T2 (c) and the change in gene expression
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points (T2 − T1)] was significantly associated with poor
response, whereas the pretreatment (T1) and post–cycle 1
(T2) levels did not.
Next, we examined whether genes associated with

chemotherapy response at static time points (T1 and T2)
were similar to those observed when change in expression
between two time points was considered (T2 − T1). The
results revealed fewer genes associated with response at
T1 (17 probes, 12 genes) or T2 (115 probes, 87 genes) as
compared with change in expression (T2 − T1: 123
probes, 97 genes) (Additional file 5). In addition, the over-
lap between the gene sets was minimal or nonexistent
(Additional file 2), suggesting that expression profiling of
tumors before treatment and early during therapy, as well
as the assessment of early changes in expression, may pro-
vide nonredundant information regarding chemotherapy
responsiveness.

Pretreatment versus residual tumor gene expression in
nonresponders
We performed differential expression analysis between
the pretreatment biopsy (T1) and the surgical specimen
(TS) to identify genes with significantly altered expres-
sion in residual tumors. The results revealed the signifi-
cant modulation of 59 probes (47 genes) (Fig. 1d and
Additional file 7). Gene ontology enrichment analysis re-
vealed the significant overrepresentation of genes in-
volved in cell movement, cell death and survival
(Additional file 8). Of note, CYR61/IGFBP10, an extra-
cellular matrix–associated signaling protein and compo-
nents of the key transcriptional regulator AP-1, JUN and
FOSB were among the 32 upregulated genes in residual
tumors after chemotherapy. Pathway analysis revealed
54 canonical pathways that were significantly modulated
at TS, including regulation of the epithelial–mesenchy-
mal transition pathway, insulin-like growth factor 1
(IGF1) signaling and immune-related signaling, such as
interleukin (IL)-8 and IL-1 signaling. Comparison of mo-
lecular subtypes of paired samples between time points
T1 and TS revealed changes in 15 of the 39 assignments
(concordance rate = 62 %) (Fig. 1e). Two of the fourteen
basal subtypes changed to HER2 and normal-like.

Late gene expression changes associated with recurrence
in nonresponders
We examined associations between RFS and expres-
sion changes between pretreatment and time of sur-
gery (TS − T1) using Cox proportional hazards
modeling. We identified late expression changes in
95 probes (57 genes) associated with RFS (Additional
file 9). These were enriched for increased expression
of interferon signaling genes, such as IFIT2, IFIT1,
IFITM1, IFIH1 and EML2. This observation is con-
sistent with results of the pathway analysis showing
that interferon signaling was the most enriched canonical
pathway in the overall set (Additional file 10). To illustrate
the associations with RFS, we dichotomized patients based
on expression levels at T1, TS and TS − T1. Figure 3
shows examples where increased expression of IFIH1 over
the course of NAC (TS − T1) was significantly associated
with early recurrence. Interestingly, similar associations
with RFS were observed for elevated levels of IFIH1 in
surgical specimens (TS), but not for pretreatment (T1)
levels.

Residual tumor expression at time of surgery associated
with recurrence in nonresponders
We examined the associations between gene expression as
continuous variables in residual tumors at TS and RFS
using Cox proportional hazards modeling. Expression of
181 probes (127 genes) was found to be associated with
RFS. Of these, high expression of 129 probes (93 genes)
and low expression of 52 probes (34 genes) were associated
with reduced RFS (Additional file 9). Gene ontology ana-
lysis revealed significant enrichment of genes related to the
cell cycle (Additional file 11). For instance, high expression
levels of the cell proliferation genes CENPF, AGR2 and
E2F3 in the patients with residual disease were associated
with poor outcomes. Of note, overexpression of TGFBI and
interferon-induced proteins IFIT2, IFIH1 and IFI44L in the
residual tumor were also associated with reduced RFS.
Pathway analysis revealed significant enrichment for
immune-related functions (e.g., IL-2 and IL-6 signaling).
Figure 4 shows examples where dichotomized expression
levels of CENPF in surgical specimens (TS) were associated
with recurrence. Interestingly, high pretreatment (T1) levels
of CENPF were also associated with recurrence, whereas
late changes in expression (TS − T1) were not.
Next, we examined whether genes that were associated

