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Abstract
Background: Determining the interaction topology of biological systems is a topic that currently
attracts significant research interest. Typical models for such systems take the form of differential
equations that involve polynomial and rational functions. Such nonlinear models make the problem
of determining the connectivity of biochemical networks from time-series experimental data much
harder. The use of linear dynamics and linearization techniques that have been proposed in the past
can circumvent this, but the general problem of developing efficient algorithms for models that
provide more accurate system descriptions remains open.

Results: We present a network determination algorithm that can treat model descriptions with
polynomial and rational functions and which does not make use of linearization. For this purpose,
we make use of the observation that biochemical networks are in general 'sparse' and minimize the
1-norm of the decision variables (sum of weighted network connections) while constraints keep
the error between data and the network dynamics small. The emphasis of our methodology is on
determining the interconnection topology rather than the specific reaction constants and it takes
into account the necessary properties that a chemical reaction network should have – something
that techniques based on linearization can not. The problem can be formulated as a Linear Program,
a convex optimization problem, for which efficient algorithms are available that can treat large data
sets efficiently and uncertainties in data or model parameters.

Conclusion: The presented methodology is able to predict with accuracy and efficiency the
connectivity structure of a chemical reaction network with mass action kinetics and of a gene
regulatory network from simulation data even if the dynamics of these systems are non-polynomial
(rational) and uncertainties in the data are taken into account. It also produces a network structure
that can explain the real experimental data of L. lactis and is similar to the one found in the
literature. Numerical methods based on Linear Programming can therefore help determine
efficiently the network structure of biological systems from large data sets. The overall objective
of this work is to provide methods to increase our understanding of complex biochemical systems,
particularly through their interconnection and their non-equilibrium behavior.

Background
Determining the interaction topology in large-scale bio-
logical systems has been an active area of research for

some time now. Most methodologies that deal with high-
throughput experimental data make use of information
about the behavior of the system locally around the
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steady-state [1-3]. For example, a class of techniques that
fall under the rubric of 'stationary state Jacobian Matrix
Elements' analyzes the system behavior when it is per-
turbed locally from steady-state and looks at whether the
concentration of one species is increased or decreased
when another species' concentration is increased. In [4]
and [5], the authors have built on this approach and
determined the functional interactions in cellular signal-
ing and gene networks by taking into account the 'modu-
lar' structure of the networks in question. Alternatively,
inferences about the topology of the network can be made
by introducing pulse changes in concentration of a chem-
ical species in the network, and observing the network's
response, concluding causal chemical connectivities [6].
In [3], a linear dynamical system was considered to repre-
sent a gene regulatory network, and an approach, based
on Linear Programming, was proposed in order to obtain
the sparsest network structure from genetic perturbation
experiments.

However, most information of the system dynamics is in
its transient behavior and, more importantly, many reac-
tions that the living cell requires are actually for most of
the time far from steady state [7]. The problem of deter-
mining the network structure in the case where transient
time-series data for non-equilibrium behavior are availa-
ble is much harder and this has been an active area of
research for over a decade. The reason is that while such
data are often abundant due to the development of high-
throughput, effective experimental techniques, at the
same time, a high computational effort is required to
extract information about the network structure using tra-
ditional techniques. A recent review of available tech-
niques can be found in [8] or [9], but earlier articles, such
as [10], also list several approaches to this network identi-
fication problem.

In actual fact, identifying the interconnection topology in
biological and biochemical systems is of greater impor-
tance than extracting the parameters (the rates of the vari-
ous reactions) that best fit the particular time series data.
There are several reasons for this: first, the parameters are
often collected under noisy experimental conditions and
are sensitive to the laboratory environment. Second, as is
often the case with large networks, persistence of observed
phenomena is robust to a large range of most parameter
values and therefore identifying these parameters exactly
is not of great interest. Indeed, chemical reaction networks
often have the same functionality in the neighborhood of
most of the nominal reaction rates. But most importantly,
networks are rarely robust to the random rewiring of the
underlying interconnection structure and hence deter-
mining the network connectivity is much more important
than determining the kinetic parameters that fit the partic-
ular data.

In this paper, we first consider chemical reaction networks
with mass action kinetics (see references [11] and [12]) and
seek to identify the chemical pathways and mechanisms,
that is, how the chemical complexes interact within the
chemical network. Chemical reaction networks are
dynamical systems of the form

where the unknown matrix encompassing the connectiv-
ity structure is A and the vector of functions f: �n  �m

(which need to satisfy appropriate smoothness conditions
to ensure local existence and uniqueness of solutions) is
known. This makes (1) linear in the unknown parameters.
Our main objective is to provide a procedure to identify
the interconnection topology that is encapsulated in A,
given experimental time-series data.

An important property of the network given by A is sparse-
ness, i.e., it has much less edges than the full graph with
the same vertex set. In this paper, we extend the results in
[13] that focus on obtaining sparse interconnection net-
works from experimental data to general and large-scale
networks. We apply the presented methodology in order
to reconstruct a biochemical network from mock-up
experimental data obtained through simulations. More
importantly, we show its validity in determining the glyc-
olytic pathway of Lactococcus lactis from real experimental
data. Although this pathway has been investigated in great
detail (see for example, [14-16]) and is the test object of
many system identification approaches as a recent paper
fittingly notes in its title, it is 'an unfinished systems bio-
logical case study' [14].

Finally, we suggest how the method of identifying connec-
tivity for systems of the form (1) can be adjusted to deter-
mine the structure of gene regulatory networks, in which the
unknown parameters do not enter the system dynamics in
an affine way. We then apply the methodology in order to
reconstruct a gene regulatory network from mock-up
experimental data obtained through simulations.

Notation
�, �n, �m × n is the set of all real numbers, real vectors of
length n, m × n real matrices

Aij (i, j)th is the (i, j) entry of matrix A  �m × n

 :{x  �n: xi > 0, i = 1, ..., n}, {x  �n: xi  0, i = 1,

..., n}

vec(A) is a vector which contains the columns of A stacked
one below each other

x Af x x An n m= ∈ ∈ ×( ), , ,  (1)

 + +
n n,
Page 2 of 13
(page number not for citation purposes)



BMC Systems Biology 2009, 3:25 http://www.biomedcentral.com/1752-0509/3/25
e =[1, 1, ∫, 1]T

diag(A), A  �n × n is a vector of length n, where (diag(A))i
= Aii

diag(x), x  �n is a matrix in �n × n, where (diag(x))ii = xi
and (diag(x))ij = 0 if j  i

Methods
Chemical reaction networks
Chemical reaction networks are used to describe and
understand biological processes. An illustrative example is
the following reaction network proposed by Michaelis
and Menten for chemical reactions involving enzymes,

Here, S denotes the substrate, E the enzyme, ES the
enzyme-substrate complex and P the final product. They
are the so called species that participate in the reactions.
The positive constants k1, k-1, k2 and k-2 are the reaction
rate constants, edges represent reactions and vertices repre-
sent complexes (the objects that appear before and after the
reaction arrows).

In chemical kinetics, it is common to assume that the
dynamics of the chemical reaction network (such as the
one given by (2)) can be described by the following set of
nonlinear ODEs [17]:

where v(x) is the rate vector (or flux vector), x is the concen-
tration vector of the different species and N is the stoichio-
metric matrix. If p molecules of species i appear before the
reaction arrow in reaction j then Nij = -p and if they appear
after then Nij = p.

The description given by (3) hides the underlying chemi-
cal network structure, which we aim to determine in this
paper. Hence, in the following, we introduce the notation
used in chemical reaction network theory, which decom-
poses N and v(x) into: the so called bookkeeping matrix Y,
which maps the space of complexes into the space of spe-
cies; the concentration vector of the different complexes
(x); and matrix A, which defines the network structure.
For the Michaelis-Menten reaction, the vectors of species
and complexes are given by

respectively. The elements of the ith row of matrix Y tell us
in which complexes species i appears and how often; or,
equivalently, the entries to the jth column tell us of how
much of each species complex j is made of. For (2),

Matrix K is the transpose of the weighted adjacency matrix
of the digraph representing the chemical reaction network;
that is, entry Kij is nonnegative and corresponds to the rate
constant associated with the reaction from complex j to i.
The so called kinetic matrix A is given by A = K - diag(KTe).
For (2),

In chemical reaction network theory, it is common to
assume mass action kinetics. The law of mass action
assumes that if reactions take place at constant tempera-
ture in a homogenous and well mixed solution then the
probability of a collision between molecules is propor-
tional to the product of their concentrations. This means
that ln (x) = YT ln x, and one reformulates the set of non-
linear ODEs given by (3) as [18]:

In general, we assume that a chemical reaction network

has n species and m complexes. Thus, in (4): x  , (x)