with RFS at pretreatment (T1) were similar to those ob-
served at TS or when late changes in gene expression
(TS − T1) were considered. We identified more T1
genes (260 probes, 183 genes) associated with recurrence
compared with those observed for TS − T1 (95 probes,
57 genes) or TS (181 probes, 127 genes) (Additional file 9).
Also, only a few genes were found to be in common
when any two gene sets were compared, and no overlap
was observed when all three gene sets were considered
(Additional file 2). These results suggest that expression
profiling at static time points (e.g., at pretreatment only
and at surgery only) and assessment of expression
changes between two time points may provide nonre-
dundant information regarding the likelihood of recur-
rence in nonresponders.

Ki-67 protein expression
Of the 36 patients with paired T1 and T2 expression
data, 28 had matched Ki-67 scores. Consistent with the



A) B)
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Fig. 3 Association of changes in gene expression between pretreatment and residual tumors (TS − T1) and recurrence-free survival (RFS). a Scatterplot
showing the expression of a representative interferon signaling gene, IFIH1, at TS and T1, with the color of the points indicating outcome (red = no
recurrence; blue = recurrence). The diagonal line represents no change in gene expression levels (T1 = TS). The length of the vertical lines between
points and the diagonal line represents the magnitude of expression change from T1 to TS. Kaplan-Meier analysis of RFS among patients with high
(top tertile: blue) or low expression (red) levels of IFIH1 at T1 (b), at TS (c) and the change in gene expression between two time points (TS − T1) (d)
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observed downregulation of proliferation signals at T2, the
percentage of Ki-67-positive cells decreased from T1 to T2
(P = 0.020 by Wilcoxon paired test) (Fig. 5a). When
changes in paired Ki-67 scores between the two time points
(T2 − T1) were considered, no significant association with
chemotherapy response was observed (P = 0.66). Paired Ki-
67 scores were available for 29 of the 39 patients with
matched T1 and TS expression data. Cox proportional
hazards modeling revealed that higher Ki-67 scores at TS
[P = 0.0061 by likelihood ratio (LR) test] or at T1 (P =
0.031 by LR test) were associated with decreased RFS.
Figure 5b shows the results of the Kaplan-Meier analysis of
RFS among patients with low (bottom tertile: red) or high
(blue) Ki-67 scores at TS. Changes in Ki-67 scores between
T1 and TS showed a trend toward association with RFS,
but did not reach significance (P = 0.075 by LR test).

Discussion
The impact of NAC on the biology of breast cancers
is not well understood. Recent clinical studies have
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Fig. 4 Association between gene expression in residual tumors (TS) and recurrence-free survival (RFS). Kaplan-Meier analysis of RFS among
patients with high (top tertile: blue) or low expression (red) levels of a representative cell proliferation gene, CENPF, at T1 (a), at TS (b) and the
change in gene expression between two time points (TS − T1) (c)
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included correlative gene expression analyses to under-
stand the effects of NAC on the breast tumor trans-
criptome [8, 11, 26–29]. For example, Hannemann and
colleagues [11] compared gene expression before and after
NAC and observed that sensitive tumors showed signi-
ficant changes in their gene expression, whereas resistant
tumors did not. Gonzalez-Angulo and colleagues [8]
found that different pathways were preferentially per-
turbed in basal-like vs. non-basal-like breast cancers.
In prior gene expression profiling studies, researchers have
also attempted to identify candidate predictive markers for
chemotherapeutic response using pretreatment biopsies
A)