 , A  �m × m, and . Experimental data is

stacked in vector (x) and often matrix Y is known such
that we can explicitly search for the network structure
given by A. Finally, for clarity, we provide the expanded

ODE representation of the Michaelis-Menten reaction
given by (2):
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Determining affine and sparse interconnections in 
dynamical systems
Consider a dynamical system of the following form:

where f(·)  �m is a vector of known functions, which sat-
isfy appropriate smoothness conditions to ensure local
existence and uniqueness of solutions. With A = Y A and
f (x) = (x), the above description results in a dynamical
system of the form given by (6). Note that the unknown
parameters (which also encode the network structure) are
in A, which enters the system dynamics linearly. Let nei-
ther the value of the entries nor the structure of matrix A
be known. What we wish to find is the structure and
entries in matrix A, given experimental data.

For this purpose, we consider the following discrete-time
system:

x(tk + 1) = x(tk) + (tk + 1 - tk) Af(x(tk)), (7)

which is the Euler discretization of (6).

Now, the set of measurements, which we denote by ,
can be used to fit the unknown entries to A such as to min-
imize the error between the data and the model predic-
tions, which are given by (7). It is popular to solve the
minimization problem which results in the least 2-norm

of the error between xi(tk+1) and  (least squares

minimization problem). We can write such an error met-
ric as:

min||Ma - b||2 (8)

where a  �nm is a vector containing Aij, which we treat as
decision variables, and M  �((p-1) × n) × nm and b  �(p-1) × n

are defined by 'stacking' all such conditions obtained by
manipulating the data as per (7). Here p corresponds to
the number of measurements. This problem has the fol-
lowing analytical solution:

a* = M†b (MT M)-1MTb (9)

There are a few drawbacks of the above least-squares
approach. In the presence of extra constraints on the vari-

ables Aij (constrained regression), the problem does not
have a closed-form solution, in general. Such constrained
minimizations, the simplest of which is a Second Order
Cone Problem (SOCP) [19], may carry a significant compu-
tational cost for large problems. The same is true if the
data are contaminated with error which needs to be taken
into account when producing Aleast-squares [20]. Further-
more, the solution to a least-squares problem will not be
sparse in general; it will rather result in a full matrix.

In [19] and more recently in [21], the fact was mentioned
that a large number of elements of the solution z of a Lin-
ear Program (LP) such as

min ||z||1, (10)

are zero, that is, (10) produces sparse solutions. For this
reason, this is the approach we follow in the paper. In par-
ticular, if A is sparse then the following program seeks
explicitly to minimize the entries to matrix A and, thus,
tries to recover this property of the matrix:

By making  and  as small as possible for all k, we

can ensure that the data are in close Euler-fit with the
model making the approximation error as small as possi-
ble. The advantage of solving LPs is that the task can be
performed using fast, efficient and readily available algo-
rithms. Note also that the number of decision variables in
(11) relates directly to the size of A and not of the data,
which makes it suitable for the identification of large-scale
systems. Support for the validity of above heuristic to
obtain a sparse interconnection matrix A are also Theorem
1.1 of [22] and the work presented in [23].

An additional advantage of our approach is also that we
may incorporate uncertainties in the measurements with
little additional computational complexity. If we model
the uncertainty in the measurements as

 (tk)  0,  (tk)  0, for all k, and Aij  0 then we can for-

mulate the robust counterpart to (11) that is still an LP
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s. t. −μ−
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k ,
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k ≥ 0, ∀k, k = 1, . . . , p − 1.
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(12)

x̃(tk) − ε(k) ≤ x̂(tk) ≤ x̃(tk) + ε(k), f̃(tk) − δ(k) ≤ f(x̂(tk)) ≤ f̃(tk) + δ(k), ε(k), δ(k) ≥ 0,
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(see also [24,25]). The following LP is a robust formula-
tion of program (11):

In summary, using the above ideas, we aim to extract from
data the sparsity pattern in matrix A, which is related to
the connectivity of the underlying graph structure, draw-
ing conclusions on the network interaction topology.

Finally, note that if data points are rare, that is p  m, and
there are not any constraints on matrix A then the error
between the data and the model predictions can be made
zero and (9) does not have a unique solution. However,
the following LP can be used to try to recover the sparsity
structure of the matrix:

Obtaining the structure of a gene regulatory network
Using the same ideas, another class of a networks that can
be determined are gene regulatory networks given micro-
array time-series data. We first briefly explain the function
of gene regulatory networks and DNA microarray time-
series.

A gene encodes the information necessary to produce a
specific protein. The process, in which the information is
used to synthesize a protein, is highly controlled and this
control allows the cell to vary the level of a particular pro-
tein in the cell depending on the cell's need for this pro-
tein. The first step of synthesizing a protein from a gene is
RNA polymerase transcribing gene information from
DNA to mRNA (see Figure 1a). This mRNA is then trans-
lated into synthesized proteins by ribosomes. Control can
occur at a number of stages including the synthesis of
mRNA, subsequent processing of the mRNA, control of
the ribosome and control of mRNA stability. Some pro-
teins, called transcription factors, are responsible for the
regulation of the initiation of transcription. A transcrip-
tion factor binds to the DNA, at the promoter site, in order
to either inhibit or activate (or alternatively increase the
rate of) the transcription of mRNA that is responsible for
the synthesis of a specific protein (see Figure 1b). (Note
that self regulation is also possible.) The collection of
DNA segments which interact with each other in the man-
ner described is called the gene regulatory network.

In order to understand the dynamics and behavior of a
gene regulatory network, three levels of information are
required:

1. The network interconnection in the form of a directed
graph;

2. Whether an edge from node i to node j means that tran-
scription factor i is activating (denoted by arrow) or
repressing (denoted by 'hammer') j;

3. The activation/repression rates for the transcription fac-
tors.

Time-series obtained from DNA microarrays [26,27] are
extremely helpful to obtain the structure of gene regula-
tory networks. This is because DNA microarrays allow
observation of the presence of specific mRNA within the
cell and in particular, time-series data allow measure-
ments on how these change over time after a perturbation,
or when following the cell cycle.

Now, consider the model of a gene regulatory network as
described in [28] and [29], where nodes represent genes.
Knowledge of the three hierarchal levels of information
mentioned previously is necessary to describe the net-

min || ( ) ||

( ) ( ) ( ) ( ) (
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A

x t k x t k tk k k k
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1 11− ≤ − − + + − +−
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(14)

min ‖vec(A)‖1

s. t. x̂(tk+1) = x̂(tk) + (tk+1 − tk)Af(x̂(tk)), ∀k, k = 1, . . . , p − 1.

Diagram showing the process of transcriptionFigure 1
Diagram showing the process of transcription. a) The 
RNA polymerase binds to the promoter sequence on the 
DNA and transcribes a gene. b) Transcription can be con-
trolled by inhibitors or activators acting at the promoter 
sequence.
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work. The first level determines whether there is an inter-
action between proteins X1 and X2. An interaction of the
form 'X1  X2' means that protein X1 activates the produc-
tion of protein X2 and 'X1 ¤ X2' that X1 inhibits it. This
information belongs to the second level. The activation
and repression Hill input functions are given mathemati-
cally by (see [28]):

respectively, where x1 is the concentration of X1. (In [29],

the notation  is used instead of k. For clarity, we have

adopted a 'simpler' notation.) Knowledge about the mag-
nitude of activation or repression coefficient k, k > 0, and
exponent n, n > 0, is part of the third level of information.

If there exists more than one connection to a particular
gene/node then all transcription factors associated with
the connections could be necessary to fulfill a specific task
(activation or inhibition) or it might be that any of them
is sufficient to have an effect on the transcription process;
more complex combinations are also possible. In [28,30],
a generalized input function of the following form is pre-
sented, which takes the possible interplay of different
transcription factors into account:

Here, activation of protein Xi by protein Xj is represented
by nij = mij > 0, and repression by nij = 0, mij > 0. The con-
tribution of the different transcription factors on the tran-
scription rate is denoted by bij. Putting everything
together, the mathematical description of the dynamics of
the concentrations of protein Xi of an arbitrarily large gene
regulatory network is as follows:

where i > 0 is the basal transcription production rate and
di > 0 is the degradation/dilution rate. In the above model,
however, the vector field (right hand side of Equation
(17)) is not affine in the unknown parameters and there-
fore one may think that the method proposed in the pre-
vious section can not be extended for this case; we show
here how the above can be reformulated and cast in a
form that allows identification using Linear Program-
ming.

Let t = t�+1 - t�. A discrete-time system that approximates
(17) is:

xi(t�+1) = xi(t�) + t(i + fi(xi(t�)) - dixi(t�)). (18)

Indeed, if bij, kij and mij are unknown then (18) is not aff-
ine in the unknown parameters as is the case in (7). We
rewrite (18) as follows:

In (19), if nij = 0 then we denote it by  and let

. If nij > 0 then we denote it by .