Fig. 5 Assessment of Ki-67 protein expression. a Scatterplot showing Ki-67 sc
(T2), with the colors and shapes of the points indicating increases (red squares
67 score (T1 = T2). The length of the vertical lines between points and the dia
b Kaplan-Meier analysis of recurrence-free survival (RFS) among patients with
[30–32]. However, this approach does not account for
chemotherapy-induced perturbations that may be gleaned
from serial gene expression analysis of tumors in patients
undergoing neoadjuvant treatment. Most importantly,
examination of serial changes in tumor gene expression
may identify predictors for favorable outcome with better
sensitivity than baseline signatures alone [33, 34].
In the present study, we examined changes in gene ex-

pression in serial breast tumor biopsies and the surgical
specimen treated with NAC, as well as their association
with clinical outcomes. We performed serial cDNA
microarray profiling before, during and after treatment.
B)

ores at baseline (T1) and 24–96 hours after initiation of chemotherapy
) or decreases (blue circles). The diagonal line represents no change in Ki-
gonal line represents the magnitude of expression change from T1 to T2.
low (bottom tertile: red) or high (blue) Ki-67 scores at TS
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We compared gene expression and molecular subtype
assignment of matched tumors collected at different
time points. We also performed exploratory analyses to
evaluate associations between early changes in gene ex-
pression and response as well as expression in residual
tumors and recurrence. To our knowledge, this is the
first study of changes in tumor gene expression over
three different time points in the neoadjuvant setting.
Transcriptomic analysis in breast cancer tumors re-

vealed genes and pathways that were significantly per-
turbed after initiation of first cycle of NAC. Early effects
of NAC on tumor gene expression include a substantial
downregulation of genes and pathways involved in pro-
liferation and immune function. These results must be
interpreted with caution, however, as tissue biopsies
were collected over a 3-day period. Therefore, confound-
ing factors, including treatment-associated changes in
the stroma and immune cell infiltrates, may potentially
influence gene expression at this time point (T2).
The expression of the proliferation marker Ki-67 was

evaluated by immunohistochemistry in a small subset of
paired samples. Ki-67 expression decreased early during
therapy, which is consistent with the observed downreg-
ulation of proliferation genes as determined by micro-
array analysis.
Residual tumors after NAC also showed significant

modulation of genes and pathways involved in immune
response pathways. These observations are consistent
with the known immune-suppressive and cytotoxic ef-
fects of chemotherapy and the steroids that are often
coadministered [2, 35]. Genes and pathways significantly
altered in residual tumors may represent candidate
markers for chemoresistance [36]. For example, pertur-
bations in the expression of genes involved in IGF-1 sig-
naling (e.g., the upregulation of CYR61) have been
observed in previous studies in which gene expression in
pre- and post-NAC biopsies was compared [11, 36].
Interestingly, the gene CYR61 (IGFBP10) has been
shown to be associated with breast cancer progression
[37, 38] and with resistance to apoptosis [39] and can be
a potential target for therapy [40].
We observed changes in molecular subtypes of tumors

in a subset of patients during the course of NAC. Dis-
cordance in subtype assignment was higher when pre-
treatment tumors were compared with matched residual
tumors at the time of surgery (T1 vs. TS) than with tu-
mors obtained early in treatment (T1 vs. T2). The most
frequent change in molecular subtype that we observed
after cycle 1 of NAC was from luminal B to luminal A.
Korde and colleagues reported similar findings [31]. The
switch from luminal B to luminal A may reflect the se-
lective killing of highly proliferative cells that are
chemotherapy-sensitive, leaving behind tumor cells that
are more hormone-sensitive and less responsive to
chemotherapy [31]. Gonzales-Angulo et al. [8] reported
a similar concordance rate of subtypes (62 %) of paired
pre- and post-NAC samples (n = 21) (Additional file 12).
The lower concordance for T1 vs. TS than for T1 vs. T2
may reflect the much larger effect of the full regimen of
NAC on the cellularity and composition of tumor tissue.
It is unclear, however, whether the interconversion be-
tween non-basal-like subtypes is a result of chemother-
apy exposure or is due to the relative instability in these
subtypes as compared with the basal-like subtypes [8].
Finally, our results regarding changes in molecular sub-
type assignment must be interpreted with caution, owing
to the small sample size and the lack of consensus for
molecular subtype assignment. Furthermore, changes in
subtype can be attributed to reduced proliferation and
changes in cellularity in both the tumor and the stroma.
It is currently impossible to distinguish among these
possibilities, and, even so, the clinical utility of the ob-
servation remains unclear.
Exploratory analysis comparing expression profiles of