For all i, j, let an entry to matrix B be bij for which nij > 0,

and let an entry of matrix K be kij. As before, given a set of

measurements, which we denote by , this set can be

used to approximate the structure of the gene regulatory
network determined by bij, bi and kij if the Hill coefficients

mij (and, thus, nij) are known and the basal production

and degradation rates are known or considered uncertain
but within a known range. For instance, we can try to
recover B, K through a LP. The following LP puts emphasis
on minimizing the 1-norm of vec(B), b, and vec(K), which
are independent of each other, while we keep the Euler

discretisation error, , as small as possible.

(The latter requirements in brackets correspond to the
case of uncertain production and degradation rates.) Note
that as per (16)

kij = 0 if and only if bij = 0 or bi = 0, i, j. (21)

The following remark deals with the case when the solu-
tion of (20) violates (21). The rationale behind the idea is
that by following these rules we can determine unambig-
uously whether activation or repression takes place.

Remark 1 Since requirement (21) cannot be implemented in
a LP, we deduce the following from the solution of (20) about
the connectivity of the network when (21) is violated:

- if kij  0, bij = 0 and bi = 0 then the production of Xi is not
affected by Xj; that is, it is the same case as when kij = 0,

kxn

kxn kxn
1

1 1

1

1 1+ +
, , and (15)

1
K

f x
bijx j

nij
j

kijx j
mij

j

i( ) .=
∑

+∑1
(16)

x f x d xi i i i i= + − ( ) , (17)

( ( )( ) ( ) )( )x t td x t t k x t b xi i i i ij j
m

j

ij j
n

j

ij ij
 


1 11− − + + ++ ∑ ∑Δ Δ Δ ++ =Δtbi 0.

(19)

nij

b b x bi ij j
n

j ijj
ij= =∑ ∑ nij

x̂

(20)

min ‖vec([B b K])‖1

s. t. −μ < (x̂i(t�)(1 − Δtdi) − x̂i(t�+1) + Δtγi)(1 +
∑

j

kij x̂
nij

j ) + Δt
∑

j

bij x̂
nij

j + Δtbi < μ,

μ > 0, bij ≥ 0, kij ≥ 0, bi ≥ 0, ∀i, j, � (0 ≤ ε1i ≤ γi ≤ ε2i, 0 ≤ ε1i ≤ di ≤ ε2i,∀i).
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- if bij  0 and kij = 0 then Xj enhances the production of Xi; i.
e., it is the same case as when kij  0,

- if bi  0 and kij = 0 for all i then the production of Xi is not
affected by Xj; that is, it is the same case as when bi = 0.

Results and discussion
Numerical experiments
An artificial chemical reaction network

Consider the network with 5 species  = {A, B, C, D, E}

and 5 complexes,  = {A, 2B, A + C, D, B + E} in Figure

2. Suppose we are given time series data for all the species
in this system, but we do not know the topology of the
interconnection. The first experiment examines the recov-
ered interconnection diagram using the (non-robust) LP
(11). Later on, we will consider the same problem with
missing data on one species and a robust network deter-
mination problem.

We have implemented the network shown in Figure 2
with a K matrix of the form:

and have simulated the system with uniformly distributed
initial conditions. The data sets were obtained by simulat-
ing the above set of nonlinear equations using
SIMULINK. Ten such data sets were generated and incor-
porated in the LP.

Since we do not know how the chemical network is con-
nected, and we cannot even speculate how parts of it may
be connected, we need to assume a general structure for it
and write the dynamics for the complete network. A least-
squares approach, would yield the following structure in
matrix K, where non-zero entries denote the fractional
occurrences of non-zero kij's for the 10 data sets:

Essentially the only zero element predicted is k45. Note
that the diagonal of this matrix does not enter into our
optimization. We write these entries as zero, but this is
merely a convenient notational place holder. The result-
ing structure of the K matrix from our linear programming
approach is given by

where again non-zero entries denote the fractional occur-
rences of non-zero entries for the 10 data sets tested.
Observe that the second column is equal to zero which
implies that the second complex is not the product of any
reaction. Having determined this sparse structure for the
system, we can repeat the same LP optimization, but now
impose the new information about the sparse structure
obtained in the new linear program, i.e. that k12 = 0 etc.
Iterating once on this data, we get the following results:

This experiment reveals that the sparsity structure can be
further reduced by an iterative procedure. One could also
use the above as a 'probability' lookup table, and investi-




K =
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⎡
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⎥
⎥
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.
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⎡
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0 0 0 8 0 0
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.