responders vs. nonresponders revealed differentially
expressed genes involved in amino acid metabolism and
cell proliferation. The relationship between amino acid
metabolism and response to chemotherapy is currently
unclear. The results of a recent preclinical study sug-
gested, however, that the activation of amino acid meta-
bolic pathways might be important in acquiring
resistance to chemotherapy [41]. We have shown in our
previous work that high Ki-67 expression (n = 166 pa-
tients) at T1 was associated with favorable response to
chemotherapy [5]. In this study involving a small subset
of patients with paired expression data, we did not ob-
serve a significant relationship between Ki-67 scores and
response (P = 0.18). Interestingly, we found that, early
during chemotherapy, decreased expression of cell cycle
inhibitors rather than increased expression of positive
regulators of cell cycle (e.g., Ki-67 [18]) was associated
with poor response.
Molecular analysis of residual tumors may provide

prognostic and predictive information and may facilitate
the development of biomarkers, along with efficacious
single-agent and combination therapies, to prevent or
delay recurrence. Currently, there are no genomic pre-
dictors to determine which patients will experience an
early recurrence [7]. We found that increased interferon
signaling over the course of chemotherapy among non-
responding patients was associated with shorter RFS,
and we speculate that it may represent an immune toler-
ance response in aggressive disease. This seemingly
contradictory relationship between interferon signaling
and poor outcome vs. the more typically reported associ-
ations between T cell–B cell immune system signals and
good outcome has been well documented [42]. For
example, a recent study has shown that activated
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interferon signaling is associated with increased risk of
distant metastasis among luminal subtype tumors [43].
Interferon signaling has also been associated with resist-
ance to chemotherapy and radiation treatment [44], and
it has been identified as a coexpression module inde-
pendent of other immune signaling in breast and other
types of cancers [45, 46]. Taken together, our results sug-
gest that treatment-induced changes in interferon path-
way signaling may be an important component in
assessing risk factors for breast cancer recurrence and
may hint at the potential utility of immune modulating
therapy in nonresponding patients.
Examining changes in expression (e.g., T2 − T1 and

TS − T1) may provide nonredundant information re-
garding response and recurrence beyond those obtained
from static time points alone. Integrating gene expres-
sion data from different time points, including the
changes observed between them, may facilitate the de-
velopment of improved predictors for poor response and
early recurrence.
Molecular markers of response and survival can vary

across breast cancer subtypes. Therefore, molecular sub-
types need to be considered when evaluating associa-
tions between tumor expression and clinical outcomes.
In this study, the sample size was too small to perform
subset analysis, but we found similar results in models
adjusted for hormone receptor (HR) status. For example,
analyses with or without adjustment for HR status re-
vealed a significant association between RFS and inter-
feron signaling genes (e.g., IFIT2, IFIH1 and IFI44L).
Likewise, the gene expression changes that were most
highly associated with response (e.g., CDKN2B,
EIF4EBP1) were similar in both univariate and HR ad-
justed models.
A limitation of the present study was the relatively

small sample size. Therefore, we consider our analysis to
be exploratory, and larger studies are warranted to valid-
ate our findings. A similar study incorporating the
approaches described here will be performed within the
I-SPY 2 TRIAL [47]. This neoadjuvant clinical trial is
particularly well designed to test and develop predictive
biomarkers because participating patients undergo serial
tumor biopsies before treatment, after three cycles of
neoadjuvant treatment and at the time of surgery. The
present study did not include mutation profiling or
characterization of immune infiltrates. We plan to per-
form these types of analyses in the I-SPY 2 TRIAL,
which will potentially have greater power to validate spe-
cific associations between molecular data and clinical
outcomes.