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
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⎥
⎥
⎥

A chemical reaction networkFigure 2
A chemical reaction network.
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gate sparsity structures, such as setting k23 and k24 equal to
zero. Indeed this solution is also feasible, which reveals
additional structure in the matrix K. Working this way, we
have found that the following non-zero matrix results in
feasible LPs:

which is the same as the network shown in Figure 2, but
for a link between complex 1 and complex 3. Of course,
this is not surprising: there is no unique reaction mecha-
nism that can fit a data set; rather, there can be many net-
works which with some kinetic parameters can represent
the same data within experimental error. In fact, we can
only hope to invalidate a postulated reaction mechanism
using data, a point we will return to in the concluding sec-
tion.

The next experiment we performed was to assume that
some of the species could not be observed in the experi-
ments for technical reasons. In particular, we assumed
that the concentration of species A could not be meas-
ured. This does not pose significant problems, as we can
replace the occurrences of the terms in the vector field
involving the variable x1 with a vector of new variables q
which we also ask to be 'sparse', through minimization of
the sum of qi. Eight such substitutions need to be made;
the result is a matrix of the form:

and a q = [q1, ..., q8] which corresponds to nonzero entries
for k31, k34, k35 k13 and k15. Therefore in this case too, a
sparse topology interconnection is obtained, but the
matrix in this case is not as sparse as before.

Suppose now that data are uncertain, and we want to
search for robust sparse structures for the K matrix. We set

 =  = 0.0004 for i = 1, ..., 5 and all data points – such

uncertainty could be due to roundoff errors (see Equation
(12)). A robust LP can be formulated, as discussed earlier,
and the obtained optimization results in a network with a
richer sparsity structure:

Finally, we note that once a candidate network is deter-
mined, we can perform a least-squares minimization to
obtain the best k values for a particular sparsity structure.
For example, if we choose Knom as the sparsity structure
and fit the least squares error over all 10 experiments, we
get the following K matrix:

In figures 3A and 3B we show how the nominal system,
with the K matrix given by Equation (22) compares in
simulation with the K matrix given by Equation (23) for
different initial conditions. We see that some initial con-
ditions have better behavior for the two parameter sets
than others. There is hope, however, that using other
methods and through choice of a particular initial condi-
tion we can distinguish between the two network struc-
tures; the initial condition in Figure 3B shows some
deviation in the dynamics of x1, and designing an experi-
ment that would yield 'maximum' deviation would allow
for differentiability between various models that can
explain the same data. More details about this approach
can be found in [31].

A sample gene regulatory network
Consider the artificial gene regulatory network modeled
through

where
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b3 = 0.71, b5 = 0.80, i = 0.1 and di = 1. The network is
depicted in Figure 4, where solid lines with an arrow head
denote activation and dash pointed lines with a hammer
head denote inhibition.

We assume that di is known and i =  for all i, where 0.095
   0.105. We take 'measurements' every t = 0.05
between t = 0 and t = 5 (time is in arbitrary units) from
four different random initial conditions between 0 and 1
in order to obtain mock-up data. Solving (20) using the
solver SeDuMi [32], we obtain the following results for
matrices B and K:

b3 = 0.64, b5 = 0.80, and all other bi = 0. Following the rules
given by Remark 1, we are able to reconstruct the network
shown in Figure 4. As the example shows, we are able to
determine the interaction network given by (24) through

the LP (20) even when degradation rates are considered
uncertain.

Reconstructing the glycolytic pathway of Lactococcus 
lactis
Lactococcus lactis is a bacterium used in the industrial pro-
duction of cheese and buttermilk as it converts more than
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⎥
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.

.
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.

;

⎡
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⎥

Simulation of chemical reaction networksFigure 3
Simulation of chemical reaction networks. Simulation of the network with reaction rates (22) (solid line) and with reac-
tion rates given by (23) (dashed line) from two initial conditions.