Conclusions
Transcriptomic analysis of breast tumor samples before,
during and after NAC revealed changes in molecular
subtypes as well as genes and pathways associated with
response and recurrence. These genes and pathways
may serve as candidate biomarkers and therapeutic tar-
gets for poor response and may aid in early and real-
time modification of the treatment protocol to improve
clinical outcomes.
Additional files

Additional file 1: Names of all ethical bodies that approved the
study in the various centers involved.

Additional file 2: Figure S1. CONSORT flowchart of patients and data
and Venn diagrams of results for association analyses. (A) Gene
expression analysis was performed on breast cancer tumors collected
before treatment (T1), between 24 and 96 hours after initiation of
anthracycline-based neoadjuvant chemotherapy (T2) and at the time of
surgery (TS). (B) Venn diagram showing overlap of genes associated with
chemotherapy response as defined by residual cancer burden (RCB).
Breast cancer tumors were collected before treatment (T1) and between
24 and 96 hours after initiation of anthracycline-based neoadjuvant
chemotherapy (T2). The change in gene expression between two time
points is indicated as T2 − T1. Differential expression analysis between
RCB 0/I vs. RCB II/III was performed on expression data from T1, T2 and
T2 − T1. (C) Venn diagram showing overlap of genes associated with
recurrence-free survival (RFS). Gene expression profiling of tumors was
performed before treatment (T1) and at the time of surgery (TS). The
change in expression of genes between two time points is indicated as
TS − T1. Genes associated with RFS was examined using Cox proportional
hazards modeling.

Additional file 3: Table S1. Differentially expressed genes in matched
tumor at pretreatment and at 24 to 96 hours after initiation of
chemotherapy (T1 vs. T2). Positive direction indicates upregulation at T2
and vice versa. FDR false discovery rate.

Additional file 4: Table S2. Ingenuity (A) gene ontology enrichment
and (B) pathway analyses for differentially expressed genes between
pretreatment and after first dose of chemotherapy (T1 vs. T2) in matched
tumors.

Additional file 5: Table S3. Tumor gene expression associated with
response at pretreatment (T1) and at 24 to 96 hours after initiation of
chemotherapy (T2) and gene expression changes between two time
points (T2 − T1). The RCB 0/I column is positive if higher expression level
or larger change is observed in the RCB 0/I responder group and
negative if higher in the RCB II/III nonresponder group.

Additional file 6: Table S4. Ingenuity (A) gene ontology enrichment
and (B) pathway analyses for genes whose expression changed between
pretreatment and the first dose of chemotherapy (T2 − T1) and were
associated with residual cancer burden.

Additional file 7: Table S5. Differentially expressed genes in matched
tumors at pretreatment versus after treatment during surgery (T1 vs. TS
of non-responders). Positive direction indicates upregulation at TS and
vice versa. FDR false discovery rate.

Additional file 8: Table S6. Ingenuity (A) gene ontology enrichment
and (B) pathway analyses for differentially expressed genes between
matched pretreatment and surgical tumors (T1 vs. TS).

Additional file 9: Table S7. Tumor gene expression associated with
recurrence at pretreatment (T1) and at surgery (TS) and gene expression
changes between two time points (TS − T1).

Additional file 10: Table S8. Ingenuity (A) gene ontology enrichment
and (B) pathway analyses for genes whose expression changed between
pretreatment and surgery (TS − T1) and were significantly associated with
recurrence-free survival.

Additional file 11: Table S9. Ingenuity (A) gene ontology enrichment
and (B) pathway analyses for genes expressed in residual tumors at
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surgery (TS) and were significantly associated with recurrence-free
survival.

Additional file 12: Table S10. Concordance of subtype assignments
between two time points. Results from neoadjuvant chemotherapy (NAC)
studies in which changes in molecular subtype assignment and response
to NAC were evaluated (i.e., pathological complete response (pCR) or no
pCR).
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