The artificial gene regulatory network modeled through (24)Figure 4
The artificial gene regulatory network modeled 
through (24). Solid lines with an arrow head denote activa-
tion and dash pointed lines with a hammer head denote inhi-
bition.
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90% of lactose (milk sugar) to lactic acid [14]. In general,
the glycolytic pathway (or glycolysis) consists of chemical
reactions that convert glucose into pyruvate. In the first
step, glucose is converted into glucose-6-phosphate
(G6P). A conversion of G6P into fructose-1,6-bisphos-
phate (FBP) follows, which is then converted sequentially
to glyceraldehyde-3-phosphate (Ga3P), 3-phosphoglyc-
eric acid (3-PGA) and PEP [16]. Additionally, Glucose and
PEP are converted directly to pyruvate and G6P. Note that
since measurement data for the intermediate Ga3P were
unavailable, we include an additional rate denoting
depletion of FBP. A simplified description of the pathway
from reference [33] is depicted in Figure 5. The relative
simplicity of this metabolic network makes L. lactis an
attractive model for biological systems approaches [14]. A
recent paper which presents an approach to determine the
connectivity of this system and puts some emphasis on its
sparsity is [16]. However, this approach does not take into
account the characteristic particulars that make up a
chemical reaction network. Here, we first use LP (11) to
try to elucidate the glycolytic pathway of L. lactis using the
same experimental data from [33].

Particularly, we wish to elucidate the glycolytic pathway of
L. lactis under the assumption that the following com-
plexes participate in the chemical reaction network: Glu,
G6P, FBP, 2 × 3PGA, 2 × PEP, 2 × Pyru and Lact. In other

words, we wish to obtain interaction topology A of the
chemical reaction network given by  = Y A f (x), where

Note that the network topology is completely determined
by A. Recall that

A = K - diag(KTe), Kij  0 i, j. (25)

Now, by solving (11) we indeed obtain a sparse chemical
reaction topology (Figure 6(a)). However, the error
between the model dynamics and experimental data is
unreasonably large (Figure 6(b)). Therefore, it is not sur-
prising that this configuration differs greatly from the the
proposed pathway of Figure 5.

The �1 regularized least squares problem, which is called
Lasso is statistics, considers an objective function to mini-

mize, which consists of the sum of the 1-norm of the vec-
tor of unknowns and the least squares of the error:

where  is a nonnegative constant that allows us to regu-
late the weight we put on the sparsity of A explicitly. Note
that for  = 0, program (26) minimizes the the error
between data and model dynamics solely (Figure 7(b)).
This time, the error between the model dynamics and
experimental data is considerably smaller. The connection
topology is shown in Figure 7(a). Now, we increase  to
see whether or which interconnections disappear without
altering the system dynamics significantly. This pathway,
which remains unaltered for 2    10, is shown in Figure
7(a). The dynamic behavior of this system is indistin-
guishable from the one shown in Figure 7(b) and, thus, is
not shown.

Further increase of  results first in the disappearance of
the links between G6P and FBP, and sequential changes
do not result in 'sensible' connection topologies. Of
course, this is something that in general the investigator
does not know. While the pathway depicted in Figure 6(a)
might be dismissed because the resulting model behavior
compares badly with data, this argument does not hold
for the pathway in Figure 7(a).

x

Y =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 1

⎢⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

=,

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[

x

Glu

G6P

FBP

PGA

PEP

Pyru

Lact

3

]]

, ( )

[ ]

[ ]

[ ]

[ ]

[

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

=f x

Glu

G6P

FBP

PGA

PEP

3 2

]]

[ ]

[ ]

.
2

2Pyru

Lact

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(26)

given Y

min

∥∥∥∥∥∥∥

⎡
⎢⎣

x̂(t1) − x̂(t2) + (t2 − t1)Af(x̂(t1))
...

x̂(tp−1) − x̂(tp) + (tp − tp−1)Af(x̂(tp−1))

⎤
⎥⎦

∥∥∥∥∥∥∥
2

+ α ‖vec(A)‖1

s. t. A = Y Aκ,

Aκi,j
≥ 0, i �= j, ∀i, j, eTAκ = 0 (this follows from (25)),

The glycolytic pathway of Lactococcus lactisFigure 5
The glycolytic pathway of Lactococcus lactis.
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Now, we exploit the following related approach to try to
deduce the interactions of the system by solving the fol-
lowing LP:

We solve (27) for  = 0,  = 2 and  = 3, and obtain the
reaction pathway shown in Figure 8(a) which results in a
model with the dynamics depicted in Figure 8(b). (Note
that for 0 <  75, the model dynamics are indistinguish-
able from the ones shown in Figure 8(b) and are not
shown.)

The error between the model dynamics and experimental
data is again considerably smaller than the error shown in
Figure 6(b). As we can see from Figure 8(a), a relatively
sparse reaction topology was obtained.

The pathway x1  ...  x7 was almost reconstructed. A sen-
sible assumption to make is that the degradation of G6P
which appears at  = 3 corresponds to the conversion into
FBP suggested at  = 2.

Also, the direct link between glucose and pyruvate was
discovered. Finally, with

our approach provides a meaningful chemical reaction
network of the form (4). (This matrix corresponds to the
case when  = 2.) Nevertheless, without biochemical
information the superiority of this pathway to the path-
way in Figure 7(a) cannot be established and it follows
that experiments have to be designed to discriminate
between several competing models.

Conclusion
We have presented a methodology for determining the
interaction topology of biological networks, that are
either affine in the unknown parameters or can be trans-
formed to have this property, using time series data col-
lected from experiments. We demonstrated the ability of
our method to identify a chemical reaction network struc-
ture through several numerical examples. We have also
tested our approach by elucidating the glycolytic pathway
of the bacterium Lactococcus lactis. Our method respects
the structural properties that chemical reaction network
dynamics should have [11,12].

In the case of gene regulatory networks, more realistic
models could be used, but those would include additional
parameters, first, by making the Hill coefficient in the acti-

(27)

given Y

min

∥∥∥∥∥∥∥

⎡
⎢⎣

x̂(t1) − x̂(t2) + (t2 − t1)Af(x̂(t1))
...

x̂(tp−1) − x̂(tp) + (tp − tp−1)Af(x̂(tp−1))

⎤
⎥⎦

∥∥∥∥∥∥∥
1

+ α ‖vec(A)‖1

s. t. A = Y Aκ,

Aκi,j
≥ 0, i �= j, ∀i, j, eTAκ = 0 (follows from (25)),

A =

−
−

−

0 3452 0 0 0 0 0 0

0 0185 0 4105 0 0 0 0 0

0 2431 0 4105 0 3735 0 0 0 0

.

. .
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⎥
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. . . .
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⎥⎥

Reaction pathway obtained through (11)Figure 6
Reaction pathway obtained through (11). a) The reaction pathway obtained through (11). b) The simulated model 
dynamics defined through the reaction network shown in (a) are shown in dashed lines and solid lines correspond to experi-
mental data.
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vation and repression terms a free variable; and second,
encoding the fact that when two transcription factors act
on DNA, either both are required (AND) or any of them
is sufficient (OR) for action. Thus, a valuable research
direction is to investigate this case and establish whether
similar analysis techniques to the ones presented in this
paper can be used.

In (27) we introduced a free variable  whose value can
change the solution considerably. Hence, it is worthwhile
to explore different possible heuristics how to choose the
value of this variable. (Here, we kept the balance between
increasing  and keeping the model dynamics that fol-
lowed from the solution of (27) relatively close to experi-
mental data.) An iterative method can also be used, which

Reaction pathway obtained through (26)Figure 7
Reaction pathway obtained through (26). a) Reaction pathway obtained through (26) for  = 0 and  = 2. All reactions 
participate in both pathways except for two which are marked accordingly. The one reaction that was obtained for  = 0 but 
not for  = 2 is marked with 0 and the one that appears only for  = 2 is marked with 2. b) Here, solid lines correspond to 
experimental data and dashed lines to the model with the interaction matrix obtained by solving (26) with  = 0.

Reaction pathway obtained through (27)Figure 8
Reaction pathway obtained through (27). a) All reactions participate in both pathways except for four which are marked 
accordingly. Two reactions that were obtained for  = 0 and  = 2 but not for  = 3 are marked with 0 and 2, one that 
appears only for  = 0 is marked with 0, and one that appears only for  = 3 is marked with 3. (Note that a gradual increase 
of , for 3    75, did not change the network structure.) b) Here, solid lines correspond to experimental data and dashed 
lines to the model dynamics defined through the reaction network shown in Figure 8(a) for  = 0.
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uses 'live' information from simulations and then iterates
with a simple Linear Program to find the network struc-
ture that fits best the parameters.

Finally, as shown, different methods or the same one with
different constraints provide different models that repre-
sent the same data, which is an expected feature of such
methods. It follows that experiments have to be designed
to discriminate between competing models, in a way that
'closes the loop' between modelling and experiment (see
for example [31]).
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